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Problem set for the course ”The Physics of Disordered Systems”, 2019

Rules: You are supposed to work alone as much as possible but you are allowed to consult other students and discuss
with them. While discussions among students are encouraged, solving a problem together as a team work is NOT
ALLOWED. Of course, also feel free to contact us and ask questions; We can help and give you further hints if you
are stuck.

No more than 25 points can be obtained from one section.

Deadline: 20.01.2020. Delay penalty: 5points/day. (Days end at 4pm...)

Please scan the solutions and upload it to the moodle system: http://newton.phy.bme.hu/moodle/

Grading is as follows:

5: 55- points,
4: 45-54 points,
3: 35-44 points,
2: 25-34 points.

I. STRUCTURALLY DISORDERED SYSTEMS

1 (10 pts) Finite size scaling for percolation, scaling function.
(Recommended for those who have completed Phase transitions and critical phenomena)
Assume an intensive quantity X, scaling as:

X ∝ |p− pc|−%

in an infinitely large system. Derive the scaling function for X(L, ξ) following the steps below.

(a) Using ξ ∝ |p− pc|−ν express X as function of the correlation length.

(b) In case if L � ξ the correlation length cannot be larger than the system size. Express X(L, ξ) as function of
the correlation length and a scaling function x1(L/ξ) which is constant for L� ξ.

(c) Express X(L, p) in terms of a scaling function as:

X(L, p) = |p− pc|ax2(Lb(p− pc))

What are the exponents a and b.

[Hint: A good candidate for X is the average cluster size without the infinite cluster.]

2 (20 pts) Finite size scaling for percolation numerical simulation.

Simulate the two dimensional square lattice site percolation.

(a) (2 pts) Consider a periodic square lattice of size L = 20, 40, 80. Fill the lattice with occupied sites with
probability p.

(b) (8 pts) You may use any of the following two algorithms to find the connected components:

– Hoshen-Kopelman, a pseudo code can be found in Wikipedia: https://en.wikipedia.org/wiki/
Hoshen-Kopelman_algorithm

– Stack based method:

1. Go through each occupied site. If the actual one is unlabelled, label it with a new label put it into a
stack (list) and go to 2. otherwise go to the next occupied site.

2. If the stack is empty go to 1.



2

3. Take a site from the stack

4. Check its four neighbors, and label all unlabelled occupied ones and put them into the stack.

5. Go back to 2.

(c) (5 pts) Calculate S, the mean cluster size without the largest cluster

(d) (5 pts) Detect the maximum of S as a function of p, and compare it with the ”official” critical point of pc ' 0.593.
Do not to forget to use ensemble average of at least 100 independent systems. How does the maximum change
as a function of L? Compare with the result of the previous problem.

3 (15 pts) Renormalization group of the 2D percolation model.
(Recommended for those who have completed Phase transitions and critical phenomena)

Consider the problem of two-dimensional site percolation. Let R(p) be the renormalization function (i.e. the map
p→ p̃ = R(p, b) generated by rescaling the lattice by a factor b). This can be estimated as:

R(p) =

N∑
n=1

(
N

n

)
pn(1− p)N−nS(n) .

Here b is the renormalization factor, N = b2 in two dimensions, and S(n) is the probability of having a random
b× b block with n occupied sites which percolates in the y direction. (One has to count all configurations and check
percolation for both directions.)

(a) (3 pts) Show that for b = 2, S(1) = 0, S(2) = 1/3, S(3) = 1, S(4) = 1

(b) (5 pts) Create a code which calculates the coefficients for b = 3, 4. Either you can use the same algorithm as in
the previous exercise part (b) or more easily,– since in 4 × 4 systems only directed paths are possible and we
are only interested in the question whether it percolates or no,– you can go row by row and check if you can
continue or not.

(c) (7 pts) Determine numerically the critical point for two dimensional site percolation using the values of b =
2, 3, 4, and also the critical exponent ν, characterizing the divergence of the correlation length, ξ ∼ |p − pc|−ν .
[Remember that critical point is the nontrivial unstable fix point of the equation: R(pc) = pc, and ν is related
to the slope.]

4 (15 pts) Edwards ensemble.
Consider a binary mixture of hard sphere particles (A, B). We assume that if particles of the same size are next to
each other then less volume is wasted on average compared to the case when grains next to each other differ in size.
Let us define the average wasted volume as vα,β , where α, β ∈ {A,B} (α 6= β, vα,β > vα,α = vβ,β).

(a) (5 pts) Use the mean field approach to derive the average volume function, W as function of the nA, nB fractions
of particles A, B.

(b) (5 pts) Show that the volume can, in general, be converted to an Ising Hamiltonian with σ = {0, 1} for grain A
and B respectively and J a combination of vα,β .

(c) (5 pts) Use the mean field solution of the Ising model and determine those values of the compactivity (X), for
which we have mixed or segregated phases.

II. DISORDERED SPINS AND SPIN GLASSES

5 (20 pts)Avalanche distribution in the 3D random field Ising model.
Consider the random field Ising model in D = 3 dimension,

H = −J
∑
(i,j)

σiσj −
∑
i

(fi +H)σi,

with J = 1 taken as the energy unit, and the fi random Gaussian variables, ρ(f) ∼ exp(−f2/(2R2)). Make sweeps
with the external field from H = −∞ →∞, and compute numerically the avalanche distribution as a function of R,
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and show that there is a critical value, Rc ≈ 2.23, below which an avalanche of the order of the system size occurs.
Use the work of Sethna et al, as a reference (https://arxiv.org/abs/cond-mat/9210018), and reproduce Fig.2 and its
inset, and estimate the critical exponent σ, smax ∼ (R−Rc)−1/σ.

Some hints: You will have to take large systems of linear size L ≈ 50× 50× 50 to get decent statistics. In course of
an avalanche, the field increases at neighboring spins, which can then flip, and increase the field at neighboring spins
etc. Using this structure, you can look for the field value H, at which the first spin becomes unstable, change H to
that value, and start an avalanche by flipping this spin. Then keep track of spins which become unstable, until you
reach a stable configuration.

6 (20 pts) Mean field theory of avalanche distribution in the random field Ising model.
Consider the random field Ising model in D =∞ dimension,

H = − J
N

∑
(i,j)

σiσj −
∑
i

(fi +H)σi,

with N → ∞, and the fi independent random Gaussian variables of distribution ρ(f) ∼ exp(−f2/(2R2)). Here
each lattice site is connected to all other sites. Follow Sethna et al (https://arxiv.org/abs/cond-mat/9210018), as a
reference in the following.

a. (5pts) As a warm-up, derive the mean field equation (Eq. (3) of Sethna), also discussed at class,

M = 1− 2

∫ −JM−H
−∞

ρ(f) df, (1)

and prove that the magnetization obeys the scaling form, M(h, r) ∼ |r|βM±(h/|r|βδ) with δ = 3 and β = 1/2,
and the scaling variables defined as r = (R − RC)/RC and h = H − HC . [Hint: First perform a graphical
analysis to show that the critical point corresponds to a disorder value, Rc, where 2Jρ(0) = 1, and is at Hc = 0.
Then assume that r ≈ 0 and H ≈ 0, and expand (1) to third order in M and to first order in H.]

b. (5pts) Now consider avalanches. Follow again the work of Sethna. Assume that you create an avalanche by
flipping one spin having a local random magnetic field value, f0 = −JM −H. Flipping this spin increases the
exchange field on all other spins by 2J/N . It will flip a spin if it has a random field value, f1 = f0 + x1 ∈
[f0, f0 + 2J/N ], i.e., if the separation x1 between f0 and f1 is 0 ≤ x1 ≤ 2J/N . Argue that the distribution of x1
is Poissonian of the form p(x)dx = e−x/〈x〉dx/〈x〉. Determine 〈x〉, and compute the probability D(2) of having
an avalanche of length 2. Show that it is given by

D(2) = 2Jρ e−4Jρ .

[Hint: The next unstable spin has a field f2 = f1 + x2. To have an avalanche of length 2 one must have
0 < x1 < 2J/N but x1 + x2 > 4J/N , since the next spin is not destabilized by flipping the first two spins.
Furthermore, x1 and x2 are independent Poissonian variables.]

c. (5pts) Extend the previous calculation, and compute D(3).

d. (5pts) According to Sethna et al,

D(s) =
ss−2

(s− 1)!
(2Jρ)s−1 e−s 2Jρ

Verify that this formula describes D(2) and D(3) as computed above. The critical point is where 2ρJ = 1.
Assume that 2ρJ = 1 − t, and verify using the Stirling formula that the scaling form given by Sethna indeed
applies [Hint: you will need the subleading correction in the Stirling formula.]

7 (20 pts) Replica symmetrical solution of the Sherrington-Kirkpatrick model.

At class, we have shown that the average partition function of the SK model reads

lnZ = lim
n→0

1

n

(
Zn − 1

)
, (2)
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with the replicated action expressed in the large N limit as

Zn =

∫
DQ exp

{β2

4
nN − 1

2
Nβ2

∑
a<b

Q2
ab +N lnZ(Q)

}
.

Here Z(Q) denotes the partition function of a single (replicated) spin in the presence of the mean field Qab, generating
correlations between the replicas,

Z(Q) =
∑
Sa

exp
[
− βH(S,Q)

]
, (3)

H(S,Q) = −β
∑
a<b

QabS
aSb − h

∑
a

Sa . (4)

a. (10pts) Assume that Qa6=b = q while its diagonal is 0. Follow the steps at class and show that

Z(Q) = e−n q β
2/2

∫
dy√
2π q

e−y
2/(2 q) [cosh(β(y + h))]n. (5)

Show also that in this limit,

Zn =

∫
DQ exp

{
−NA(q)

}
,

with

A(q) = −nβ
2

4
+ n(n− 1)

β2

4
q2 +

n

2
β2q − ln

[ ∫
dy√
2π q

e−y
2/(2 q) [cosh(β(y + h))]n

]
.

Find now the saddle point equation and show that ∂qA = 0 implies in the n → 0 limit the self-consistency
condition for q = q(T ),

q = 〈tanh2(β(y + h))〉y , (6)

where averaging is with the random local field, y, having a distribution ∼ e−y
2/(2q). [Hint: first find saddle

point than take n→ 0.]

b. (5pts) Solve (6) numerically for h = 0 as well as for h 6= 0 and show that q(T ) 6= 0 below a critical temperature.
Plot q(T ) for some fixed values of h, and determine the phase diagram in the (T, h) plane. [q(T ) 6= 0 means you
have a spin glass.]

c. (5pts) Take the n→ 0 limit of the free energy and show that the average free energy per spin is:

f(T, h) = −β
4

(1− q)2 − 1

β

∫
dy√
2π q

e−x
2/(2 q) ln[cosh(β(y + h))]. (7)

Compute the entropy as a function of T (you can use numerical differentiation), and show that it becomes
negative as T → 0. Determine its value at T = 0.

III. DISORDERED QUANTUM-SYSTEMS

8 (20 pts) Numerical investigation of localization transition
Consider a three dimensional tight binding Hamiltonian with periodic boundary conditions on a simple cubic lattice,

H = −
∑
(i,j)

(c†i cj + c†jci) +
∑
i

ξi c
†
i ci , (8)

with the ξi’s being random, uniformly distributed, and independent energy variables, ξi ∈ [−W,W ], and the i ∈ L3

labeling the lattice sites.
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a (5 pts) Consider a system of size L = 9, and compute its energy spectrum for W = 8. Average over disorder

configurations, and determine the average density of states per lattice site, %(E) as a function of energy. [Hint:
Remember that L3%(E) dE is the average number of states in a small energy window, [E − dE/2, E + dE/2].
Divide therefore the energy axis onto appropriately chosen energy windows. As a cross-check, you should verify
that %(E) integrates to 1.]

b (5 pts) Plot the unaveraged local density of states, %(E, r) at several lattice sites for a given disorder realization.
[Hint: Be careful with the normalization of the wave functions.]

c (10 pts) Determine the IPR for each eigenstate, and determine the average IPR, IPR(E) as a function of energy.
Determine the mobility edge (approximately) for W = 8 by comparing the IPR(E) curves computed for systems
with L = 9, L = 8, and L = 10 sites. Plot (estimate) the localization length as a function of energy for these
system sizes.

9 (10 pts) Variable range hopping
Generalize Mott’s variable range hopping formula for the case of a Coulomb gap, by simply replacing the energies
of the localized states in the non-interacting calculation by the Hartree energies, εi → ε̃i. [Hint: Use the asymptotic
form of the distribution function, p(ε̃i), obtained at class, and repeat the probabilistic arguments that lead to the
variable range expression.] How does the result depend on dimensionality?

10 (20 pts) Weak localization corrections at low temperatures and universal scaling.
Consider a 3-dimensional system, described by a beta function, β(g), asymptotically behaving as

β(g) ≈

{
1− g̃

g , g & 2g̃ ,

s g−gc
gc

, for g ≈ gc and g < 2g̃ .

Here we now included the first non-trivial 1/g correction (weak localization correction). Denote with l0 the size of a
microscopic cube of dimensionless conductance g0 > gc. (Remember that we typically tune g0 by applying pressure,
or changing the chemical potential by a back gate, and we assume that it varies continuously with the external
parameters.)

a. (5 pts) Assume you have a metallic sample. Show first that a length scale, the so-called coherence length exists,
which diverges as ξ = l0 (a/(g0 − gc))ν with ν = s. For system sizes L < ξ, the conductance of a small cube
scales as g/gc ≈ 1 + a (L/ξ)1/s, while for L � ξ one obtains a metallic behavior, g ∝ L/ξ. [Hint: define
the coherence length ξ as the length scale at which g(L = ξ) = 2g̃. Otherwise just assume a beta function of
arbitrary form, approaching β → 1 in the g →∞ limit, and having a logarithmic slope, s at g = gc.].

b. (5 pts) At finite temperatures, inelastic scattering of the electrons in a metal (on phonons or on each other)
leads to a loss of quantum coherence. Inelastic scattering processes occur at a rate 1/τinel ∼ T p, with the power
p determined by the relevant process (p = 2 for electron-electron scattering, p = 3 for scattering on phonons
etc.). Since electrons in a disordered metal move roughly diffusively, this introduces an inelastic scattering
length, Linel(T ) ∼

√
Dτinel ∝ T−p/2. The resistivity can then be estimated as that of (L/Linel)

3 resistors, each
of volume L3

inel , and each having a corresponding dimensionless conductance g(Linel).

Prove by integrating the single parameter scaling equation that the resistivity can be expressed as

%(T ) =
h ξ

e2
F (Lin(T )/ξ)

with F (y) a universal function. [Here you need to use the general properties of the β function, just as in a.]

c. (5 pts) Determine this universal function F in the limit of Lin � ξ, relevant for low temperatures. (Now
take into account the 1/g part of the β function, too.) Assume that the inelastic scattering length behaves as
Lin(T ) ∼ T−p/2, and sketch the corresponding behavior of %(T ) as you tune the system closer and closer to the
localization transition.

d. (5 pts) Determine the function F (Lin(T )/ξ) also in the opposite limit, when Lin � ξ, and determine/plot the
high temperature behavior of %(T ) as you get close to the transition.

11 (15 pts) Estimation of localization length in a quantum wire.
In this problem, you need to estimate the localization length of a one-dimensional gold wire of 1µm diameter, and the
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temperature to which you need to cool down the wire to see that electrons are localized in it. Look for experimental
data on Gold nanowires (see, e.g. Fig.6 in http://arxiv.org/pdf/0709.4663.pdf), as a starting point, and also search
for typical bulk residual resistivity data for your estimate. Estimate the mean free path from that (use the Drude
model and assume a single valence for Au). Alternatively, assuming very thin wires, you can assume that l ∼ W ,
with W the width of the wire.

Then estimate the temperature to which you need to cool down the wire to be in the localized regime. For this,
electrons must move coherently through the whole wire. You must therefore estimate the length to which electrons
can propagate coherently, the so-called inelastic length, Linel ∼

√
Dτinel, with D the diffusion constant and τinel the

inelastic scattering time (dephasing time). Assume that the latter comes from phonons, i.e., 1/τinel ≈ 1/τe−ph ≈ AT 3.
Extract the coefficient A from experimental data (see, e.g. Fig.6 in http://arxiv.org/pdf/0709.4663.pdf). To estimate
Linel(T ), you will also need the diffusion constant, which you can try and estimate by assuming ballistic motion of
the electrons with a velocity vF and scattering at the surface of the wire at typical distances, l ∼W .


