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Quantum Computing - what Is It?

Quantum computing

From Wikipedia, the free encyclopedia

Quantum computing is computing using quantum-mechanical phenomena, such as
superposition and entanglement.['! A quantum computer is a device that performs quantum
computing. Such a computer is different from binary digital electronic computers based on
transistors. Whereas common digital computing requires that the data be encoded into binary
digits (bits), each of which is always in one of two definite states (0 or 1), quantum computation
uses quantum bits or qubits, which can be in superpositions of states. A quantum Turing machine
IS a theoretical model of such a computer, and is also known as the universal quantum computer.
The field of quantum computing was initiated by the work of Paul Benioffl) and Yuri Manin in
1980,1°! Richard Feynman in 1982,[4! and David Deutsch in 1985.°]



Quantum Computing - why should anyone care?

QC could be useful

¥ algorithms solving computational problems can be slow or fast
¥ for example, prime factorization is a problem for which only slow
classical algorithms are known
¥ prime factorization is important in information technology & security
¥ there is a fast quantum algorithm for prime factorization (Shor)

People are interested in QC
¥ many experimental research groups are trying to build and improve

guantum computer prototypes
¥ private funding in guantum information technology increased a lot In
the past few years (IBM, Google, Intel, Microsoft; Rigetti, Q-Ctrl, etc)

Quantum computers do exist
¥ prototype quantum computers that are available for anyone do exist,
e.g., IBM Quantum Experience (small, noisy, not useful yet)
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Course Information, 2018

» Lecturers: Andras Palyi, Péter Makk

Responsible lecturer: Andras Palyi

Language: English

Location: building H, room H601

Time: Wednesdays, 12:15-13:45

» Schedule: first lecture: Sep 5; no lecture on Sep 12 and Oct 10; last lecture: Dec 5.

» Neptun Code: BMETE15MF60

» Credits: 3

= Exam: The grade is based on an oral exam in the exam period. The emphasis is put on the level of understanding.

Syllabus

The building blocks of nowadays electronic devices have already reached a few tens on nanometers sizes, and further miniaturization requires the
introduction of novel technologies. At such small length-scales the coherent behavior and the interaction of electrons, together with the atomic granularity of
matter induce several striking phenomena, that are not observed at the macroscopic scale. The course gives an introduction to a broad set of nanoscale
phenomena following the topics bellow:

» 1. Quantum bits
Qubits, dynamics, measurement, polarization vector, composite systems, logical gates, circuits, algorithms.
» 2. Control of quantum systems.

Hamiltonians, propagators, and quantum gates. Larmor precession, Rabi oscillations, dispersive resonator shift in the Jaynes-Cummings model, exchange
interaction, virtual photon exchange.

» 3. Qubits based on the electron spin.

Quantum dots, energy scales. Interactions: Zeeman, spin-orbit, hyperfine, electron-phonon, electron-electron.


http://fizipedia.bme.hu

Exam: oral exam including a short written test

test question examples:

. List the three Pauli matrices. Determine their eigenvalues and normalized eigenstates.

. What is the pnitary matrix representing the Hadamard gate? What is the result of the Hadamard gate acting

1 1
on the state 0 ? What is the result of the Hadamard gate acting on the state % , ?
!
. What is the unitpry matrix representing a two-qubit SWAP gate in the basis [00",|01",]|10",]|11"? What is

the result of the SWAP gate acting on the state J% (]00" 4 ]10™)7

. Determine the polarization vectors associated to the following three states: : J% : J%

. Let H be an N -dimensional time independent Hamiltonian, with known energy eigenvalues E,, and eigenstates
I fulfilling H! , = E! n. Assume that the system is initialized in the state ! j at t = 0. Express the time
evolution of this state, ! (1), using E,, !, and ! ;.

#_
. Consider the single-qubit state J% 10"+ % |1". When we measure the qubit, what is the probability of measuring

17 What is the state of the qubit after the measurement?

. Comnsider the two-qubit state J% 100"+ % 110"+ % |01". When we measure the first qubit, what is the probability

of measuring 07 And that of measuring 17 What is the state of the system after measuring 0?7 And after
measuring 17



truth tables

INPUT  OUTPUT INPUT OUTPUT INPUT | OUTPUT

Classical bits, gates, circults

¥ the value of ac-bitis O or 1

A B AORB A B ANANDB A B AXORB
0o 0 0 0 0 1 o0 0

0 1 1 0 1 0 1
1,0 1 1

11 1 1

1 1
0 1 10 1
1 0 11 0

¥ operations, gates: a c-logical gate mapsn c-bits to m c-bits; e.g., NOT, AND, OR, XOR.
¥ single-bitgate: n =m =1

¥ there is only one non-trivial single-bit gate: NOT

¥ two-bit gate: n =2, m =1, e.g., AND, OR, XOR

¥ c-gates are not necessarily reversible: e.g., any > m gate is irreversible

¥ c-circuit : an arrangement of "wires" and gates

¥ universal gate set a set of gates that allows to construct circuits for any algorithm

¥ exercise: construct a c-circuit that adds two single-bit numbers using only the NAND gate

- . A P
OR can be built from NANDS: {}J_:)o—




Quantum bits

. quantum bit, qubit, g-bit, gbit: two-level quantum system

. state of a qubit: |! I = "o|OM + " 1 |1!

0, 1 are called amplitudes; they are complex numbers

. |0 and |1! are the qubit basis states
. normalization condition: |" o|? + |" 1]? =1

. alternative notation (vector notation or spinor notation ):

o o
1 0
R |
0 1

,|IO|O!+|I1|1!II |IO

. realizations: electron spin, nuclear spins (e.g., H-1, C-13), superconducting circuits, etc.



Dynamics of a qubit

1. time-dependent Schrodinger equation:!i—!f’(t) + H(t)! (t)=0.
2. for a qubit, H (t) is a 2x2 Hermitian matrix

3. Hamiltonian can be expressed with Pauli matrices

|3
H(t) = G ()"
j =0
' # " # " # " #
., 00 , _ 012 , _O0'i L, _ 10
" 00 X" 10 YT i 0 %7 o01!1

$ %
4. dynamics for a time-independent Hamiltonian: ! (t) =exp ! ;Ht ? (0)" U(()! (0)

5. U(t) is a unitary matrix, called the propagator
& 1
6. dynamics for a time-dependent Hamiltonian is also unitary:! (t) = 7T exp ! ,'— Otdt!H(t!) 1 (0) " U(t)! (0)
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Measurement (‘readoutO) of a qubit

|1 #= #o |08+ #, | 1#

. the probability of measuring 0 is Py = |#o]?

. the probability of measuring 1 is P; = |[#1]° =1! Py
If the outcome of the measurement is 0O, then the state changes t#0#

. If the outcome of the measurement is 1, then the state changes td#



S.

Geometrical representation of a qubit: the Bloch sphere

. We can parametrize the qubit state with three angles$, % &

0/ 0)

| NV
|| #= #o |O#+ #q |1#= €" (cos§0|0#+ € sin §O|1#

. angle$ has no physical signibcance

. the qubit state can be mapped to the surface of a unit sphereBloch sphera:

A

$ . .
I! # $UWE&) $YNn = sSinUCos&, sin¥sin &, cos%

another mapping, seemingly di erent, but actually identical to n:
p=& || # z = |0)
where! =(","y," 7). g "
n " pis called the Bloch vector or the polarization vector of the qubit / . _/n"p\



IOV

More qubits

. States of two qubits: |! I = " g9 |00 + "o [OL + " 10|20 + " 15 |11
!
normalization condition: ~ ,, (g 132 | 2 =1

. a single-qubit state can be represented on the Bloch sphere; does not work for multiple-qubit states

. measurement of one qubit: e.g., of the brst onePy = |" o0|® + |" 01]%, and the post-measurement state afte!
measuring0 is

non= " 00|00}, + " o1 |O1!
. pm. P_O
. example for a two-qubit product state:
1 1 1 1 o'+ |1! . |Of + |1
1= —]000 + —|01' + - |10 + = |11 = — # —
| 2| 2I 2| 2I 2 2
. example for a two-qubit entangled state:
o= |00, + |11
I 5

. the state of n qubits is described by2" amplitudes



1-qubit guantum gates

. -circuit: an arrangement of "wires" and quantum gates A

. ¢-gates: unitary operations on a few qubits (reversible, unlike c-gates)

. 1-qubit gate example: g-NOT (usually called the X gate): B
L) ="10) +#[1) — |! 2) =" [1) +#]0)
[ 1] 1 #
matrix representation of this gate: X = $, = (1) 0
. further 1-qubit gate examples:
" 1 0 i
Z gate: Z =%, = 0 1
! #
1 1 1

Hadamard gate: H = —

V2 1 —1
. each 1-qubit gate generates a bijective map of the Bloch sphere to itself

. exercise: determine the transformations generated by 1-qubit gates listed above

C-Circuit

g-circuit

— S — p— — — e - — —

W

— — — — — — S — p— —




2-qubit quantum gates

1. 2-qubit gate example: controlled-NOT or CNOT

with the basis-state ordering |00!, [01!, |10, [11!, it is represented by

$

(go

1000

UcnoTr = #

o O o
oo
OO
Or O

it could be represented by a OclassicalO truth table

2. 2-qubit gate example: SWAP:

cannot be represented by a classical truth table

3. 1-qubit gates together with CNOT form a unversal g-gate set

4. 1-qubit gates together with SWAP form a universal g-gate set

control bit
X X
target bit /L
AN A

input  output
X Yy X y+Xx

10} |0} |0} |0}
10} 11} |0} |1}
|1} 10} |1} |1}
11} |1} |1} [0}
X
)
YOR &
v Y




1. A simple oracle problem:f :{0,1} # {0, 1} is an unknown function; i.e., it is one of the following 4 functions:

DeutschOs problem

constant (value = 1)

constant (value = 0)

O# 1 0# O

1# 1 1# 0
balanced (NOT) balanced (d.)

O# 1 0# O

1# 0 1# 1

2. task: bgure out, by evaluatingf a few times, whetherf is constant or balanced

3. solution: one has to evaluatef twice, for input O and for input 1, and the results will tell if f is constant or
balanced

4. a single evaluation off is not sul cient to complete the task



A quantum version of DeutschOs problem

1. f is not necessarily bijective/unitary; how to implement it in a quantum-mechanical (unitary) fashion?

2. one way to make it unitary is to use an auxiliary qubit y:
I !
X ,IWf X
y y# 1(x)

where # Is the classical XOR

3. Wt is the unitary version of f, with truth table as follows:

f=0| f=1

00" 00 00" 01 3, s
01" 01| 01" 00 : ’
10" 10| 10" 11 |> # & & #

11" 11) 11" 10 '

f =id. [f = NOT
00" 00 00" 01 n> m | '®%(&)
01" 01 01" 00

10" 11 10" 10
11" 10 11" 11

4. claim: the Deutsch algorithm decides whetherf is constant or balanced by asingle evaluation of W;
5. if the measurement outcome for the upper qubit is O, therf Is constant, otherwisef is balanced

6. exercise: prove this



A generalization of DeutschOs problem

1. the unknown function is f : {0,1}" " {0, 1}

. we do not know f, but we know that it is either constant or balanced

. task: determine whether f is constant or balanced, with the least possible evaluations of f
. classically, the number of evaluations seems to scale exponentially with n

for example, it takes 2"~ + 1 evaluations to find out the answer in the worst case

. in the quantum version, the Deutsch-Jozsa algorithm performs the task with a single evaluation

e =2 B A BTN JCR

. if all measurement outcomes are zero, then f is constant, otherwise f is balanced

Circuit of the Deutsch-Jozsa algorithm

. . :B% il
The unitary version of f ,> 7 le & 7
b ! $ | e
. le ’ X1 |> 7—1& & # ,
n X " X . : :
R W, 2 .

ESSKSS

#xNg ;;# XN

y y# f(X1,X,aa%y)

"> # | IQZ)%( 2




