Quantum Computing Architectures

Budapest University of Technology and Economics 2018 Fall

Lecture 2
Control of quantum systems

Schedule of this course

Introduction

Spin qubits (electron spin)

Superconducting qubits (transmon)

A few famous and useful model Hamiltonians

1. spin in a B-field
2. spin driven by square B-field pulses (=> single-qubit gates)
3. spin resonance (=> single-qubit gates)
4. Hubbard model and exchange interaction (=> two-qubit sqrt-of-swap)
5. Jaynes-Cummings Hamiltonian and its dispersive regime
6. driven Jaynes-Cummings Hamiltonian (=> single-qubit gates, readout)
7. two-qubit Jaynes-Cummings Hamiltonian (=> two-qubit sqrt-of-iswap)

A few famous and useful concepts

1. rotating frame
2. rotating-wave approximation
3. perturbation theory $\longrightarrow E_{n}^{(2)}=\sum_{k \neq n} \frac{\left.\left|\left\langle k^{(0)}\right| V\right| n^{(0)}\right\rangle\left.\right|^{2}}{E_{n}^{(0)}-E_{k}^{(0)}}$

Spin in a B-field

Hamiltonian:

~2 for e in vacuum

Precession (Larmor) frequency @ 1 Tesla:

$$
f_{L}=g \mu_{B} B_{0} / h \approx 28 \mathrm{GHz}
$$

Dynamics of polarization vector: Larmor precession

Spin driven by square B-field pulses

$$
H(t)=\frac{1}{2} g \mu_{B} \boldsymbol{B}(t) \cdot \boldsymbol{\sigma} \quad \boldsymbol{B}(t)=\left(\begin{array}{c}
B_{x}(t) \\
0 \\
B_{z}(t)
\end{array}\right)
$$

Any rotation can be combined by an x-rotation and a z-rotation.
Any single-qubit gate can be realized by x - and z -directional B -field pulses.
Caveat: fast tuning of the magnetic field is difficult.
Homework: what is the duration of a NOT gate ('pi pulse') if a B of 1 mT is used?

Spin resonance (rotating drive)

$$
H(t)=\frac{1}{2} g \mu_{B} B_{0} \sigma_{z}+\frac{1}{2} g \mu_{B} B_{\mathrm{ac}}\left(\sigma_{x} \cos \omega t+\sigma_{y} \sin \omega t\right)
$$

$$
\text { initial state: } \psi(t=0)=\binom{0}{1}
$$

resonance condition: $\omega=\omega_{L}$

$$
\psi(t)=?
$$

Spin resonance (rotating drive)

$\psi(t)=$?
exactly solvable problem
time evolution of the polarization vector

precession around z
(Larmor precession) frequency ω_{L}
north-south oscillation
(Rabi oscillation)
frequency Ω

Spin resonance (rotating drive)

How to solve the time-dependent Schrodinger equation?
Using the "transformation to the rotating frame".
That is a time-dependent unitary transformation applied on the TDSE:

$$
\begin{array}{ll}
W(t)=e^{i \frac{H_{\text {static }}}{\hbar} t}=e^{i \frac{1}{2} \omega_{L} \sigma_{z} t} \\
\frac{\hbar}{i} \dot{\psi}(t)+H(t) \psi(t)=0 & \\
\frac{\hbar}{i} \dot{\tilde{\psi}}(t)+\tilde{H}(t) \tilde{\psi}(t)=0 & \text { Larmor precession } \\
\tilde{\psi}(t)=W(t) \psi(t) & \text { around } \mathrm{x} \\
\tilde{H}(t)=W(t) H(t) W^{\dagger}(t)-\frac{\hbar}{i} \dot{W}(t) W^{\dagger}(t)=\frac{1}{2} \hbar \Omega \sigma_{x}
\end{array}
$$

This is the "Hamiltonian in the rotating frame".
It is a time-independent Hamiltonian.
Hence the dynamics is exactly solvable.

We describe qubit dynamics in the rotating frame

$$
\begin{aligned}
& H(t)=\frac{1}{2} \hbar \omega_{L} \sigma_{z} \longrightarrow \tilde{H}=0 \\
& H(t)=\frac{1}{2} \hbar \omega_{L} \sigma_{z}+\frac{1}{2} \hbar \Omega\left(\sigma_{x} \cos \omega t+\sigma_{y} \sin \omega t\right) \longrightarrow \tilde{H}=\frac{1}{2} \Omega \sigma_{x} \\
& H(t)=\frac{1}{2} \hbar \omega_{L} \sigma_{z}+\frac{1}{2} \hbar \Omega\left(\sigma_{x} \cos \left(\omega t+\frac{\pi}{4}\right)+\sigma_{y} \sin \left(\omega t+\frac{\pi}{4}\right)\right) \\
& \text { - a drive pulse rotates the polarization vector } \tilde{H}=\frac{1}{2} \Omega \sigma_{y}
\end{aligned}
$$

- rotation axis depends on the phase of the drive pulse
- rotation angle depends on the product of the amplitude and duration of the pulse
- any rotation can be composed from x and y rotations
- any single-qubit gate can be performed with spin resonance

Power broadening

If driving is `off-resonant' or 'detuned', then the spiral-like polarization dynamics is only partial, it doesn't reach the north pole.

$$
\text { 'detuning': } \delta=\omega_{L}-\omega
$$

If the initial state is the ground state, then the excited-state probability is:

$$
P_{e}(t)=P_{\max }(\delta) \sin ^{2}\left(\frac{1}{2} \sqrt{\Omega^{2}+\delta^{2}} t\right)=\frac{\Omega^{2}}{\Omega^{2}+\delta^{2}} \sin ^{2}\left(\frac{1}{2} \sqrt{\Omega^{2}+\delta^{2}} t\right)
$$

relative drive frequency, ω / ω_{L}

Spin resonance (linear drive)

$$
H(t)=\frac{1}{2} g \mu_{B} B_{0} \sigma_{z}+\frac{1}{2} g \mu_{B} B_{\mathrm{ac}} \sigma_{x} \cos \omega t
$$

weak driving:
$\Omega \ll \omega_{L}$
for weak driving, the qubit dynamics is approximately the same as with rotating drive
most experiments use linear drive (simpler)

From exchange interaction to sqrt-of-swap gate

- reminder: sqrt-of-swap + single-qubit gates = universal gate set
$U_{\sqrt{\text { SWAP }}}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \frac{1-i}{2} & \frac{1+i}{2} & 0 \\ 0 & \frac{1+i}{2} & \frac{1-i}{2} & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
basis-state ordering $|00\rangle,|01\rangle,|10\rangle,|11\rangle$
- simple description: two-site Hubbard model
- setup: two electrons in a double well (dot) $V(x)$

- high/low barrier => tunneling off/on

$$
\begin{aligned}
H_{\text {Hubbard }} & =H_{\text {on-site }}+H_{\text {tun }}+H_{\text {Coulomb }} \\
H_{\text {on-site }} & =\varepsilon_{L} n_{L}+\varepsilon_{R} n_{R} \\
H_{\text {tun }} & =t_{H}\left(a_{L \uparrow}^{\dagger} a_{R \uparrow}+a_{L \downarrow}^{\dagger} a_{R \downarrow}+h . c .\right) \\
H_{\text {Coulomb }} & =U\left(n_{L \uparrow} n_{L \downarrow}+n_{R \uparrow} n_{R \downarrow}\right) \\
& n_{L \uparrow}=a_{L \uparrow}^{\dagger} a_{L \uparrow}, \text { etc. }
\end{aligned}
$$

- on-site energies = zero
- tunable tunnel amplitude
- strong Coulomb repulsion $t_{H} \ll U$

The statement

$$
\mathcal{A}=\int_{t_{0}}^{t_{1}} d t t_{H}^{2}(t)
$$

$$
\text { If } \frac{4 \mathcal{A}}{\hbar U}=\frac{3 \pi}{2} \text { then } \psi\left(t_{1}\right)=U_{\sqrt{\text { SWAP }}} \psi\left(t_{2}\right)
$$

The proof

- 2 electrons in the Hubbard model => 6 states: $(2,0),(1,1) \times 4,(0,2)$ basis: $|2,0\rangle,|\downarrow, \downarrow\rangle,|\downarrow, \uparrow\rangle,|\uparrow, \downarrow\rangle,|\uparrow, \uparrow\rangle,|0,2\rangle$

$$
H_{\text {Coulomb }}=\left(\begin{array}{cccccc}
U & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & U
\end{array}\right) \quad H_{\text {tun }}=\left(\begin{array}{cccccc}
0 & 0 & t_{H} & -t_{H} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
t_{H} & 0 & 0 & 0 & 0 & t_{H} \\
-t_{H} & 0 & 0 & 0 & 0 & -t_{H} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & t_{H} & -t_{H} & 0 & 0
\end{array}\right)
$$

Exercise: calculate these matrices.

The proof (contd.)

- unitary transformation to Singlet-Triplet (S-T) basis + reordering the basis

$$
W=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right) \begin{aligned}
& \text { basis: } \\
& |2,0\rangle \\
& |0,2\rangle \\
& |S(1,1)\rangle=\frac{1}{\sqrt{2}}(|\uparrow, \downarrow\rangle-|\downarrow, \uparrow\rangle) \\
& \left|T_{0}(1,1)\right\rangle=\frac{1}{\sqrt{2}}(|\uparrow, \downarrow\rangle+|\downarrow, \uparrow\rangle) \\
& \left|T_{-}\right\rangle=|\downarrow, \downarrow\rangle \\
& \left|T_{+}\right\rangle=|\uparrow, \uparrow\rangle
\end{aligned}
$$

The proof (contd.)

- solve the dynamics for this (approximate Hamiltonian):

$$
\left.\begin{array}{l}
H_{\text {Hubbard }}^{\prime} \approx\left(\begin{array}{cccc}
-\frac{4 t_{H}^{2}}{U} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) T_{-} \\
T_{+} \\
T_{+}
\end{array} \quad \text { • transform back to }\right)^{\varphi}=\frac{1}{\hbar} \int_{t_{0}}^{t_{1}} d t \frac{4 t}{L}
$$

- it gives sqrt-of-swap if:

$$
\varphi=\frac{3 \pi}{2}
$$

$$
U_{\sqrt{\mathrm{SWAP}}}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{1-i}{2} & \frac{1+i}{2} & 0 \\
0 & \frac{1+i}{2} & \frac{1-i}{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Q.E.D.

Exercise: do the calculations that were omitted here.

Jaynes-Cummings Hamiltonian

Setup: qubit interacting with a harmonic oscillator
oscillator frequency
('resonator frequency')

$$
H=\hbar \stackrel{\omega}{\mathrm{r}}\left(a^{\dagger} a+\frac{1}{2}\right)+\frac{\hbar \Omega}{2} \sigma^{z}+\underset{\text { qubit-oscillator coupling strength }}{\hbar g\left(a^{\dagger} \sigma^{-}+\sigma^{+} a\right)+H_{\kappa}+H_{\gamma} .}
$$

oscillator $=$ resonator $=$ cavity $=$ one mode of a microwave resonator qubit $=e$-charge, e-spin, superconducting qubit

```
'strong coupling' regime: }\gamma,\kappa<<
```

many back-and-forth oscillations of an energy quantum between qubit and oscillator are possible

Typical parameter values in `cavity/circuit quantum electrodynamics’

Parameter	Symbol	3 D optical	3 D microwave	1D circuit
Resonance or transition frequency	$\omega_{\mathrm{r}} / 2 \pi, \Omega / 2 \pi$	350 THz	51 GHz	10 GHz
Vacuum Rabi frequency	$g / \pi, g / \omega_{\mathrm{r}}$	$220 \mathrm{MHz}, 3 \times 10^{-7}$	$47 \mathrm{kHz}, 1 \times 10^{-7}$	$100 \mathrm{MHz} 5 \times 10^{-3}$
Transition dipole	$d / e a_{0}$	~ 1	1×10^{3}	2×10^{4}
Cavity lifetime	$1 / \kappa, Q$	$10 \mathrm{~ns}, 3 \times 10^{7}$	$1 \mathrm{~ms}, 3 \times 10^{8}$	$160 \mathrm{~ns}, 10^{4}$
Atom lifetime	$1 / \gamma$	61 ns	30 ms	$2 \mu \mathrm{~s}$
Atom transit time	$t_{\text {transit }}$	$\geqslant 50 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$	∞
Critical atom number	$N_{0}=2 \gamma \kappa / g^{2}$	6×10^{-3}	3×10^{-6}	$\leqslant 6 \times 10^{-5}$
Critical photon number	$m_{0}=\gamma^{2} / 2 g^{2}$	3×10^{-4}	3×10^{-8}	$\leqslant 1 \times 10^{-6}$
Number of vacuum Rabi flops	$n_{\text {Rabi }}=2 g /(\kappa+\gamma)$	~ 10	~ 5	$\sim 10^{2}$

strong coupling achieved in circuit QED

we assume strong coupling from now on

`Dispersive qubit readout’ in circuit QED

$$
\left.H=\hbar \omega_{\mathrm{r}}\left(a^{\dagger} a+\frac{1}{2}\right)+\frac{\hbar \Omega}{2} \sigma^{2}+\hbar g\left(a^{\dagger} \sigma^{-}+\sigma^{+} a\right)\right)+H_{\kappa}+H_{\gamma} .
$$

qubit-oscillator detuning: $\Delta \equiv \Omega-\omega_{\mathrm{r}}$
'large detuning regime' or 'dispersive regime': $g / \Delta \ll 1$

$|g\rangle=\binom{0}{1} \quad|e\rangle=\binom{1}{0}$
In the dispersive regime, the resonator acquires a qubit-state dependent shift of its eigenfrequency.

‘Dispersive qubit readout' in circuit QED

$$
H=\hbar \omega_{\mathrm{r}}\left(a^{\dagger} a+\frac{1}{2}\right)+\frac{\hbar \Omega}{2} \sigma^{2}+\hbar g\left(a^{\dagger} \sigma^{-}+\sigma^{+} a\right)+H_{\kappa}+H_{\gamma} .
$$

In the dispersive regime, the qubit can be read out by probing the oscillator.

An alternative way to derive the `dispersive cavity shift'

- start from Jaynes-Cummings Hamiltonian:

$$
H=\hbar \omega_{\mathrm{r}}\left(a^{\dagger} a+\frac{1}{2}\right)+\frac{\hbar \Omega}{2} \sigma^{z}+\hbar g\left(a^{\dagger} \sigma^{-}+\sigma^{+} a\right)+H_{\kappa}+H_{\gamma} .
$$

- do a `small' unitary transformation:

$$
U=\exp \left[\frac{g}{\Delta}\left(a \sigma^{+}-a^{\dagger} \sigma^{-}\right)\right]
$$

- expand the result up to second order in g :

$$
U H U^{\dagger} \approx \hbar\left[\omega_{\mathrm{r}}+\frac{g^{2}}{\Delta} \sigma^{z}\right] a^{\dagger} a+\frac{\hbar}{2}\left[\Omega+\frac{g^{2}}{\Delta}\right] \sigma^{z}
$$

qubit-state-dependent cavity eigenfrequency

A sqrt-of-iSWAP gate in circuit QED

- Setup: two qubits (i and j) interacting with the same oscillator
- Do the unitary transformation + expansion from the last slide

$$
\begin{align*}
H_{2 q} \approx & \hbar\left[\omega_{\mathrm{r}}+\frac{g^{2}}{\Delta}\left(\sigma_{i}^{z}+\sigma_{j}^{z}\right)\right] a^{\dagger} a+\frac{1}{2} \hbar\left[\Omega+\frac{g^{2}}{\Delta}\right]\left(\sigma_{i}^{z}+\sigma_{j}^{z}\right) \\
& +\hbar \frac{g^{2}}{\Delta}\left(\sigma_{i}^{+} \sigma_{j}^{-}+\sigma_{i}^{-} \sigma_{j}^{+}\right) . \tag{32}
\end{align*}
$$

$$
n=0
$$

$$
n=1
$$

A sqrt-of-iSWAP gate in circuit QED

$$
\begin{align*}
H_{2 q} \approx & \hbar\left[\omega_{\mathrm{r}}+\frac{g^{2}}{\Delta}\left(\sigma_{i}^{z}+\sigma_{j}^{z}\right)\right] a^{\dagger} a+\frac{1}{2} \hbar\left[\Omega+\frac{g^{2}}{\Delta}\right]\left(\sigma_{i}^{z}+\sigma_{j}^{z}\right) \\
& +\hbar \frac{g^{2}}{\Delta}\left(\sigma_{i}^{+} \sigma_{j}^{-}+\sigma_{i}^{-} \sigma_{j}^{+}\right) . \tag{32}
\end{align*}
$$

In a frame rotating at the qubit's frequency $\Omega, H_{2 q}$ generates the evolution

$$
\begin{align*}
U_{2 q}(t)= & \exp \left[-i \frac{g^{2}}{\Delta} t\left(a^{\dagger} a+\frac{1}{2}\right)\left(\sigma_{i}^{z}+\sigma_{j}^{z}\right)\right] \tag{3}\\
& \times\left(\begin{array}{ccc}
1 & \\
& \cos \frac{g^{2}}{\Delta} t & i \sin \frac{g^{2}}{\Delta} t \\
& i \sin \frac{g^{2}}{\Delta} t & \cos \frac{g^{2}}{\Delta} t \\
& & 1
\end{array}\right) \otimes 1_{r}
\end{align*}
$$

Up to phase factors, this corresponds at $t=\pi \Delta / 4 g^{2}$ to a $\sqrt{i \text { SWAP }}$ operation. Together with single-qubit gates, it forms a universal gate set.

Turning the sqrt-of-iSWAP gate On and Off

$$
\begin{align*}
H_{2 q} \approx & \hbar\left[\omega_{\mathrm{r}}+\frac{g^{2}}{\Delta}\left(\sigma_{i}^{z}+\sigma_{j}^{z}\right)\right] a^{\dagger} a+\frac{1}{2} \hbar\left[\Omega+\frac{g^{2}}{\Delta}\right]\left(\sigma_{i}^{z}+\sigma_{j}^{z}\right) \\
& +\hbar \frac{g^{2}}{\Delta}\left(\sigma_{i}^{+} \sigma_{j}^{-}+\sigma_{i}^{-} \sigma_{j}^{+}\right) \tag{32}
\end{align*}
$$

- the effect of the qubit-qubit interaction on dynamics is suppressed at `large qubit-qubit detuning', that is, if:

$$
g^{2} / \Delta \ll\left|\Omega_{i}-\Omega_{j}\right|
$$

- the sqrt-of-iSWAP gate can be turned Off by detuning the two qubits from each other

Summary of key results

1. spin resonance => single-qubit gates
2. Hubbard model and exchange interaction => two-qubit sqrt-of-swap
3. qubit readout with a dispersively coupled oscillator
4. two-qubit sqrt-of-iswap via virtual photon exchange
