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Localization: theory and experiment
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Abstract

The transport properties of disordered solids have been the subject of much work since at
least the 1950s, but with a new burst of activity during the 1980s which has survived up to
the present day. There have been numerous reviews of a more or less specialized nature.
The present review aims to fill the niche for a non-speciatized review of this very active
area of research.

The basic concepts behind the theory are introduced with more detailed sections covering
experimental results, one-dimensional localization, scaling theory, weak localization,
magnetic field effects and fiuctuations.

This review was received in its present form in June 1993.
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1. Introducticn

The theory of the electronic properties of disordered solids has matured considerably during
the past decade. On the one hand, this is due to the availability of new theoretical methods,
and of bigger and faster computers. On the other hand, new experimental techniques which
emerged from the fabrication techniques of modern microelectronics made explicit tests
of the theoretical results possible, thus providing the possibility of verifying or falsifying
the underlying microscopic models. The problem of localization of the quantum states in a
random medium, the subject of this review, is one of the examples which may be considered
as being representative of this development.

In addition to a number of textbooks on disordered systems which may be used for
introductory reading (Mott and Davis 1979, Zallen 1983, Ziman 1979, Bonch-Bruevich e¢
al 1984, Shklovskii and Efros 1984, Lifshitz er al 1988, Cusack 1987) there is a (still
increasing) number of review articles on various aspects (Thouless 1974, Elliott et al 1974,
Kramer and Weaire 1979). The prablem of localization in one-dimensional random systems
has been treated in reviews by Ishii (1973), Abrikosov and Ryzhkin (1978), Erdés and
Herndon (1982), and Gogolin (1982). The localization problem was considered in the
review by Lee and Ramakrishnan (1985) with special emphasis on the metallic limit. Efatov
(1983} treated elaborately the field theoretical aspects using the supersymmetric formulation.
Experiments in the regime of weak localization have been reviewed by Bergmann (1984).
Chakravarty and Schmid (1986) treated the limit of weak localization from the wave
mechanical point of view. Volthardt and Wolfle (1992) described the perturbational aspects.
There are also a number of introductory summaries (Vollhardt 1987, MacKinnon 1988,
Altshuler and Lee 1988, Kramer 1988, Bonch-Bruevich 1983, Toulouse and Balian 1979).

Conference volumes devoted to the topic of localization are also available (Friedman and
Tunstall 1978, Nagaoka and Fukuyama 1982, Nagaoka 1985, Kramer ef al 1985, Kramer
and Schweitzer 1984, Weller and Ziesche 1984, Finlayson 1986, Garrido 1985, Ando and
Fukuyama 1987, Kramer and Schén 1990, Benedict and Chatker 1991, Kramer 1991). One
might ask, whether or not, and why, another review article on localization is necessary. The
answer to this question lies in the rather specialized nature of most of the above mentioned
works. One might argue that the most recent general review article on the problem of
the quantum states in disordered media which covers most of the aspects in a more or
less equally balanced way is that by Thouless (1974). The above mentioned theoretical,
computational and experimental work, however, seems to make a general review article
necessary again, especially since the most recent developments indicate that, in spite of
all the progress made, the Anderson transition is not yet understood and the one-parameter
scaling approach possibly incomplete.

The phenomenon of localization, being, in the first instance, a property of the states in
random quantum mechanical systems, has its most striking experimental manifestation in
the transport properties of condensed matter systems.

The common belief is that the one-particle wavefunctions in macroscopic, disordered
quantum systems at the absolute zero of temperature can be exponentially localized. More
precisely, this means that, on the average, their amplitudes are exponentially decaying in
space at infinity. This is expected if the disorder is sufficiently strong or in energy regions
where the density of states is sufficiently small. Energy regions with small densities ef states
are typically associated with the tails of quantum mechanically allowed energy bands. For
weak disorder or in energy regions with sufficient density of states, the wavefunctions wiil
extend throughout the whole system with their phases and amplitudes varying randomly
in space. Physically the disorder can be imagined to be connected with the presence
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of impurities, vacancies and dislocations in an otherwise ideal crystal lattice. Another
possibility is to distribute atoms or molecules at more or less random positions. Strong
disorder can then be achieved by using a large concentration of impurities, for instance,
independently of the strength of the individual impurities, A completely disordered assembly
of atoms will be one in which the atoms are sitting on sites that are chosen completely
independently and randomly.

Particles that occupy exponentially localized states are restricted to finite regions of
space. They cannot confribute to transport at the absolute zero of temperature, T = 0 K,
when the coupling to other degrees of freedom, such as phonons, and particle—particle
interactions has become negligible, On the other hand, particles in extended states can
escape to infinity and contribute to transport. As a consequence, if there are only localized
states near the Fermi energy the system will be an insulator, in the sense that, at T = 0 K, the
DC conductivity, og. (the zero-frequency limit of the linear conductivity) vanishes. On the
other hand, when the Fermi level lies in a region of extended wavefunctions g, (T = 0 K)
will be finite and the system will be metallic. Localization of the quantum mechanical
wavefunctions as a consequence of the presence of disorder is one of the fundamental
ingredients for the understanding of the existence of insulators and metals, and, in particular,
the transition between the insulating and the metallic states of matter. The latter is one of
the main issues to be discussed in this review.

There are also profound effects of the presence of the disorder deep in the metallic
regime, usually associated with very weak randomness. Here, coherent quantum mechanical
backscattering, which may be viewed as the precursor of the exponential localization,
gives rise o a rich variety of quantum transport phenomena, such as, for instance, the
logarithmic increase of the resistance of thin metallic films with decreasing temperature
when approaching absolute zero (Gorkov ef af 1979). Coherent backscattering can be
understood quite generally in terms of the interference of different, quantum mechanically
allowed, paths of the particles that contribute to the transport process, and can be treated
quantitatively by diagrammatic perturbational techniques. These so-called weak localization
effects have been one of the important discoveries of the past decade. They not only initiated
a whole new area of research concerning the phase-breaking mechanisms in metals, such
as electron—phonon, spin—orbit and electron—electron scaitering, but were also of crucial
importance for the development of one of the most fruitful, though recently also most
heavily attacked, approaches to the disorder-induced metal-insulator transition, namely the
one-parameter scaling theory (Abrahams er al 1979).

In the insulating regime, when the temperature is above absolute zero, transport is
possible via thermal activation of charge carriers from localized into extended states. In
contrast to the metallic regime, the conductivity in this case depends exponentially on
the inverse temperature. At temperatures close to absolute zero the activation processes
die out. Transport is then only possible via hopping of the charge carriers between
localized states associated with the absorption or emission of phonon-like excitations (i.e.
phonons, magnons, plasmons, etc). Hopping conduction is characterized by a most peculiar
temperature behaviour of the transport coefficients, which is related to the statistics of the
phonon-like excitations, and the energetic and spatial distribution of the localized states.
Mott’s ‘T4 Jaw’ (Mott and Davis 1979), in the case of the DC conductivity of amorphous
semiconductors, is only one, though very characteristic, example, which provides a most
convincing case for the existence of localized states in disordered solids.

In addition to changing the temperature, the application of a magpetic field constitutes
one of the most powerful probes, especially for the experimental investigation of Jocalization
effects. There are basically three discoveries of the past two decades which have initiated
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considerable enhancement of the experimental efforts. First, application of a magnetic field
induces characteristic changes in the phase of a wavefunction, thus producing pronounced
changes in the interference of the quantum mechanical transport paths. These can be detected
and systematically analysed to investigate the quantum mechanical coherence properties of
the system. This was most strikingly demonstrated a decade ago when the experimental
discovery of the Aharonov—Bohm-like oscillations of the magnetoresistance of thin normally
metallic cylinders provided direct evidence for the existence of quantum interference in the
presence of disorder (Sharvin and Sharvin 1981, In the second important discovery, the Hall
conductivity of thin layers of charge carriers when subject to a sirong magnetic field proved
to be quantized in units of ¢2/h at low temperatures (von Klitzing et a/ 1980). Although
the theoretical understanding of this effect is stil] far from complete there is now good
evidence that it can be used to investigate quantitatively the localization properties of quasi-
two-dimensional electron systems subject to a strong magnetic field. The third discovery
came when the metal-insulator transition mentioned above was associated with a second-
order phase transition in the course of the development of the one-parameter scaling theory,
As a consequence, the critical behaviour of the DC conductivity, i.e. how it approaches
zero when approaching the critical point by changing the disorder and/or the position of
the Fermi energy, should be the same within certain universality classes of Hamiltonians.
The universality properties of the systemn are dictated by its fundamental symmetries; for
instance, whether or not there is time-reversal invariance. A magnetic field destroys time-
reversal invariance. Thus, it constitutes a most simple tool for changing the universality
class of a system experimentally, and, as a consequence, the critical behaviour at the metal—
insulator transition. Experimental and theoretical investigation of the effects of a magnetic
field on the transport properties, especially in the critical regime close to the metal-insulator
transition, can therefore be expected to be of crucial importance in examining the validity
of the one-parameter scaling theory.

As a result of the statistical nature of the disorder—impurities are distributed more or
less at random, atoms in a glassy structure sit at random positions—the quantum states are
random objects. Their amplitudes and phase vary randomly in space. As physical quantities
are represented by quantum mechanical expectation values of the operators representing the
observables, they are also randomly distributed.

Conventional statistical physics associates experimentally meaningful quantities with
averages over a statistical ensemble of macroscopically different systems. For example, for
a given macroscopic concentration of impurities there is an essentially uncountable number
of possible arrangements of their positions in the host crystal. Different members of the
statistical ensemble characterized by the macroscopic concentration have different spatial
configurations of the impurity atoms. Although the results of measurements of a physical
quantity, when performed on specific members of the statistical ensemble, will be different
and dependent on the specific configuration of the impurities, or, more generally, on the
specific realization of the disorder, the statistical fluctuations of the results will become
vanishingly small when compared with, say, the ensemble average, provided the system is
sufficiently large, i.e. macrascopic.

Physical quantities are usually assumed to {fulfil this criterion, namely that they
effectively do not fluctuate within the statistical ensemble of macroscopically equivalent
systems in the thermodynamic limit. They are often called self-averaging. Formally,
the ensemble average of a self-averaging quantity and the most probable value within
the ensemble practically coincide when the size of the system is assumed to be infinite.
Self-averaging implies that, in practice, measurements done on specific samples—specific
realizations of the disorder—can be described in terms of ensemble averages.
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A. most striking consequence of quantum mechanical localization is that the transport
properties of the disordered systems are not self-averaging at very low temperatures: there
are experimentally accessible, and reproducible, stochastic fluctuations of the conductance
(Fowler er al 1982), even in the asymptotic regime of weak localization, when an external
system parameter, such as the strength of an applied magnetic field, is varied. The
fluctvations are much larger than expected from the application of simple considerations
borrowed from classical statistical physics, like random walk. In the insulating regime they
even diverge in the thermoedynamic limit.

Besides providing insight into the quantum mechanical nature of macroscopic condensed
matter systems at very low temperatures, such as in the limit of weak localization, the study
of localization by theory and experiment offers, at least in principle, the unique possibility
of investigating systematically the statistical properties of non-self-averaging quantities, and
the related more general concepts like the ergodic hypothesis.

In the following sections we will introduce the field of localization in more detail. We
describe briefly the historical development in section 2 and review the key experimental
results in section 3. The basic theoretical models and methods used in the description of
random systems are described in section 4, and the variety of definitions of localization
used in the past are summarized in section 5. The fundamental features of the strongly
localized regime are discussed in section 6 which contains a summary of work done
for one-dimensional disordered electronic systems where many aspects can be treated
mathematically exactly. The physics of the weakly disordered regime is touched on in
section 7, and the scaling approach to the disorder-induced metal-insulator transition is
described to some extent in section 8, Section 9 contains as a specific example the
treatment of localization in the presence of a magnetic field with special emphasis on two-
dimensional disordered systems, which are of outstanding practical importance in connection
with the quantized Hall effect.” The problem of the reproducible stochastic fluctuations of
the conductance and the resistance is described in section 10.

Although, as we shall see, a complete understanding of the experimentally observed
metal-insulator transition, especially in highly doped semiconductors, is not possible without
taking interaction effects, as well as disorder, into account, these will not be considered
in this review}. We refer the reader to the volume edited by Efros and Pollak (1985)
which contains a number of carefully written reviews on the interplay between Anderson
localization and interactions.

2. The milestones

In this section we shall provide a brief review of the history of the field of localization,
together with the references that we think are relevant, although we cannot claim to achieve
completeness.

2.1, The pre-scaling era

Perhaps the first paper in which the problem of localization was discussed in connection with
quantum mechanical diffusion is that of P W Anderson (1958) (figure 1). He formulated
the problem and gave a first quantitative estimate of the strength of the random potential
which is necessary for the absence of diffusion in certain random lattices. The relevance

1 In fact, there are examples of miTs that are induced by interactions instead of disorder, the Peierls transition which
is due to electron-lattice coupling, and the Mott~Hubbard transition induced by electron—electron interaction.
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Figure 2. The concept of the mobility edge. Electronic states below and above the mobility
edge are localized and extended, respectively. If the Fermi energy lies in the region of the
localized states, the system is insulating at 7 = 0. In the extended-states region it is metallic.

of localization with regard to the transport properties of amorphous semiconductors was
discussed by Mott (1968). He proposed the concept of the mobility edge which separates
the localized states from the extended states energetically (figure 2).

Here the conductivity drops to zero for T = 0 and @ = 0 such that the mobility
edge represents the critical energy for the transition from a metallic to an insulating state
(metal—insulator transition, MIT). In the 1970s, Thouless and many others tried to clarify
the quantitative aspect of the problem (Thouless 1974). It was in particular the idea of
a connection between the DC conductivity and the sensitivity of the eigenvalues of the
Hamiltonian of a finite (but very large) system to changes of the boundary conditions
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{Edwards and Thouless 1972, Licciardello and Thouless 1975z, b) which formed the basis
for the later reformulation of the problem in terms of the renormalization group and the
corresponding scaling theory by Wegner (1976} that eventually culminated in the formulation
in terms of the non-linear o model (Wegner 1979a, b, Hikami 1981, Efetov 1983). Thus, the
link between the disorder-indoced MIT and second-order phase transitions was established.

2.2. The scaling theory

The essential hypothesis of the scaling theory is that close to the transition between localized
and extended states there is only one relevant scaling variable which is sufficient to describe
the critical behaviour of the DC conductivity (on the metallic side) and the localization
length (on the insulating side). Physically, this is equivalent to the statement that close to
the transition it does not make any sense to distinguish between the various mechanisms
for localization discussed beiow.

In 1970 Landauer pointed out that since the DC conductivity is vanishing in the localized
regime, and at T = 0, it is no longer a useful quantity for the description of transport through
Sfinite systems. Instead, the conductance must be considered. He proposed an alternative
description of the conductance of 1D disordered systems in terms of their transmission
properties. The Landauver relation (Landauer 1970) gives explicitly the scaling properties
of the conductance as a function of the length of the system. There have been several
generalizations to quasi-1D systems (with many transmission channels) (Anderson er af
1980, Langreth and Abrahams 1981, Fisher and Lee 1981, Ecenomou and Soukoulis 1981a,
b, Thouless 1981, Anderson 1981, Biittiker et @l 1985). The Landauer approach can also
be considered as one of the precursors of the one-parameter scaling theory, especially with
respect to the numerical implementations of the latter.

Based on Wegner’s work in addition to the ideas of Thouless and Landauer, it was
possible to formulate the one-parameter scaling theory of localization {Abrahams et af
1979, Gorkov er af 1979), in which the conductance itself was taken as the scaling variable.
In this work, although intuitively, and in an ad hoc manner, for the first time an explicit
description of the dependence of the conductance on the size of a disordered system was
given, and an elementary description of role of the dimensicnality was provided.

In order to describe the conductance of a hypercube of the volume LY, g(L), its
logarithmic derivative 8 was introduced:

_ ding

T dinL’ ()

2

It was assumed that it depends only on the conductance itself, and not on energy, disorder,
or L separately. The qualitative behaviour of f(g) was obtained by interpolating from
the asymptotic behaviour at large and small conductance assuming that 8 is a continuous,
monotonically increasing function (figure 3).

This behaviour was subsequently corroborated by a quantitative extrapolation from the
weak disorder limit (Vollhardt and Wolfle 1982) using standard diagrammatic perturbation
techniques for the two-particle propagator. The role of interactions was studied by Hikami
et al (1980), Finkelstein (1983a, b, 1984a, b), Fukuyama (1985), Altshuler and Aronov
(1979a, b, 1985), Castellani ef af (1984), and Raimondi et al (1990).

If 8 > O the conductance increases with the size of the sample, reflecting metallic
behaviour, The metallic region may be characterized by the classical behaviour, namely
B{g) = d—2 which may be obtained from the classical relation between the conductance and
the conductivity. On the other hand, if 8 < 0, g(L) decreases with L, eventually terminating
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Figure 3. The 2 function for the zero-temperature conductance of a disordered system for
dimensionality & = 1,...,3. g(L) increases with increasing L if 8 > 0, but decreases for
8 < 0. 8 =0 defines the critical point corresponding to the Anderson transition. It is only
achievable in f = 3.

in the localized regime where B{g) = Ing. A fixed point is defined by B(g.) = 0. It
corresponds to a disorder-induced miT. One of the essential results of the one-parameter
scaling theory is that such a MIT can cnly exist in three dimensions since this is the only
dimensionality where § can have positive and negative values. In one and two dimensions
g(L) is always decreasing with L. Thus, the insulating regime is always eventually reached
in the thermodynamic limit at the absolute zero of the temperature, for non-interacting
electrons, and without magnetic scattering effects.

During the time when the scaling theory of localization was developed, experimental
techniques became available which made explicit tests of the theory possible. In the metallic
regime the asymptotic (perturbation) theory for weak disorder (weak elastic scattering)
predicted a disorder-induced logarithmic correction to the temperature dependence of the
conductivity at very low temperature for 2D systems. The comesponding quantitative
theory was formulated by Hikami er ef (1980) and Altshuler et al (1980), and verified
experimentally in a series of beautiful experiments done on very thin Mg films (Bergmann
1982a, b, ¢, 1984),

2.3. The critical behaviour

A further important result of the one-parameter scaling theory concerans the critical behaviour
at the MIT (Anderson transition). If, in analogy with second-order phase transition theory,
the DC conductivity oy and the localization length A near the mobility edge are assumed to
behave according to

Oy X (E — Ec)’
Ao (B, — B (2)

respectively, then one obtains s = v from the scaling relations. The numerical value was
evaluated by using the ¢ expansion (Wegner 1985) or diagrammatic techniques (Vollhardt
and Wolfle 1982), s =v = 1.

The critical behaviour of the conductivity near the MIT in doped semiconductors has
been carefully investigated experimentally in recent years (Thomas and Paalanen 1985,
Thomas 1986, Katsumoto 1991). These experiments yielded a variety of exponents which
group around § = v = % {standard example Si:P), and s = v = | (standard example
Al Gaj_,As). Whereas it was generally believed that exponent 1 is due to an Anderson
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Figure 4. The numerically determined scaling function for the Anderson model in three
dimensions with the potential energy distributed randomly according to box and Gaussian
distributions.  Although the {(about 1000} data points for the exponential decay lengths Ay
in a system of the size M are taken for many different sizes and widths of the distribution
functions, they can be scaled onte one and the same curve by changing the scale of M with a
disorder {and energy) dependent scaling parameter &.

transition, i.e. described by the current theory of localization, the exponent % was ascribed
to the presence of local magnetic moments induced by Coulomb interaction. Although there
have been several efforts {o freat this effect theoretically (Belitz and Kirkpatrick 1989a, b,
1991, Kirkpatrick and Belitz 1989, 1990a, b, Milovanovic et al 1989, Bhatt et al 1988) a
generally accepted theory for this type of transition is not available at present.

A different approach has been developed by Gitze (1981) by starting from the mode-
coupling theory, and calculating explicitly experimentally observable quantities like the
frequency-dependent conductivity, and the dielectric susceptibility, as a function of the
various system parameters like the disorder and the Fermi energy (Gotze 1985). In this way
a quantitative description of the Anderson transition was claimed.

2.4. Numerical scaling

The one-parameter scaling theory contains a number of assumptions, the most important of
these being the one-parameter scaling hypothesis. In order to see whether or not this is really
valid an explicit numerical test has been performed by the authors of the present review
(MacKinnon and Kramer 1981, 1983a, MacKinnon 1985b) using a recursive technique
which was developed in connection with the calculation of the conductivity of disordered
systems by one of the authors (MacKinnon 1980, 1985a). A similar technique was developed
simultaneously by Pichard and Sarma (I981a, b). Using a real space renormalization
technique which was connected with the ideas of Landauer and Wegner, it was possible to
establish numerically the existence of a scaling function for the exponential decay Jength of
the transmission probability through the random medium (figure 4). However, the obtained
critical exponents were only partially in agreement with the results of the ¢ther theories
and the above mentioned experimental data. Also, the validity of the scaling concept was
demanstrated only for the centre of the band (of the Anderson model).
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The numerical values for the localization length near the critical disorder in three
dimensions and for small disorder in two dimensions which were obtained in these
calculations turned out to be macroscopically large. The question arises how the
wavefunctions behave before the asymptotic exponential decay sets in. The idea of an
inverse power law decrease as a function of the distance from some localization centre was
introduced by Kaveh and Mott (1981). Some numerical results were found which seemed to
be in favour of such a behaviour {Pichard and Sarma 1981a, b, Schreiber 1985). Power law
localization has also been found recently in 1D disordered systems subject to an electric field
(Delyon et al 1984, Cota et al 1985, Leo and Movaghar 1988). However, such a behaviour
would be in severe disagreement with the one-parameter scaling theory. Presumably, further
theoretical and numerical studies are necessary in order to clarify the issue.

3. Experiments on localization

A large number of phenomena exist which can be explained in terms of localization of
quantum states. A classical example is Mott’s celebrated T~ "/* law for the low-temperature
behaviour of the conductivity of amorphous semiconduciors (Mott and Davis 1979). The
existence of quantum interference has been demonstrated in thin metallic films (Bergmann
1984). The metal—insulator transition has been investigated in a variety of systems including
doped semiconductors and amorphous metal-non-metal mixtures (Thomas 1986, Katsumoto
1990}, and magnetic-field-induced transitions (Biskupski and Briggs 1988, Chen et al 1989).
Conductance fluctuations as a result of disorder have been observed in small systems at low
temperaiure (Washburn and Webb 1986, Lee er al 1987). The existence of the quantized
Hall resistance in inversion layers was interpreted as a direct manifestation of the existence
of localized states in the presence of a magnetic field (Aoki and Ando 1981). Classical
waves, such as electromagnetic waves, and water waves, for instance, exhibit many of the
localization phenomena predicted and investigated in quantum systems quite directly on
a macroscopic scale (Etemad et al 1986, Akkermans and Maynard 1985, Lindehof et al
1986). In this section we want to discuss the essential features of some of these phenomena
in greater detail.

2.1. Hopping transport in amorphous semiconductors

Figure 5 shows the DC conductivity of amorphous silicon as a function of the temperature.
It can be seen directly from the plot that at low enough temperatures (Beyer [974)

oae(T) = opexp(~(To/ TH'/*) 3

over two orders of magnitude, with suitable constants oy and Ty, At higher temperatures
this behaviour changes into an activated one.

The behaviour of the conductivity can be understood when assuming that the transport
is mediated by phonon-assisted hopping processes between localized states which are
energetically close to each other but with localization lengths that are small compared
with the spatial distance between the centres of localization (figure 6).

At low temperatures the hopping probability p between the states will be proportional to
the overlap integral of the two wavefunctions which depends exponentially on their spatial
distance R, and a Boltzmann factor containing their mean energetical distance A,

p xexp(—aR — SA). 4)
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Figure 5. Hopping transport in amorphous silicon. The logarithm of the oc conductivity
depends on the temperature according to Mott’s 71/ law. The different curves are for different
deposition temperatures (after Beyer (1974)).

3

Figure 6. Hopping between states localized at different sites R, States that are close in normal
space (1 and 4) must be well separated in energy £. On the other hand, states at almost the
same energies are far apart in R-space (I and 2).

Here « is proportional to the inverse of the exponential decay length of the states, and 8 is
the inverse temperature. For small hopping distances R, necessary in order to obtain a large
hopping probability, the number of states which are available for a hopping process from a
given state will be small on the average. Correspondingly, the mean energy separation of
the states will be large. The Boltzamann factor will decrease the total hopping probability.
On the other hand, when R is large, there are many states to which an electron can hop from
a given site. A i3 small. The Boltzmann factor will enhance the total hopping probability.
In order to maximize p one has to know how A depends on R.

Assuming that the localization centres are distributed homogeneously in space we
estimate (for a d-dimensional system)

A o [Rin(Ep)]™. (5)
The distance R, which maximizes p is then obtained by minimizing the exponent in {4},

_ ag 1/(d+1)
v (ig) ©
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Inserting this result into (4), and noting that p « o, yields the d-dimensional version of the
T=!/4 Jaw, which should be valid as long as the density of states is approximately constant.

More rigorous treatments of this remarkable idea to explain the low-temperature
transport properties of many amorphous materiats which is, as many others, due to Mott, can
be found in the literature (Bottger and Bryskin 1985, Efros and Shklovskii 1975, Gogolin
1982).

3.2, Weak localization

At low temperatures thin, weakly disordered metal films exhibit anomalies in the behaviour
of the electrical resistance which can only be understood when taking into account the
quantum mechanical nature of the electrons. These anomalies are found in the temperature
dependence as well as in the magnetic field dependence of the resistance. In terms of
the above mentioned scaling picture, they concern the regime of aimost classical transport
{large conductance, see figure 7) in a 2D system. Since the quantum corrections to the
conductivity can be interpreted as being due to an interference of the electron wavefunctions
which favours backscattering, and since the localization length considerably exceeds all of
the other relevant lengths in the system, this is called the regime of weak localization.

One of the most striking effects is seen in the iemperature dependence. Many thin
metallic films show a logarithmic increase of the resistance when the temperature is
decreased. Some of the first results obtained are shown in figure 7. These and many
other examples can be found in the review article by Bergmann {1984),

Results of this kind were first taken as confirming the scaling theory of localization in
the asymptotic regime of weak localization where the 8 function appeared to be given by

constant

- 7
B(g) 2 (7

in two dimensions. Integrating with respect to the system size L one obtains
£ — go = —constant x In(L/Lg) (8)

where go and Lg are constants of integration, For L < Lo, g (> go) can be treated
classically. For L = Ly the conductance decreases logarithmically with the length L. In
order to obtain the temperature dependence the geometrical system size has to be replaced
by an effective system size L;, the mean distance between successive inelastic scattering
events suffered by the particle (Anderson et af 1979, Thouless 1980, Altshuler and Aronov
1985). With the (temperature-dependent) inelastic scattering time 17; (phase coherence time)
we have

L? = Dn(T). 9)

Taking 7 &< T=7 {p = O(1)) at low temperatures one obtains the desired log T behaviour.

However, some time later doubts were shed on this interpretation since, based on earlier
work on the density of states (Altshuler and Aronov 1979a, b, Altshuler et af 1980), it was
discovered that the Coulomb interaction between the electrons leads to the same temperature
dependence in the presence of disorder, except that the prefactor is different (Fukuyama
1980, 1981). Thus, a tool was needed that could distinguish between localization and
interaction effects.

The latter was provided by applying an external magnetic field (Uren et af 1980).
While localization leads to a negative magnetoresistance usually associated with an increase
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Figure 7. {a) Logarithmic temperature dependence of the resistance of thin Au-Pd films (Dolan
and Osheroff 1979), (&) thin Cu films (van den Dries er af 1981} and (¢) fine Cu particles
(Kobayashi ez al 1980).

of the localization length when a magnetic field is applied, Coulomb interaction gives a
positive magnetoresistance. The interesting point that was made by Bergmann (1983a)
is that localization effects may be switched off systematically by introducing spin—orbit
scattering into the system (figure 8). Using the asymptotic theory of Hikami et al (1980)
the experimental results may be used to determine the inelastic scattering time, the spin—
orbit scattering time, and the magnetic scattering time (Bergmann 1982a, b, ¢, 19834, b)
(see also section 7).

The fact that the regime of weak localization in the transport properties of disordered
metals can be described within the picture of the interference between quantum mechanical
probability waves has been demonstrated explicitty by Sharvin and Sharvin (1981). When
measuring the magnetoresistance of a Mg cylinder which was about 1.5 um in diameter
and | cm long, they observed oscillations on varying the magnitude of an externally applied
axial magnetic field They were periodic with a period A® = h/2e, half the normal
Aharonov-Bohm period (figure 9), The results were in quantitative agreement with the
theoretical predictions made a few months earlier by Altshuler et al (1981) who applied
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Figure 8. The magnetoresistance AR of thin Mg films. The clean film shows a negative
magnetoresistance indicating localization. When the film is covered with 2 small amount of
gold atoms the magnetoresistance becomes positive due to increasing spin-orbit scattering. The
right scale shows the magnetoconductance AL, On the left, the ratio of the inelastic scattering
time and the spin-orbit scattering time is indicated (after Bergmann (1984)).

the same technique which was used for the treatment of weak localization (see below) to
describe the low-temperature magneto-transport properties of loops and cylinders.
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Aharonav-Bohm-like magnetoconductance oscillations observed in normally

conducting Mg cylinders of diameter 1.5 m by Sharvin and Sharvin (1981). Left and right
resistance scales correspond to samples 1 and 2, respectively. The periodicity of the oscillations
corresponds to Ad = i /2e.

Magnetoresistance oscillations were observed, and successfully treated theoretically, by
several other groups in cylindrical systems as well as in large 2D arrays of loops (Gijs et
al 1984a, b, Pannetier et al 1984, Washburn and Webb 1986, Aronov and Sharvin 1987).
Thus, the asvrptotic regime of weak scattering is physicaily understood and experimentally

well confirmed.

3.3. The Anderson transition

There is a large body of experimental work concerning the metal-insulator transition
The most extensively studied examples are doped silicon, Si:P

{Thomas 1986).
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(figures 10(a) and (b) (Paalanen and Thomas 1983)), as well as the persistent photoconductor
Al,Ga,_,As (figure 10(c), (Katsumoto ¢t al 1987)). In both cases both the insulating and
the metallic sides of the transition were studied by measuring the dielectric susceptibility
and the conductivity, respectively. In Si:P the tuning parameter was the magnitude of
uniaxial stress applied to the sample (at fixed doping level), or the concentration of the
doping atoms. In the persistent photoconductor the concentration of the charge carriers was
tuned via optical excitation.
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Figure 10. The metal~insulator transition. (g} Uncompensated Si:P. The square of the pc
conductivity ¢ (right scale) and the inverse of the dielectric susceptibility (left scale) are plotted
against the renormalized concentration n/n. — 1 of the dopant (P} atoms. The upper scale shows
the uniaxial stress S applied to the system in order to achieve the transition (after Paalanen and
Thomas (1983)). () Compensation dependence of the transition in Ge:Sb. The DC conductivity
is plotted as a function of the concentration of the dopant (Sb) atoms for different degrees
of compensation (in %). The uppermost curve is the result obtained for Si:P. The critical
exponent changes between about (.5 and 1 depending on compensation (after Thomas e af
(1982)). (c) Persistent photoconductor Al 1Gap.7As:Si. The pc conductivity o extrapolated to
zero temperature for zero magnetic field and 4 = 4 T is plotted against the light exposure
time. The latter is a measure of the density # of the charge carriers. The exponent is 1 (after
Katsumoto er af (1987)).

The critical exponents turned out to be equal on both sides. An absolute value close to
% was obtained for Si:P (and other uncompensated doped materials), whereas exponents of
the order of 1 were obtained for Al,Ga,_,As,. and other amorphous materials, as well as
compensated semiconductors.

The three examples shown in figure 10 characterize completely the experimental
sitvation concerning the critical exponent. One can distinguish two large groups of
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transitions. On the one hand, there are uncompensated doped semiconductors. Here the
transition is characterized by an exponent close to % On the other hand, there is the large
group of systems including amorphous metals, amorphous semiconductors, and compensated
doped semiconductors where the exponent is close to 1. To our knowledge, there is up to
now no experimental indication of a disorder-induced transition with different exponents on
the two sides, as far as they bave been determined.

3.4. Scattering of light

If quantum interference is the dominant mechanism for the localization of states in a random
medium, localization effects should be of importance in other wave phenomena, too (Sheng
19903, That this is indeed the case has been demonstrated in recent years theoretically (by
considering classical wave equations) (John and Stephen 1983, John 1984, Azbel 1983,
Kirkpatrick 1984, Flesia er al 1987, Akkermans and Maynard 1985, 1986, Guazzelli et al
1983) as well as experimentally in light scattering experiments (Wolf and Maret 1985, Kuga
nad Ishimaru 1984, van Albada and Lagendijk 19835, van Albada et al 1991). An example
is shown in figure 11 (Etemad et al 1986).
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a/degree

<

backscattering intensity {arb.units}

Figure 11. (a} Backscattering of light from a solid assembly of submicron 8102 particles in air,
(&) with single-scattering component removed, (¢) ensemble averages of nine and (d) sixteen
scans {(after Etemad er al (1986)).

The light of a 5 mW low-divergence He-Ne laser has been scattered from a solid
sample made of colloidal silica particles which were produced by flame hydrolysis of
silicon tetrachloride vapour, and deposited on various substrates as a solid layer of uniform
thickness d ranging from a few micvons (o a few millimetres. Thus the full range of
elastic scattering length £ & d to £ > d could be covered. The size of the particles
was between 0.1 and 0.2 um, the solid fraction of the as grown samples varied between
0.05 and 0.12. Enhanced intensity in the backscattering direction was only observed after
removing the single-scattering contribution and averaging over several noise-like spectra
(speckle pattern). In experiments using a liquid sample instead of a solid sample enhanced
backscattering is more readily observed because the Brownian motion of the particles carries
out the averaging process very effectively (Wolf and Maret 1985).

There are indications that light waves may even be strongly localized if scattering is
strong enough (Economou 1990, Sheng 1990).
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3.5. Localization of water waves

One of the elementary experiments showing the effect of localization of classical waves can
be performed in the first year of a physics course (Lindelof es al 1986). It is the scattering
of water waves at an assembly of scatterers (figure 12).

(a) ', ' (b)

Figure 12. Scattering of water waves from a regular and a random assembly of scatterers (with
the permission of the authors from Lindelof et al (1986)).

A number of scatterers (for instance, metal nuts) is placed regularly or at random within
the area of a bath of water. The bath is filled up to a level of about 5 cm. Surface water
waves are excited. In the case of a regular assembly of scatterers the waves are spreading
all over the whole area of the surface. When the scatterers are random, waves are generated
only within some restricted areas.

3.6. Conductance fluctuations

A phenomenon which is closely related to localization is the reproducible fluctuations of
the conductance in mesoscopic samples. These have geometric dimensions of the order
of or less than the phase coherence length (inelastic scattering length), i.e. a few hundred
nm when considering temperatures of the order of 1 K. Measuring the conductance or the
resistance of thin wires as a function of the magnetic field in the case of metallic samples,
and of quasi-1D inversion layers in high-quality heterostructures, one observes irregular
but nevertheless (for a given sample) reproducible structures (Fowler et al 1982, 1988,
Washburn and Webb 1986, Pichard and Sanquer 1990, Mailly and Sanquer 1991, Caro et
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Figure 13. The reproducible fluctuations of the conductance ™ as observed at low temperatures

in a quasi-1D inversion layer channel when changing the voltage V; applied to the Al gate on
top of a Si-MOSFET, as shown schematically in the left-hand part (after Fowler er af (1982)).

al 1991). Changing the gate voltage, 1.e. the charge density in quasi-1D inversion layers in
MOSFETs, similar random fluctuations are detected at low temperature (figure 13).

These conductance fluctuations can be understood when assuming that at low enough
temperature the transport takes place coherently within single quantum states throughout the
whole sample. If the Fermi energy is such that it accidentaliy hits the energy of a quantum
state the transmission probability (and hence the conductance) is very high (almost 1) as
compared with the situation where the Fermi energy does not coincide with a quantum state
energy. In this case the variance of the fluctuations is independent of the size of the sample
and other parameters like the degree of disorder (universal conductance fiuctuations, UCF,
see figure 14). In this regime, which corresponds to that of weak localization since the states
are essentially assumed to extend throughout the whole sample, one can use perturbational
techniques for the determination of the magnitude of the fluctuations. Random matrix
theory is another useful tool for the mathematical treatment of the stochastic behaviour of
the transport properties (see section 10).
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Figure 14. The universal fluctuations of the magnetoconductance [ of thin metallic wires,
(e} Mesoscopic Au ring of about 0.8 um diameter, (&) quasi-1p inversion layer channel io a
8i-mosrET and (¢) numerical result for the Anderson model (see below). Although the three
samples are microscopically different, as one can judge from the fact that the zero-magnetic
field conductances are about an order of magnitude different, the fluctuations are about of the
same magnitude (after Lee et al (1987)).

When the sample size is larger than the localization length, which is the case in the
insulating regime, one expects a second kind of fluctuation, the variance of which increases
exponentially with the length of the sample. These are due to the non-ergodic nature of
the localized phase. To our knowledge they have not yet been unambiguously observed
experimentally. They could, however, be connected with the above mentioned conductance
fluctuations in the quasi-1D MOSFET channels (see also Orlov e al 1989a, Millikan and
Ovadyahu 1990).
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Indications of reproducible stochastic fluctuations are also seen in the above mentioned
light scattering experiments (figure 11).

4. Basic concepts

4.1. Models of disorder

The characterization of the properties of ideally ordered materials is comparatively easy.
Due to the presence of the long-range order one has translational symmetry. The quantum
objects (electrons, phonons, magnons, etc) are of the Bloch type. As a consequence, they
are freely itinerant, and can move unrestrictedly throughout the whole system. In reality,
however, there are no ideally ordered media. There are always distortions of the ideal order
due to the presence of impurities, dislocations, vacancies and other defects. As long as the
concentration of these is small, one may still use the concepts developed for translationally
symmetric systems as a starting point for the understanding of the properties of the distorted
systems. However, if the concentration of the distortions is large, it is necessary to leave
transiational symmetry, and to develop new methods.

Starting from the ideal crystal, models of disorder may be constructed in various ways,
as illustrated in figure 15. Models for glassy systems and amorphous semiconductors may
be obtained by relaxing the lattice structure (structural disorder). A lattice with two or more
different kinds of atoms distributed at random establishes the most simple modet of an alloy
{compositional disorder). '

A simple model for structurally disordered systems, such as amorphous metals, metallic
glasses or heavily doped semiconductors, is provided by the Hamiltonian

Py
H:Q_m_+zljvj(r-Rj) (10}
l:

where p is the momentum operator, m the effective mass of the particle and V; the potential
energy of an atom at the site B;. The distribution of the atomic potentials in space may
be described by a (normalized) probability density distribution function P({R;}). In the
simplest case of a completely random distribution of N statistically independent atoms
within a volume € this is given by

PR = Q7" (1

This model has been used extensively in the theory of weak localization (Lee and
Ramakrishnan 1985, Bergmann 1984, Vollharde 1987, Vollhardt and Walfie 1992),

Also commonly used is the following model, which is defined on a lattice and is
particularly convenient for the treatment of compositionally disordered solids, such as alloys:

H o= euliv)ivl+ Y Viorul jv)knl. (12)

jv Jvkie

Here ¢;, are the energies associated with the states labelied by v at the sites j of the lattice,
and the non-diagonal elements V;, 5, denote the matrix elements betwesn the states, The
diagonal part of the Hamiltonian corresponds to the potential energy and the non-diagonal
part to the kinetic energy in the continuous space description {(10). Disorder is introduced
by taking the site energies and/or the hopping matrix elements at random, and assuming
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Figure 15. Different sorts of disorder that can be modelled by starting from the ordered limit
{a). ldentical atoms sitting at random positions represent structural disorder (b), when the
position are such that the number of the nearest neighbours is constant the system is called
topologically diserdered (¢). Two different Xinds of atoms sitting at the sites of an ideally
ordered Iattice represent the simplest case of compositional disorder (o), while an assembly of
randomly oriented spins is a typical example of an orientationalty disordered system (e). A
regular lattice of identical atoms connected with two different kinds of hopping matrix elements
is the most simple case of a system with randomness in the kinetic energy, for instance induced
by a random vector potential { f).

some probability distribution function for them. The simplest case is that of pure diagonal
disorder,

S(Vipru — V) Jj: % nearest neighbours
Pl (Vauh) = Pulend [T {3

ok {(Vivap) otherwise
(13)
with statistically independent site energies
P(fep}) = [ ] plesw)- (14)
Jjv

Examples are the completely random two-component (A, B} alloy,

plejn) = (8065 — €a) + 8(€ju — €p)) (15)
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and the Anderson model,
1 1
plgjp) = W@)(EW - lenl) (16)

which may also be considered as an alloy with infinitely many components. A common
example of non-diagonal disorder is the Iocal gauge-invariant model,

P} AVirud) = [ [ 8ep)
v

(17)

< T1 28V — V) 4+ 8V + V)1 J» & nearest neighbours
8(Viyup) otherwise.

jukp

Although primarily of theoretical interest because of its apparent simplicity, the local gauge-
invariant model represents a physically rather peculiar and interesting situation. In order
to see this, consider the case of nearest-neighbour non-diagonal matrix elements which
fluctuate randomly between + V" and —V,

Vie = Vexp(iSum) (18)

where Sp = 0, 1 at random. As we shall explain below, the product of the phase factors
of the bonds making up any closed loop gives the magnetic flux through that loop. For a
single unit cell ® = a®y = Ba? (a is the lattice constant, B a fictitious magnetic field and
Py = h/e the magnetic flux quantum). Thus, depending on whether the sum of the S
in the closed loop around a unit cell is even or odd, & = 0 or & = 1/2dy, respectively.
Therefore, although the Hamiltonian is real and symmetric, it can be considered as describing
the quantum mechanics of a spinless particle in the presence of a randomly oriented magnetic
field, the magnitude of which fluctuates at random from unit cell to unit cell between the
values B = 0 and B = h/(2ea?). Apparently the model is the most simple version of a
so-called random phase model, where

Vir = V explidu) (19)

with 0 < ¢y < 2 at random. The latter model represents a system with a magnetic field
which varies at random from unit cell to unit cell.

Let us now convince ourselves that it is indeed a magnetic flux which is represented
by complex phase factors in the off-diagonal elements of the Hamiltonian. We start by
asserting (Feynman 1965) that the transition probability amplitude between two sites & and
y of a quantum particle of charge e, when moving under the influence of a magnetic field
of flux density B, acquires a phase factor

Vi (B) = Vi (@ exp (i(e/h) fy A dl) (20)

where A is the vector potential, B = V x A, and the line integral in the exponent runs
over an arbitrary path between x and y. When the path is closed the integral can be written

5£A-cu=f B.dS=® @n
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where the surface integral represents the magnetic flux through the enclosed area. In the
above case of a discrete Hamiltonian, the integral must be replaced by a discrete sum over
lattice points. Hence, the relationship of the local gauge-invariant model discussed above
in a {fictitious) magnetic field becomes obvious.

The special case of a homogeneous magnetic field is of particular interest since
it represents a very simple experimental tool for changing the fundamental symmetry
properties of a system, which are very important for the critical behaviour at the Anderson
transition, as we shall explain below,

In the continuous model (10) the influence of a magnetic field may be incorporated by
replacing p by p — ¢ A where A is the vector potential. For a homogeneous magnetic field
B, in the z direction convenient choices are

B { (0, —x,0) Landau gauge

. (22}
1/2(y, —x, 0) Symmetric gauge.

The corresponding tight-binding Hamiltonian can easily be deduced from (12) by using
the discrete version of (20). In the Landau gauge, for instance, one obtains in three
dimensions

Wmnui’m‘n'u(B) = Vi’mnui’m‘n’p(o)
X {exp(izxina)al'lam'.milan’n + 5!’.H:I3m’m3n'n + al'lsm'mfsn'.rr:l:l}
(23)

where {Imn} denote the integer cariesian components of the lattice points of a simple cubic
lattice, and & == Ba®/®y is the number of magnetic flux quanta in 2 unit cell. The magnetic
field is introduced here via the so-called Peierls substitution (Luttinger 1951),

Although looking rather specialized at first glance, Hamiltonians of the type of (12)
have many applications in various areas of the physics of disordered systems, They may be
used to describe the vibrational properties (Dean 1972) as well as the electronic properties
of amorphous semiconductors (Kramer and Weaire 1979) and alloys (Elliott et al 1974) and
spin glasses (Edwards and Anderson 1975). The n-orbital model, which is nothing but the
Hamiltonian (12) with n states per lattice site, was used to establish the scaling theory of
localization (Wegner 1979a, b, ¢, Oppermann and Wegner 1979).

The Anderson model has been extensively used in numerical studies of the localization
problem. Most of the resuits that follow are based on this model Hamiltonian,

The most general single-particle Hamiltonian which may be used for the description of
a disordered system is of the form

H=Hy, +V (24)

where Hy, and V are the kinetic and the potential energies of the particle, respectively. In
(10) Hyjn corresponds to p?/2m and V is the (random) superposition of the potentials of
the atoms.

A convenient choice of the distribution function of V is the generalized Gaussian

P([V]) = Cexp (— f V(rK (T, rHVr)dr dr’) . (25)

The normalization constant C is determined by the functional integral { D{V]P[V] = 1.
The function K is the inverse of the correlation function of the potential (Papoulis 1984),

fdr"K('r, WV {ENV (D) =8r — ). (26)
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A special case is the Gaussian white noise potential specified by

(Vi=0 (27a)
(VE)Vr) = (VH(r ~ ') (27b)

such that K (r, r') = {(V2)8(r - ). The averages in (26) and (27) are defined as functional
integrals, '

+00
{0 =f D[V]P[{V].... (28)

(=]

This most convenient notation has been used in the dernivation of the non-linear ¢ models
{Wegner 1979b, 1985,Hikami 1981, Levine ef ! 1984, Pruisken 1984, Weidenmiller 1987).

4.2. Properties of the electronic spectrum

In the case of an ideal crystal a characteristic feature of the density of states is the occurrence
of van Hove singularities, which are due to the long-range order. There are sharp band
edges, for instance, A disordered system does not have any long-range order. There are no
singularities in the density of states. This can be proven rigorously for the tighi-binding
model considered above with the diagonal elements being given by a smooth distribution
function (Wegner 1979b). In particular, there are no sharp edges, but smooth band tails
instead. A number of theoretical approaches deal with their analytic form. The exponential
behaviour of the band tails

n(E) = Aexp (B[£(ET — E)]™*) (29)

can easily be obtained for a random d-dimensional two-component alloy, and for the
Anderson model with rectangular distribution of the site energies by using a famous
argument that is due to Lifshitz (1965). E3 are the true upper and lower (Lifshitz) bounds
of the spectrum in these cases, and A, B are model-specific constants. As the Lifshitz
argament is physically extremely insiructive we repeat it here in brief,

We consider the above tight-binding model (12) with diagonal disorder and the
distribution function (15). Only two values of energy, say —!—%W and —%W, are allowed for
the lattice sites, each of which is assumed to be surrounded by Z nearest neighbours.
Then the electron states with energies close to the true band edges that are given by
Eoi =+(ZV + %W) will be localized within a potential fluctuation of a sufficiently large
volume §2 = L?. They will be standing waves with the (smallest) wavenumber ~ n/L.
The lowest energy level is then given by (for the lower band edge, for instance)

constant

E=E; + L= (30)

The value of the constant depends on the shape of the volume. Its minimum value is
attained for a sphere. The probability for the appearance of such a spherical region is given
by ¢ if ¢ is the probability of having ._%w at a lattice site (at the upper band edge it
would be (I — ¢)®). Expressing now the volume in terms of the energy of the lowest level
one obtains the above result for the density of states.

The Lifshitz result has been rederived and extended to other distribution functions
by various authors using variational (Zittarz and Langer 1966) and path integral methods
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Ec energy Ec

Figure 16. Qualitative picture of the density of states of the Anderson model. The states in the
band tails are localized while those in the middle of the band are extended. Ec and E¢ denote
the mobility edges.

(Friedberg and Luttinger 1975). For the Gaussian distribution one obtains (Houghton and
Schifer 1979)

n(E) = Aexp(—B|E*"4/%). @31

The density of states is shown qualitatively in figure 16 for a system with only one band.

Intuitively, and this can also be seen by using an argument due to Lifshitz, it is obvious
that the states in the tails of the band are localized within finite regions (of diameter L) of
the (infinite) system. However, this does not mean that the localization length, which will
be later defined as the asymptotic decay length of the states, is given by L.

At energies far away from the band edges one may expect that a weak random
potential cannot localize the states to finite regions of space. Instead, the amplitude of the
states, although fluctuating more or less randomly, will be non-zero essentially everywhere.
Consequently, these states will be called extended. Within the energy region of extended
states no localized states can exist. To see this, let us assume that there is a localized state
in the extended region for some configuration of the disorder. Then, by infinitesimally
changing the disordered potential, coupling between the localized states and the extended
states 1s introduced and the localized state hybridizes with the extended states into new
extended states. As a consequence certain energies, denoted by E. and E_ in figure 16
must exist which separate the extended from the localized states. As we shall see later,
localized states do not contribute to transport, even if they are situated energetically at the
Fermi energy, whereas extended states do. Thus, E; and E_ are denoted as mobility edges.
In general, the mobility edges depend on the disorder. If the latter is large enough they will
merge into the centre of the band. The system becomes an insulator.

This picture is due to Anderson (1958). The transition from a metallic to an insulating
system induced by the disorder is therefore called an Anderson transition. The concept of
mobility edges was introduced by Mott (1968). There is no rigorous proof that extended
states must exist near the centre of the band. Establishing such a proof is one of the
main subjects of the theory of localization. Up to now, the only mathematically rigorous
statement concerns the existence of extended states in one dimension, namely that for any
finite amount of disorder there are no extended states in d = 1, a statement which was
already made by Mott and Twose (1961). In two dimensions the present general belief is
that there are also no extended states, even for infinitesimally small disorder. However,
as this belief is based only on an approximate theory (the so-called one-parameter scaling
theory, to be discussed later), this question must be considered to be still unsolved. The
important lesson to be learnt at this stage is that the phenomenon of localization depends
on the dimensionality. Below we shall see that this provides a possibility for experimental
tests of the theory.
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In order to understand the physical mechanisms leading to localization of the quantum
states in random potentials better it is instructive to consider first a classical particle moving
in a random potential V(x) in one dimension (figure 17). For simplicity, we take the
potential to be restricted to values smaller than Ey. Then one can decide by simple energy
considerations whether or not the particle is localized. If the total energy E is smaller than
E, the particle is confined to finite intervals, within the (accidental) potential wells. On the
other hand, if E > Eg then it can move along the whole x axis.

energy
-
3 3
! i
X »
ST

position

Figure 17. Classical particle in a 10 random potential. The motion of the particle is restricted
to finite intervals for £1 < En. For E2 > £y the motion is unrestricted.

For a quantum mechanical particle it is more complicated to distinguish the character
of the states, On the one hand, the potential barriers cannot absolutely confine the particle
to a certain well because of tunnelling. This may even lead to complete delocalization
of a classically localized particle. On the other hand, for E > E; repeated scattering at
the potential fluctuations may eventually lead to a superposition of destructively interfering
waves in such a way that a classically extended particle may become localized. Besides
potential localization it is the competition between tunnelling and interference which
determines whether or not a state is localized.

An example for localization via quantum interference is the above mentioned one-
dimensional localization. An example for delocalization via tunnelling, although not related
to disordered systems, are the Bloch states in a crystal, in particular those which correspond
to the core states.

4.3. Quantities of interest, ensemble averages

The simplest quantity which may be considered is the spectral density of energy levels E,,
n(E) = é—ZB(E —E,). (32)
This can be written in terms of the one-particle Green’s function (Economou 1983)
G(’r,r';Ei)=<r|+l—"r") (33)
Exin—H
as

nE) = ;% Tr{ImG(E*)}. (34)
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For the sake of simplicity we omit the explicit statement of the limit # — 0, here, and in
the following,

As mentioned above, the localization properties of the states influence the transport
properties of the system. Therefore, the theory of localization is essentially a theory of
the transport properties, i.e. the electrical conductivity o. The latter is given by the Kubo
formula,

ne?

Y3 Kl pl BYPLS(Ba) = FUER)S(Ea — Ep ~how).
o fia

o(T,w) = lim
T, ) Q-0 MW

(35)

Here, f{E;) is the Fermi function, E, g are the energy eigenvalues corresponding to the
eigenstates denoted by Ja), |8}, and T and @ are the temperature and the frequency of the
electric field, respectively. p is the projection of the momentum operator onto the direction
of the electric field. In the mean free path approximation one obtains the DC conductivity
(Mott 1970),

2kke
e = 3nth

where £ and kp are the mean free path and the Fermi wavenumber of the uniform system,
respectively, A first restriction on the mean free path classical result is given by the
Ioffe-Regel criterion (loffe and Regel 1960} which states that £ should be greater than the
wavelength in order for the expression (36) to be valid. At least, if € is of the order of or
smaller than the wavelength then a full quantum mechanical calculation of the conductivity
is needed.

In terms of the above mentioned one-electron Green’s function the conductivity may be
written as

(36)

. 2 +o0 E) — F(E+h
oT,w) = szll»moo n;mz /;,,o dEf( ) i,( i)
x T{pInG(E™ + hw) pImG{E™*)}. )

In this form we will use it in the later sections of this review.

As we have replaced the system to be considered by a statistical ensemble by introducing
a probability distribution in the preceding section all of the physical quantities have to be
configurationally averaged. However, this will yield physically meaningful results only if
the quantity considered is self-averaging in the usual statistical sense, i.e. if

(4) = lim A(Q). (38)

In connection with localization this property is not trivially fulfilled, as we shall see below,
even in the metallic limit where the conductivity is large, and may be approximated by the
mean free path expression. If a quantity is not self-averaging, then, in principle, one has
to consider its probability distribution function (Lerner 1991b), or, equivalently, all of its
moments.

5. Definitions of localization

In this section we want to summarize some of the definitions of localization which have
been used in recent years. Again, instead of being complete, we emphasize the main ideas.
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5.1. Asymptrotic behaviour of wavefunctions

The wavefunctions in a random medium may be physically characterized by various
parameters such as their average diameter, the fraction of the volume of the system which
they occupy, spatial correlations between their amplitudes and phases, and their asymptotic
behaviour, and, indirectly, by their transport properties. As we shall see, the latter are
closely related to the spatial correlation of the amplitudes and to the asymptotic behavigur.

The asymptotic behaviour of a localized state is wsually described by the exponential
decay length of its envelope, A, the localization length, i.e.

W(r) = flrie? (39)

where f(r) is a randomly varying function. A — oo corresponds to an extended state. In
practice this definition is not very useful, since its application would require the calculation
of single eigenstates. It is more convenient to define the localization length in connection
with the transport properties.

5.2, The inverse participation number

In order to decide whether or not a state is localized it is often sufficient to consider the
second moment of the probability density (Wegner 1980),

Pt = W)l W) = 1. (40)

This is the inverse participation number. 1t is a measure of the portion of the space where
the amplitude of the wavefunction differs markedly from zero. It may also be considered
as providing a measure for an average diameter R of the state via R = P'/¢. For plane
waves one obtains that P = L9, ie. equals the volume of the system, and diverges in
the thermodynamic limit. Such a behaviour may be considered as being representative of
extended states,

One may define the fractal dimensionality d* of a state by (Aoki 1983¢, 1986, Kramer
et al 1988)

lim P=L% (41)
Looo
For plane waves d = d*. For a general extended state 4* may be different from the
Euclidean dimensionality, i.e. d* < d. For a localized state P is proportional to the volume
in which the state has a non-vanishing amplitude. This volume tends to a constant in the
thermodynamic limit. Thus, the fractal dimensicnality vanishes in the case of localized
states.

Considering the higher moments of the probability density one may correspondingly
define higher fractal dimensions. If the latter are not given by integer multiples of 4* the
states show multifractal behaviour (Huckestein and Schweitzer 1991, Pook and Janssen
1991).

1t is impaortant to note that in general R = A, This can be seen by considering the case of
the states in the exponential tails of a band. As discussed in the preceding section these are
due to occasional potential fluctuations within macroscopically large volumes. Thus, their
average diameter is macroscopically large. On the other hand, the asymptotic behaviour
of the states is determined by their expenential decay into the space outside the potential
fluctuations. The corresponding length is inversely proportional to the square root of the
energy. Since we consider the asymptotic regime of the density of states the energy is very
large. Consequently, the exponential decay length becomes very small (figure 18).
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Figure 18. Localization of a state & (x) in an accidental potential well V(x) in the Lifshitz tail
of a band. The iocalization length A is different from the ‘diameter’ £ of the state,

5.3, Absence of diffusion

The character of the states near a given energy determine the transport properties of the
system near the absolute zero of temperature. In particular, one has a vanishing zero-
temperature DC conductivity oy if there are only localized states near the Fermi energy
Ef.

Inserting the momentum operator

p= gm, r] (42)

into the Kubo formula (37), and taking into account that

H=z7-G"" (43)
yields
2
Oyge = _x lim lim L Tr(2n* (GHE G~ (E)r) — inr{(GH(E) — G~ (E)}.
h =0 Q~o0 Q
(44)

As previously in the case of the momentum operator (35), r is the projection of the position
operator r onto the direction of the electric field.
The second term on the RHS is easily shown to be equivalent to Tr{{G* G~ r?)} by using
spectra] representation. Therefore, and because
2 . 2
(e ]6HE| [N = (|G (r—+[; B)[") (45)

due to homogeneity and isotropy, we obtain
2 2
Odc = % lirr})»’h}2 fddrrz(lG"‘(r; E)|2). (46)
n—

The expression on the RHS of this equation gives the square of the mean distance the
electron—hole pair described by GG~ can diffuse within an infinite time interval (figure 19).
If it is finite, the DC conductivity vanishes at zero temperature. The states are localized in a
finite region of space. The convergence of the mean diffusion length in the localized regime
can be used to define a characteristic length, the localization length, that characterizes the
asymptotic behaviour of the electronic states at large distances.
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Figure I9. The transmission of an electron between sites v+ and +'. Classically there is one,
and only one, path the electron can teavel. It is given by the classical equations of motions and
the initial conditions. Quantum mechanically all possible paths have to be taken into account.

5.4. Transmission through random potentials

The absolute square of a Green’s function is the probability for the transition of an electron
from the site r to the site ',

tr, v E) = (|ir |GED)| ). 47

In the following t{r,r'; E) is often called the transmission probability. If r decays
exponentially for large distances then the mean diffusion distance in (46) is finite. The
localization length A may now be defined by using the exponential decay of the fransmission
probability as
2 Int(r,v; E
=~ lim H(L_l (48)

A Ir-rl—ce  jr — /|

If the states near the Fermni energy are asymptotically localized, as defined in (39), then the
localization length is finite. This may be most easily seen by using the spectral representation
for the Green’s function.

5.5. Absence of diffusion and inverse participation number

The two-particle spectral function may also be related to the inverse participation number
of (40). Defining the average return probability of a particle within a time interval ' by

i
A(r,E.n) = F(r |8,(E — H)| ry? (49)

where 8, is the Lorentzian definition of the & function, and the last equality presupposes
homogeneity of the system. The average inverse participation number is given by

1

(P71 = P (1P, (P)I*8(E — E)) (50a)
T .
== lim A, E, ) (50b)

where p(E) is the density of states. The inverse participation number cormresponds to the
probability that a particle will return to the same site after an infinite time interval (Thouless
1974, Wegner 1980, Weaire and Williams 1977).

If P remains finite in the thermodynamic limit, then the particle cannot diffuse away
from a given point even within an infinite time interval.
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Figure 20, Quasi-gne-dimensional system of the size L x M x M used for the recursive
calculation of the Lyapunov exponents.

5.6. Sensitivity to boundary conditions

Another possibility to investigate the localization properties of the states is the shift of the
energy eigenvalues of a finite system due to small changes in the boundary conditions, as
was proposed by Edwards and Thouless (1972). The average energy shift, 4 £, in second-
order perturbation theory, is related to the conductivity by

2 SE 2
L= =< fe 51)

Ld—z -
¢ -

where AE is the average energy spacing of the eigenvalues and f a numerical factor
depending on the details of the model used (square or triangular lattice, for instance). g{L)
is called the Thouless number. The idea is that for localized states the mean energy shift will
become very small for large system sizes such that g(L} vanishes exponentially whereas
in the metallic regime the boundary conditions will always influence the energy levels,
even for infinite systems. Although the assumptions made in deriving (51), which concern
the statistical behaviour of the energy differences in the system and the comesponding
moimentum matrix elements, do not seem to be very well satisfied in detail (Kiihl 1980), the
sensitivity to boundary conditions has turned out to be very useful in practical calculations,
see e.g. Licciardello and Thouless (19753, b, 1978), besides being conceptually important
for the formulation of the scaling theory of localization (Abrahams er af 1979, Wegner
1976).

5.7. Lyapunov exponents

For ID and quasi-1D systems the localization length may be calculated from the limiting
behaviour of products of random matrices (Mehta 1967, Ishii 1973, Derrida et al 1987,
Muttalib er al 1987, Pichard and Sanquer 1990, Pichard 1991a, b, Feng and Pichard 1991).
The simplest derivation of this fact is obtained by writing the Schridinger equation of
the tight-binding Hamiltonian (12) for a bar shaped system (figure 20} as an initial value
problem. For a system of dimensions M4~'L

ary1 =V HE -Hpa;, —ai. (52)

Here, H, and V are M%~' x M“~! matrices, representing the Lth layer and the coupling
matrix between two adjacent layers, respectively. a; is the M9'-dimensional vector
containing the coefficients of the states.
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Using the transfer matrix notation
E—-H, -V
T. = ( Vv 0 ) (33)

the evolution of the state is described by the matrix product
L
o =]]T, (54)
n=I

such that we can write

Qret ) Q)
()-ou(2)

The product matrix satisfies the theorem of Oseledec (1968), namely that there exists a
limiting matrix

I = lim (Q,Q})1/@0 (56)
L=r0g

with eigenvalues exp(y;), where y; denotes the characteristic Lyapunov exponents of Q.
The smallest of these eventually determines the slowest possible exponential increase of
the state for L — oo. Therefore, it may be identified with the inverse of the longest
exponential localization length in the quasi-1D system of cross-sectional area M9~!, This
definition gives the same result as (48) when applied to the present situation. If we replace
the vectors @, in (55) with M?~! x M% matrices a,, where a, = | and ap = 0, then
az_‘H = G(1, L; E), the submatrix of the Green’s function between the 1st and Lth slices.
This may be seen by comparing (52) and (55) with the resolvent equation (z —~HYG(z) = 1.

The Lyapunov exponents may by used directly to calculate the conductance g of a
quasi-1D system (in units of €2/ k) (Pichard 1984, Pichard and André 1986),

2
¢=Tr e r@a-1 2

(57}

the trace being performed within the subspace of the states that correspond to the cross-

sectional plane. Using the M?~! = N eigenstates of the Lyapunov exponents one obtains
N
2
= _ 58
8 ; cosh? y; L ©8)

This relation is very useful in numerical calculations of the conductance, and also for the
investigation of its statistical properties.

6. One-dimensional localization

ID disordered systems play a key role in the understanding of the properties of solids
since many features of the electronic states, and of the related transport properties, can be
discussed rigorously. We concentrate in this section on the Jocalization of the states, the
behaviour of the conductivity of the infinite system, the conductance and the resistance of a
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finite system at the absolute zero of temperature. The statistical properties of the transport
quantities will be discussed in section 10.

We consider the tight-binding Hamiltonian (12), lattice spacing @ = 1 with only nearest-
neighbour hopping and one state per lattice site, i.e.

N
H= Z{Gjaj + Vigjs1 + aj-1)} (59)
i=1

where V is the constant hopping matrix element. a;, a;+; are amplitudes of the
wavefunctions associated with the lattice sites, and ¢; are the corresponding energies.
Only the case of statistically independent site energies is considered here (see (14)). The
influence of statistical correlations has been discussed in the literature. The main result is
that although interesting quantitative effects occur, such as a decrease of the localization
length with increasing cormrelation length in certain energy and disorder regions (Johnston
and Kramer 1986, Kasner and Weller 1986), the asymptotic behaviour in the weak disorder
region is not changed. These results strongly support the common belief. namely that the
critical behaviour close to a mobility edge does not depend on the microscopic details of
the randomnesst.

Particularly convenient distributions of site energies are the Gaussian and box
distributions. A measure of the disorder is the width W of the distribution function. All
necessary ingredients for a non-trivial description of localization are incorporated in this,
under the circumstances, extremely simple model.

6.1. The localization length

In one dimension ail eigenstates of a random Hamiltonian are exponentially localized in the
asymptotic sense. An example obtained by numerical diagonalization ts shown in figure 21
{Czycholl and Kramer 1980).

H
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i

Figure 21. Amplitudes of a localized state, a;, obtained by numerical diagonalization of the
I Anderson model (59). Parameters are L = 1000, £ = 0.089V, width of box distribution
W =2V. j denotes the lattice sites.

 Although there is no mobility edge in one dimension in the strict sense, one may consider the region near W = 0
as the critical region.
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The inverse exponential decay length of the eigenstates may be calculated from

—2y = Jim } In(a} +ajy,) (60)
with {a;} the solutions of the time-independent Schrédinger equation. In general, it will
depend on the particular realization of the random potential, y = y{e,, ..., ¢.). However,
as we shall discuss below, the localization length (and its inverse) are self-averaging
quantities. Their configurational averages agree with the most probable wvalues in the
thermodynamic limit L — oo,

The calculation of the exponential increase of the wavefunction by means of the transfer
matrix method (cf section 5.7) is in this case particularly simple. The transfer matrix reduces
to a 2 x 2 matrix. There are only two Lyapunov exponents, which have the same magnitude
but are of opposite sign. The eigenvalues of the limiting matrix T’ are thus inverses of
each other. g; is for j — oo exponentially increasing with a characteristic length ¥ (E)~".
Since this is again self-averaging one may assume continuity with £, and identify y~!
with the inverse localization length defined in (60). This conjecture can also be justified by
constructing the eigenstates by fitting particular solutions, which are exponentially increasing
from the left and the right end of the system, to each other. The eigenvafues of H are then
defined as those energies at which a continuous fit is possible (Mott and Twose 1961).

The identification of the localization length as a limiting property of a product of random
matrices also immediately provides the proof that in a one-dimensional stochastic system
all eigenstates are localized (Molcanov 1978, Kunz and Souillard 1980, Delyon et al 1983),
independently of the magnitude of the disorder W (5% (), via the theorem of Filrstenberg
(Ishii 1973).

Many calculations of the localization length have been performed using 2 variety of
methods. Perturbational treatments (Thouless 1979, Kappus and Wegner 1981, Derrida and
Gardner 1984, Lambert 1984, Johnston and Kramer 1986, Kasner and Weller 1986) were
very successful in the weak disorder limit. More recently it has been possible to extend this
well beyond perturbation theory to give an almost complete deseription (Pendry 1982a, b,
1986, 1987, Pendry and Kirkman 1984, 1986, Pendry ef af 1986, Slevin and Pendry 1988,
Pendry and Barnes 1989). Numerical procedures (Czycholl and Kramer 1980, MacKinnon
1980, Czycholl ez al 1981, Thoules and Kirkpatrick 1981, Pichard 1986) were designed
to treat even macroscopically large systems. We describe here briefly a recursive method
which is very similar to the above described transfer matrix method and the result obtained
by second-order perturbation theory,

Ydentifying r and v’ in (47) with the first and the last site of the lattice underlying the
ID-tight-binding Hamiltonian we obtain for the inverse localization length (48) (y = 1/A)

i o1
y =7 ==lm lim —un|G},B) (61)
where GTL(E) is the matrix element of G*(E) between the states that correspond to
the first and Lth sites of the system. As mentioned above, it is also given by a;i].
HL, E) = |G L(E))? gives the transmission probability for a particle to be transferred from
site | to site L. Since y is always finite in one dimension, an infinitely long 10 disordered
system cannot be transparent, even in the limit of very weak disorder.
Writing

L
GH(E) =[] gt (E) (62)

m:]
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where
1

HEY=GF (E)= 63
8m(E) mm (E) E¥in—en— Vg (63)
is the diagonal element of G at the end of a system of length m, we obtain
L-1 1
nw=-—7F—v-ttg In|gel. (64)

This recursive equation for the inverse of the localization length is especially useful for
numerical purposes. It can also be easily generalized to higher dimensions by using the
bar-shaped geometry described in the preceding section in connection with the Lyapunov
exponents (MacKinnon and Kramer 1981, 1983a).

There is a relation between the spectral properties and the localization length which was
discovered by Herbert and Jones (1971). It may readily be derived by calculating G, as
the inverse of E — H, and using (61):

o0

00 E . 1 L
y(E) —_—../; 2NN |E - x|dx = Sﬁj;w Langoz ;ij(x)dx (65)

where p(E) 1s the density of states. The diagonal elements of the Green’s function may
be evaluated in second-order perturbation theory (Thouless 1979). In the limit of small
disorder one obtains (| E| < 2V)

W2
24(4V2 — E?)

e, ¥(0) = W2/96V? for small W,

The numerical results which were obtained by using (64) are consistent with ¥(0) =
W2/105V? (Czycholl ez al 1981, Pichard 1986). The difference in the prefactor is due to
an anomaly in the band centre which originates in resonance effects leading to a breakdown
of second-order perturbation theory (Kappus and Wegner 1981, Derrida and Gardner 1984,
Lambert 1984). As mentioned above, the result that the localization length of a 1D disordered
system diverges at W = 0 as W2 remains true also for the case of a spatially correlated
potential.

Y{(E) = (66)

6.2, Localization and transport

That the DC conductivity vanishes in D disordered systems has been shown analytically by
Kunz and Souiliard (1980} and numerically for the one-dimensional Anderson model with
rectangular distribution of the site energies by MacKinnon (1980), Czycholl er al (1981),
and Thouless and Kirkpatrick (1981) by using the DC Kubo formula (44) at the absolute
zero of temperature in a recursive procedure similar to the one described above for the
localization length. The results are plotted in figure 22.

Within the accuracy of the calculation the conductivity scales as ( imaginary part of
the energy)

oln, Wy=Wlo (W2, 1). (67)

It is only for large disorder (W > 5) that one observes deviations from this behaviour, The
scaling law allows for the necessary extrapolation with n — O for any fixed W. For large
n one has o ~ n~! (classical, Drude-like behaviour) whereas for small » the conductivity
tends to zero linearly with 7.
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Figure 22. The pC conductivity of the one-dimensional Anderson model with rectangular
distribution of site energies as a function of the disorder, W, and the imaginary part of the
frequency, #.

6.3. Theory of the averages of resistance and conductance

Classically, the conductance g(L) of a d-dimensional hypercube of volume L¢ is related to
the conductivity by

g(L) = oL%2, (68)

Since the conductivity vanishes in the localized regime, it is no longer a useful parameter
when considering the transport properties of a macroscopic, but finite, sample. One should
have a theory of the conductance (or, equivalently, of its inverse, the resistance) without
referring to the conductivity.

A very simple equation for the resistance R(L) of a 1D wire of length L has been
given by Landaver {1970). The basic idea is to consider the charge transport through the
disordered wire, which is thought to be connected to ideally conducting wires on the left
and on the right, as a quantum mechanical transmission problem. The voitage is generated
by a difference in the charge densities on the left- and the right-hand sides of the wire. The
current is given by the total number of particles transmitted through the wire at the Fermi
velocity. The result is

B1—t(L)
)

R(L) = 2 1) (69)

where (L) is the transmission coefficient. Generalizations to quasi-1D systems (many
transmission channels) have been discussed by several authors {Anderson er af 1980,
Langreth and Abrahams 1981, Fisher and Lee 1981, Economou and Soukoulis 1981a, b,
Thouless 1981, Anderson 1981, Landauer 1985, Bittiker er ! 1985, Pendry 1982¢, 1984,
19894, b, Pendry and Castafio 1988, Pichard 1984, Pichard and André 1986, Carton et al
1986, Magek and Kramer 1988, 1989),

A dimensionless resistance may be defined by r(L) = R(L)e*/h = (L)1 — 1. As the
logarithm of (L) is statistically a well-behaved quantity (it obeys the central limit theorem)
and its configurational average is asymptotically equal to —v L, one may expect that the
resistance is an exponentially increasing function of L, on the average. In addition, the
probability distribution of r will not fulfil the central limit theorem. The exponential increase

of the resistance has been proven for a variety of models by several authors (Abrahams and
Stephen 1980, Andereck and Abrahams 1980, Stone ez al 1981, Kree and Schmid 1981,
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Sak and Kramer 1981, Kirkman and Pendry 1984a, b, Mei'nikov 1981}. In the following
we reproduce briefly the elementary derivation by Abrahams and Stephen.
In order to calculate the average resistance of a system of length L one has to consider

the configurational average
U, ={@'Q) = (T!...TIT,...T\). 70)
Since the transfer matrices are statistically independent this yields a recursion relation
U1 = (Tfr,.,.]ULTLH)- (7D

If one takes (¢;} = 0 then U, is diagonal, and can be cast into the form U, = Ay, + B,
where 7, is the Pauli matrix. The largest eigenvalue of the recursion relation (71) is

yi = o3+ (1 + joP)'? 72)
with o2 = {¢?). Thus, asymptotically one has
{r(L)) = exp{LIn y1} = exp{o2L/2} = exp{y, L} (73)

where ¥, = lny| &= o3/2 is the inverse of a localization length which is characteristic for
the exponential increase of the average of the resistance.

The dimensionless conductance, g(L}, is defined as the inverse of the dimensionless
resistance, r (L). The calculation of the corresponding configurational average is much more
complicated than in the case of the resistance. It has been performed by Abrikesov and
Ryzhkin (1978) in the limit of weak disorder. Kirkman and Pendry (1984b) have treated
the general case. Elaborate numerical caiculations have been done by Marko$ and Kramer
(1993a). The result for weak disorder, and in the centre of the band (E =0), is

(g(L)) o (Loz) "2 exp(— 02 L) (74)

tn the limit of large L. Thus, ¥, = o2/16 is the inverse of the localization length which is
characteristic for the exponential decrease of the average conductance.

By comparison of (66) and (72}{74) one observes that in the weak disorder limit there
are relationships between the various localization lengths, namely

In{g) = +{lng) (752)
In{ry = 2(Inr} (75b)
{lnr) = —{Ing). (75¢)

That the three lengths do not agree with each other reflects the fact that the resistance and
the conductance are not self-averaging in 10 disordered systems (Sak and Kramer 1981).

In addition to the fundamental statistical effects in the DC transport properties, one can
expect interesting and novel statistical features in time- and frequency-dependent transport.
First studies were done for one dimension (Pendry et gl 1986, MaSek and Kramer 1988)
and in the weakly disordered metallic regime (Falko 1989).
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7. Weak localization and quantum interference

The limit of a weak random potential was considered as rather unimportant for the
localization problem until it was rediscovered (Abrahams et al 1979, Gorkov et al 1979)
that there exists a certain class of diagrams, the maximally crossed diagrams (Langer and
neal 1966), in the perturbation expansion of the conductivity that could be summed exactly
for non-interacting time-reversal invariant systems, and gives logarithmic corrections to the
low-temperature and Jow-frequency conductivity in two dimensions. The conclusion was
that the zero-temperature and zero-frequency conductivity of disordered systems without
interactions and for zero magnetic field always vanishes for 4 < 2, and consequently all
quantum states must be localized. A considerable body of quantitative theoretical and
experimental work followed this discovery. One of the important points was that the
diagrams could be interpreted physically as quantum interference processes that give rise to
an enhanced backscattering. This point of view could be verified directly using a type of
Aharonov-Bohm configuration but with normal metal cylinders instead of superconductors
(Aronov and Sharvin 1987), We will not repeat here extensively the formal theory. It has
already been treated very elaborately in many review papers (Vollthardt and Wolfle 1992,
Lee and Ramakrishnan 1985, Altshuler and Aronov 1985, Fukuyama 1985, Kawabata 1985,
Bergmann 1984). Instead, in the first instance, we will stress the physical point of view of
the quantum interference in deriving the main results.

7.1, Quantum interference

Let us consider the limit of a weak random potential V(r). Then the Born series may be
used to evaluate the Green's functions. One notes that the zero-temperature conductivity
can be written as an infinite sum of terms of the form

: 2
o, r B) = () AT, 7Y ) = Y (AR + ) (AT (ADY (76)
n n ngm
where
AE (7)) =GE rOVr)GE(r, m)V(r) ... V(r)Gy (ra, ) amn

is the probability amplitude for a transition from r to v’ when n scattering events at the
random potential V (r) at the sites r; ... r, are encountered during the process.

That (76) is a valid representation of the average transmission probability may readily be
seen from (47) by considering the resolvent expansion of the one-particle Green’s function
(33)

G=GE)=(E* —H)™' = (EZ -Hy—V)~! (78a)
G*(E) = GF + GFVGE + GTVGIVGE + ... (78b)

where Gg‘ = (E* — Hp)~! is the resolvent of the unperturbed system, and V(r) denotes
the random perturbation. Writing (78) in position representation one obtains

Gy =) > A% ) (792)
=0 1.1
= Z Ax(r, ) (79b)

n=0
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from which (76) follows immediately. The symbolic summations over r; ...7, have to be
evaluated as integrals if working in continuous space. When using the lattice Hamiltonian
(12) the summations are over the sites of the lattice. The total probability amplitude (79)
may be interpreted as a superposition of all of the amplitudes corresponding to the specific
paths denoted by r,...7, in (77). The transmission probability may be considered as a
superposition of all possible paths between r and v (figure 23).

Figure 23. Graphical representation of the transition probability of an ‘electron-hole pair’
between the sites » and r'. The electron {As) and the hole (AZ) are scattered at the sites 1, 2,

3.4,56,and 5, 4,3, 2, 1", respectively.

The first term in (76) represents classical diffusion from = to . Loosely speaking
the electron, represented by the retarded propagator G, and the hole, represented by the
advanced propagator Gy, are scattered at the same intermediate sites (figure 24(a)). The
summations inclade the number of scatterings as well as the specific paths of the electron—
hole pair. The second term in (76) is due to quantum mechanical interference between
different paths.

3
2 3
2
4
4
1
I
5
5
o]
o]

{a} (b}

Figure 24. Diffusons {a) and cooperons (b} are the most important contributions to the total
quantum mechanical return probability in weakly disordered systems, In the example shown in
the figure electron and hole are assumed to be scattered at the same sites (1, 2, 3, 4, 5). However,
in the case of the diffuson electron and hole travel in the same {clockwise) direction, whereas
for the cooperon they travel in opposite directions. Diffusons describe therefore scattering in
the ‘electron-hole channel’, cooperons in the ‘electron—electron chanmel’, Position space {top)
and reciprocal space (bottom) diagrams are related by Fourier transformation.
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Due to the configurational average most of the terms in (76) are vanishingly small except
for those in which the sites vy ... 7, 7} ... ¥, are close to each other. For a white noise
potential (27) they must be at least pairwise equal. If r % r’ the interference terms are
always smaller than the diffusion terms. For closed paths, r = 7', however, there is a class
of interference terms which contribute to the total transmission probability with an amount
equal to that of the corresponding diffusion terms if the system is time-reversal invariant,
i.e. does not contain any magnetic effects. These interference terins are characterized by
the condition that r; = v, 72 = 7,,_;, ..., ¥, = 7] (figure 24(b)). Physically they
describe an electron and a hole which move in opposite directions around the loop whereas
the corresponding diffusion terms represent an electron and a hole moving in the same
direction. As a consequence of the presence of the former, backscattering is strongly
enhanced and forward scattering is reduced. Thus there is a correction to the diffusive
(classical) conductivity {36) which is due to quantum interference and which reduces the
conductivity.

Whereas the diffusion terms (cx |An|%) describe the motion of electron-hole pairs
(diffusons), the interference terms involving the same intermediate sites can be considered to
describe the motion of an electron—electron pair, the second electron being nothing but the
hole moving along the time-reversed path 7, .. .v]. Therefore, these latter terms are often
called cooperons (Vollhardt and Wolfle 1980a, b, 1992). In momentum space the diffusons
correspond to the so-called ladder diagrams, to be discussed in more detail below. The
cooperons are represented by the maximally crossed diagrams already discovered in 1966 by
Langer and Neal (1966) (figure 24(b)). We will consider the momentum space formulation
of weak localization in more detail in the following. The position space formulation was
treated elaborately by Stone (1992).

7.2, Diagrammatic expansions

In this section we sketch the essential steps for the quantitative calcuiation of the weak
localization corrections to the DC conductivity (Edwards 1958, Langer and neal 1966,
Gorkov et al 1979, Abrahams et al 1979, Vollhardt and Wolfle 1980a, b, 1992, Hikami et
al 1980) and provide, using as an example the one-particle Green’s function, the basic tool
for their evaluation: the language of Feynman diagrams.

The starting point is the expression (46) for the DC conductivity at zero temperature,
For convenience it is transformed from position into momentum space by using

GE(r, 1) =) _exp(ik -7 — ik’ - 7)G*(k, k) (80)
kk'
and
fddr expliq - 1)’ = —V25(q). (81)
We obtain
222 A Z g 2 o) ! - ’
Gge = - lim 4y’ lim V7 ;;(G (k' + )G~ (K, k—q)). (82)

The technique used in evaluating the configurationally averaged product of two Green’s
functions is called partial summation. 1t is based on the resolvent expansion of the one-
particle Green’s function (78} as a power series in the random potential (Born series),

(G*) = Gy + GF (VG*) = GF > ((VG})"). (83)

n=0
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Formally one can decompose the configurational average of the right-hand side

(G*} = GF + GES*(G*) (34)
such that

(G*) = (E* —Ho ~§%)7". (85)

$* is the operator of the self-energy which plays the role of a complex-valued, average,
effective potential for the motion of the particle. For completeness we add that via

(G*) = Gy + GE(TH)GZ (86)

the resolvent is related to the scattering matrix T* of the random potential

(T} = (V) + (VGIT) = (VY (GEV)"). (87)

n=0

From the Born series (83) one readily obtains a power series for the configurationaily
averaged product of the two one-particle resolvents. Formally, this leads to a Bethe—-Salpeter
equation

(G*G™) = (G*HG™) + (GT G )VGTG) (88)

with an irreducible vertex operator U which plays the same role with respect to the motion
of the two particles as the self-energy operator does for one particle.

In order to obtain relations which are useful in practice we consider the momentum
representation. The random potential is written as a superposition of impurity potential
v(r) located at random positions B; ... Ry

N
Vir) =Y v(r— R). (89)
=1
In momentum space,
N
Vk. &) = {kVIK} = explitk - k) - B;Ju(k, k). (90)

j=1

For further simplification we shall assume in the following that v(r) is very weak and wel]
localized in position space so that

2 kK <Ko

(91)
0 otherwise

(Ve BO) = % vtk — &) = {
where we have introduced a very large but finite cut-off wavenumber K in order to formally
avoid divergences of integrations. Also, for convenience, the zero of energy is chosen at
v(k = Q) which corresponds to the spatial average of the impurity potential.

In order to avoid clumsy multiple sum notations in the Born series conventionaily the
language of Feynman diagrams is used. As a simple exercise we consider the calculation of
the averaged one-particle Green’s function. The nth-order term in the Born series contains
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multiple sums over the # positions of the impurities. Several of the latter may be identical,
thus describing multiple scattering at a given impurity. In the configurational average these
multiple scattering terms have to be treated separately such that the formally simple stroctare
of the Born series is eventually transformed into a complicated assembly of mathematical
expressions. Figure 25 shows the Feynman diagrams up to the fourth order for {G*). The
rules for the evaluation of the diagrams are

_"";""_ = Gk free-particle Green’s function
: = v(p) potenttal scattering
p=k—k!
»

. A P o = %5(331 +pr 4.+ pn) m-fold scattering. (92)

P2

A k summation is associated with each free-particle line that connects two scattering
lines. The configurationally averaged one-particle propagator is a sum of all possible
diagrams containing n potential scattering lines and (z 4 1) free-particle propagators. Each
nth-order term is decomposed into multiple scattering contributions that are characterized
by the number of connected scatiering lines.

Generally we can distinguish two classes of diagrams. First, there are diagrams
which can be completely disconnected by cutting single free-particle lines. These are
called reducible diagrams. They represent simple algebraic products of more complicated
diagrams. The latter are represented by the second class of diagrams, which cannot be
factorized and are therefore called irreducible. It is easy to see that the irreducible diagrams
are diagonal in & and that the average propagator is

3k — K

+ U —
(GF(k, k) = E* — %2 /2m — 5 (k)

93)

where Z*(k) denotes the sum of all irreducible terms plus all terms of the same topological
structure (skeleton diagrams} but with all of the internal free-particle propagators replaced
by the full averaged one-particle Green’s function. Whereas the real part of T*(k) gives
the shift of the unperturbed energy 2%k*/2m due to the perturbation, its imaginary part can
be interpreted as an inverse mean free time 1

h/27 = £ImEE (k). (94)

Since we have incorporated the mean of the impurity potential in the zero of energy the
lowest non-trivial order of the self-energy is given by

» -
. .
+

TPk = S =up) GEk) (95)
k

-

R e

and its imaginary part is

y = FImE5 (k) = wuin(E) (96)
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Figure 25. (@) The Feymann diagrams for the one-electron Green's function in the presence
of disordet up to fourth order in the random potential. Diagrams that can be factorized into
independent parts by cutting Jines that correspond to the Green’s function of the free electron
are called reducible diagrams (A). If this is not possible, the diagram is called irreducible (B).
Skeleton diagrams do not contain terms appearing in the averaged Green's function between
two scatterings at the same atom. For instance, diagrams (D) can be reduced to the same
skeleton (S) by removing all of the internal scatterings. (b) Geometrical series representing the
configurationally averaged Green's function in lowest non-trivial order of perturbation theory
where the electron is successively scattered only twice at each of the impurity potentials.

with the density of states n(E) = 3, 8(E — #2k? /2m). The mean free time is thus
T =h/Qruin(E)) (97)

and the corresponding mean free path £ is obtained by muttiplication with the Fermi velocity

Up = +/2E/m
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£ = vt (98)

For a metallic system the Fermi energy is situated well inside a region of high density of
states, where y is approximately constant. For the purposes of demonstrating the effect
of weak localization it is therefore sufficient to consider the limit of very weak scattering
where the dominant effect of the disorder on the one-particle propagator is to introduce a
finite mean free path at energies well inside a band. Thus it is justified to assume in the
following that the average one-particle Green’s function has the form (figure 25(b))

1
Ex =12 72m £y
The Bethe—Salpeter equation for the configurationally averaged two-electron Green’s
function (88) can be written as
(GT(k+q,k'+ G (K, k) = (GF(k + NG (k)S(k — k)

+ (G (k + QNG (R Y Uth, K"NGT k" + ¢,k + )G~ (K, k")),
ktl

(G (k) =

(99)

(100)

7.3, The diffuson approximation

7.3.1. Electron—hole diagrams. As for the averaged one-electron Green's function, the
diagrammnatic formulation can also be used for the average of the product of two Green's
functions required for the calculation of the DC conductivity, {G*(k, &' +@)G~(k, k ~q)}.
In order to distinguish between the retarded and advanced Green’s functions, Gg“ and
Gy, respectively, opposite directions are assigned to the corresponding free-particle lines.
Typical examples of the diagrams are shown in figure 26.

We identify several classes. The first contains only terms in which scattering lines are
connected solely within the retarded (electron) or the advanced (hole) channel, respectively,
but not between the channels. These are easily seen to be summable formally, They yield
the product of the averaged one-particle Green’s functions on the right-hand side of equation
(100}. In the second class, scattering lines are connected to both the electron and the hole
channels. Physically, these diagrams describe the coherent scattering of the electron-hole
pair at the potentials of the impurities. Effectively, the coherent pair scattering events
introduce an interaction between the electron and the hole. They represent the physical
origin of the vertex operaior U in (88}, and prevent the decomposition of the averaged
product into a product of the averages of the electron and the hole propagators. It is
precisely this vertex operator which provides the physical scattering mechanism for the weak
localization correction to the classical DC conductivity, Before calculating this correction
we shall discuss the structure of the diagrams in more detail, and derive the classical mean
free path expression for oy,.

Firstly, we note that the diagrams can again be separated into reducible and irreducible
classes. The diagrams belonging to the former can be factorized by cutting single-particle
lines into products of expressions which are given by the irreducible diagrams. The sum of
all irreducible diagrams constitutes the vertex operator in (100) in momentum representation.
Furthermore, there are infinitely many of each vertex diagram of a given topology. They can
be obtained by replacing the free-particle propagators in a given vertex diagram structure
by al} possible diagrams that contribute to the average one-particle Green’s function. Partial
summation then leads eventually to the replacement of all of the free-particle propagators
by the averaged one-particle propagator.
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Figure 26. (o) Feynman diagrams representing the configurationally averaged two-electron
Green’s function. Diagrams of the type (A} lead to the classical result for the bc conductivity
(ladder approximation (b)), while those of the type (B) represent maximally crossed quantum
interference terms that lead to the lowest-order quantum corvection to the classical conductivity
(cooperon approximation (c)).

7.3.2. The ladder approximation. In lowest approximation the irreducible vertex operator
is given by the square of the impurity potential

ks

=2 é f & Rexpliths — ka — ki + k3) - Rlutks — ko (e — k)
"
kLK,
N 2 / o)
= g otk = k)" 8(ky — Ky = Ky + ko)
= ugb(ky — ko — ki + k). (101

By inserting (101) into (100), and replacing the free-particle propagators by the averaged
one-particle Green's function (99), a geometrical series for /G, &'+ Q)G (K, k — q)}
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is obtained, which can be summed (figure 26(b)). The result of this ladder approximation
is

- fl@
Gtk k' Gk k—q) = ———— 102

§< (k, k' + @)G( D=1 (102)
with

Fl@) =Y (GH(k + NG (k) (103)

k
which has to be evaluated for small g (cf (82)). Using
o (GT)=(G¥)

(GG = armr (e (104)

and the lowest-order result (99) for (GE(k)) one obtains
2
Flg) = nn(E) 3 Sah* nn(EYE , (105)

(n+y) 2dm(n+y)>

with §; = 4m, 2, 2 for d = 3,2, 1, respectively. By inserting (105) into (102) and (82)

and then performing the derivatives with respect to ¢ and the limits ¢ — 0 and n — 0 in

the correct order, one eventually obtains the conductivity
e* %Sy En(E)

ob:? dm ¥

which, for d = 3, can be shown to be precisely the result {36) when y is replaced by the
mean free path (98).

(106)

7.4. The cooperon approximation

The classical conductivity obtained in the previous section is the zeroth-order term of an
expansion in powers of (kg£)~!. The first-order correction can be obtained by considering
a summable class of irreducible vertex diagrams, namely the maximally crossed diagrams
of figure 26(c). It is straightforward to see that the summability of the maximally crossed
diagrams is a consequence of time-reversal invariance in the absence of a magnetic field.
Hence, the sum can be obtained from the sum of the ladder diagrams (102} by replacing
k' by —Fk' in the hole channe!; thus replacing a hole with momentum %k’ by an electron
with momentum —#%'. In the following, the essential steps will be performed to obtain the
correction to the classical conductivity (106) due to the weak localization induced by these
diagrams. The effect of this cooperon correction corresponds to the enhanced backscattering
described above.

7.4.1. The Ward identity. Firstly we note that, since we are going to change the
approximation for the vertex operator U, it is not possible to use the same approximate
form for the averaged one—electron Green’s function as before, (99). This is due to an exact
relation between the one—electron self-epergy T*(k), and the irreducible vertex function
Uk, k') defined in (101), namely

AZ(k) = T (k) - B7(k) = y_ Uk, KYUGT(K)) — (G~ (K. (107)
kl

This identity was proven earlier (Vollhardt and W&lfle 1980b) and accounts for the fact
that the irreducible vertex can be generated systematically from the self-energy Z¥(k)
by differentiation with respect to (G*(k)). As a consequence, we have to allow for the

self-energy to be different from y = Jm(E)uﬁ in (99), i.e. (G=(k, E)) to be given by (93).
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7.4.2. The irreducible vertex function. The calculation of the sum of the terms visualized
in figure 26(c) is straightforward, A geometrical series is obtained, which can be summed.
The result is

2
Ho

1 — flk + ku}

where f(k + k') is defined in (103). As Uk, k) = U(k + k') diverges for p — 0 and

|k + k't = 0, &' &~ —Fk yields the dominant contribution to the solution of (100). Thus it

is indeed sufficient to consider the lowest orders of f(k + k'). Inserting (105) into (108),
and assuming in lowest order that T*(k) =~ Tiy, we obtain

Uk, k" = (108)

uly
n+ hDo(k + k')?

where we have used the Einstein relation for the classical conductivity (106), op =
e2n{E) Dy, such that

Utk + k" =

(109)

D= L1224, (110)

7.4.3. The configurationally averaged two-electron Green’s function. From the Bethe-
Salpeter equation (100} one can obtain the averaged two-electron Green's function by
inserting (109) and iterating. The resulting geometrical series may again be summed to
give

) (G* (& + )G~ ()
GHk+q. k' + G (K. k)= '
Gkt @ b+ 0GB = T oG @ - k+ oNG-(@ = B)

(111)
The product of the averaged one-clectron Green's function may be written as

(GTRNGT (k + @)

Gtk G™(k)) = . 112
(GT(k+ )G (R} 2 — ok ) fm — ATR) (112)
Power expansion with respect to g yields in [owest approximation
(G e+ UG~ ~ D, Bz (14 5 LA )
? N AT\ T Zm—anmm Vo
(113)
where
p(k, By = ——— 117 (114)

(E —R2k2/2m)? + y?

is approximately, for sufficiently small y, the spectral function corresponding to (93). It is
strongly peaked at E = h2k2/2m such that we can write

> plk, EYa(kD) = mn(E(VE) (115)
k

where r(E) = ) , p(k, E)/r is the density of states and A{|k|} is a smoothly varying
function of |k|.
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7.4.4. The weak localization correction to the conductivity, In order to evaluate the weak
localization correction to the conductivity we have to insert (113) into (111), perform the
differentiation with respect to g, and take the limit ¢ — 0 retaining only terms o 2. The
result is

. d2 / - !
lim < 5(G Tk + 0. K + G (K, k) = 20(k, E) ZU(Q) (116)

In the derivation we have used the Ward identity (107) and the fact that, in lowest order,
AZ(k) = —2iy as well as that the sum over @ is dominated by the contribution from
2 ~ 0. Finally, the correction to the Drude conductivity is given by

4¢? 1
§0 = —— —_— 117
7 EDOZ n -+ hDyQ? n

Note that the sum on the right-hand side of this equation diverges for n — 0. Therefore, in
order to guarantee that 8o < oy, 11 may not be taken very small. Furthermore, although we
have used the sum of all the diagrams in figure 26(b), including the lowest-order diagram
which on its own yields og, nevertheless our calculation only gives 8o since we have
considered only the ¢} = 0 contribution.

7.4.5, The temperature dependence of the weak localization correction. The quantum me-
chanical correction o of (117) allows us to discuss the low-temperature dependence of the
pC conductivity of weakly disordered metallic systems. We introduce phenomenologically
a phase coherence time 7, induced by inelastic phase-breaking processes, such as electron—
phonon and electron—electron scattering (Thouless 1977, 1979, 1980, Anderson et al 1979,
Altshuler and Aronov 1985) by assuming

n="n/t (118)

where 7, depends on the temperature, for instance, as t; & T~7 (p of order unity). The
corresponding diffusion length is then given by

€5 = Doty (119)

Introducing these definitions into {117) we obtain

4e’ 1 & !
o) =~ [0 — e (120)
Evaluation of the integral gives
, [ (T —¢ d=1
s0(T) = =2 L (/=) Inces(Ty/0) d=2 (121)
(1/m2)e™" = g51(T)) d=3.

It is seen that at low temperatures the quantum interference correction decreases the
conductivity in one and two dimensions, whereas in three dimensions it eventually becomes
unimportant when £5/£ 3> 1. The striking logarithmic correction in two dimensions has
been clearly identified in many experiments, and was the starting point of the scaling theory
of localization at the Anderson transition (cf sections 2, 3 and 8).
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7.5. Negative magnetoresistance

The influence of a magnetic field on the transport can be studied quantitatively by using
the diagrammatic approach. The qualitative features are most easily obtained by employing
the real space picture (cf figure 23). As a starting point consider the transition amplitudes,
which acquire additional phase factors in the presence of a magnetic field:

A(r, ) = A%r, r)exp (; fr A. ds) . (122)

In the case of a closed loop the phase is ¢ = [ A-ds =2r®/Dp. D is the magnetic flux
through the loop and @p the flux quantum k/e. The return probability for a given path #,
tp(7, 7}, is now

ta(T, 7) = £2(r, )[1 + cos(4m &/ Dg)]. (123)

The second term arises from the interference between the two time-reversed paths discussed
above. For small fluxes the cosine may be expanded. The return probability decreases with
increasing magnetic field. Consequently, the transmission probability between two points
must increase, and this induces an increase of the conductivity. This is the mechanism for
the negative magnetoresistance observed for a long time but explained only in the course
of the development of the theory of weak localization by Kawabata (1980) and Altshuler
et al (1980).

The complete quantitative theory of the magnetoresistance of 2D systems, including the
effects of spin—orbit scattering, was formulated by Hikami et a/ (1980), and by Altshuler
et al (1980}, and belongs to the few items in the theory of localization that are repeatedly
verified quantitatively in many experiments (see section 3) (Dumpich and Carl 1991, Carl
et al 19893, b, 1990, 199%),

7.6. Oscillations of magnetoresistance

Equation (123) shows an interesting feature. For a given path the contribution to the
magnetoresistance oscillates as a function of the magnetic flux with a period that is given
by A® = h/2e = ®p/2. I it were possible to select experimentally only those paths
whose areas are the same when projected onto a plane perpendicular to the direction of the
magnetic field these oscillations should be observable. This effect was predicted to occur
in thin metallic cylinders, when placed in a magnetic field parallel to the cylinder axis, by
Altshuler et af (1981). Experimentally, the oscillations were first observed in thin-walled
Mg and Li cylinders by Sharvin and Sharvin (1981) (see section 3). The experiment was
repeated on Mg cylinders and Al cylinders by Gijs et al (1984a, b). A few additional resulis
fitted quantitatively to the theoretically obtained formulae are shown in figures 27 and 28).

Another possibility of selecting paths of a given area is to use small metallic rings
{(Webb er al 1985a, b, Chandrasekar et ol 1985) and networks (Pannetier er al 1983,
1984a, b, Pannetier 1991, Licini er af 1985). Whereas the dominant period in the cylinder
experiments is ®g/2, the ring and network experiments also show periods of ®p. This can
easily be understood by evaluating, according to {122), the phase difference between two
paths entering a ring structure on one side and leaving on the other, but following the left
and the right branch, respectively (figure 29). In the cylinder geometry the oscillations with
period Pp are suppressed by averaging along a cylinder, Each contribution involving two
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Figore 27. The negative magnetoresistance AR (lefi scale) as observed in a thin Mg Alm
at different temperatures (left-hand part of the figure). Different temperatures correspond to
different inelastic scattering times 1;. They can be extracted from the experimental data by
fitting to the theoretical resulbts (right-hand side of the figure) (Bergmann 1984),
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Figure 28. The oscillations of the magnetoresistance AR of an Al cylinder at different
temperatures. Dots denote experimental data, curves are the fits to the theory of Altshuler
et al (1981) (after Gijs er af (1984a)).

different sites (r, 7') sustains an additional phase factor exp{¢y) which, when averaged
over (r, r'} gives zero.

The important point in all of these interference experiments is that the electrons must
be able to behave coherently around the circumference of the cylinder or ring. Therefore,
the mean distance Ly = \/D—,,, between phase-breaking processes must be of the order
of or larger than this circumference. This condition restricts the experiments to low
temperatures and diameters of the order of 1 um. As L, enters the theory as a parameter,
the phase-breaking length and its temperature dependence may be determined by fitting to
the experimental data.

Reviews of the work up to now have been given by Washbura and Webb (1986), Aronov
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Figure 29. Paths thal lead 1o magnetoresistance oscillations with periodicities of %q:l, (lefit) and
[N (nght)

and Sharvin (1987), and van Haesendonck er af {1991).

8. The scaling approach

The basic problem in the evaluation of the critical properties of the conductivity and the
localization [ength at the Anderson transition is that the closer one approaches the critical
point, the larger the system size has to be chosen, in order to obtain meaningful results. More
precisely, the calculation of the critical properties requires us to perform a thermodynamic
lirait in a controlled way. One possibitity to achieve this goal is to apply scaling laws, That
there are scaling laws in the present problem which can be successfully exploited can be
seen by considering the limit of weak localization discussed in the previous section. The
guantum correction to the mean free path result of the conductivity turned out to depend
on the various parameters only via £/€4. By considering the phase coherence length £, as
an effective system size and noting that the mean free path £ is a measure of the disorder,
one observes that changes in the size of the system can be compensated by changes in the
disorder. On the other hand, in the asymptotic limit of strong localization (see section 6)
the conductance turned out to depend only on the ratio L/A, the ratio of the geometrical
system size and the localization length.

It is natural to assume, as a hypothesis, that, as in the asymptotic regions, scaling
behaviour can also be found in the vicinity of the transition, If this were the case, information
about the critical behaviour could readily be obtained by exploiting the corresponding scaling
law, as we shall see below. A much more difficult question to answer is whether or not
scaling is in fact a valid concept. Up to now this latter problem, and the related problem
of universality, has only been attacked, with some success, by using numerical methods.

8.1. Single-parameter scaling

Thouless {1974) introduced an argument which suggests that the conductance Gy of a
block of size (2L)¢ is related solely to the conductance G, of the 2¢ blocks of size L
which are combined to build the larger block. We discuss here the most general form of
such an argument, in order to derive some general conclusions and to arrive at some idea
of the limitations.

We consider a set of properties of a system of size L¢ which we represent by a vector
a;, whose elements are chosen to be dimenstonless. It is often useful to think of L as an
effective system size, such as the inelastic scattering length L; or even the resolution with
which an external observer could measure the system. We assume that the set a is complete
in the sense that we can write

a(bL) = F(a(L), b). (124)
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The set & may well have to be infinitely large. In fact, in order to describe the distribution
of values required for a full description of a disordered system it must be so, except in
special cases.

At this point we make the first approximation, namely that equation (124} can be
rewriiten in differential form

da
T F(a). (125)
This approximation may not always be valid. Indeed, in the closely related problem of
quasi-crystals the fact that the mapping remains discrete is fundamental io the physical
properties (Kohmoto et af 1987). Nevertheless, many of the results are independent of
this approximation and the use of a discrete mapping would only lead to unnecessary
complications.

Eguations such as (125) have been extensively studied in the context of non-linear
dynamics, chaos, etc, from which much of the language is derived, as welil as in more
conventional phase transitions. The most important property of such equations is that for
increasing L the vector a tends towards a simple subspace, often a line or even a point.
Such subspaces or points, a*, are called artractors or fixed points, respectively, They are
defined by the condition f{a*} = 0. Asymptoticatly we can describe the behaviour of the
system completely in terms of the properties of the attractor. It is important to remember,
however, that this is really a description of the behaviour of almost infinite systems. It is
not clear a priori whether any given real or numerical experiment is sufficiently close to
the attractor that the deviations from it may safely be ignored.

Close 1o a fixed point (125} may be linearized to

da y .

where ¥ is the matrix of derivatives of f at a*. The solutions of (126) are of the form

a=a*+ Z(L/é,-)f"af (127)

where f] and a; are the eigenvalues and eigenvectors of f. The constants of integration
have been written in terms of length scales & which contain all the information about
scattering rates, energy, etc, This guarantees that all terms are dimensionless as originally
assumed. Consider now the effect on a of changing some parameter T from its value at the
fixed point 7*. To linear order the second term in (127) must obey da ~ (r — r*), which
implies that £ must obey

oot (128)

where »; = —1/f!. The exponents y; can be divided into two groups, termed relevant and
irrelevant, according to whether f/=0, and the flow in the corresponding direction is away
from the fixed point or towards it, respectively. In fact, for large L the behaviour will be
dominated by the component with the largest f;’ (figure 30).

For the moment we consider only the case where there is a single exponent f| > 0.
This corresponds to the case where (125) has a 1D attractor. A theory based on this property
is often called a cne-parameter scaling theory. We then have a single relevant v which we
can identify as the critical exponent.
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Figure 30, 20 flow diagram of a scaling procedure. The fixed point ¢* is attractive and repulsive
with respect to components o; and a; of the scaling variable, respectively.

The attractive line may be parametrized in several different ways. Conventionally
the original suggestion of Thouless is followed and the single parameter used is the
dimensionless conductance, g = (4/e%)G, or more precisely its arithmetic mean, {g). In
the following paragraphs we will use the abbreviation g instead of {(g}.

The equation describing the flow along the line is (Abrahams et al 1979)

ding
dinL

= p(Ing). (129)

On the other hand, most numerical simulations use the ratio of the localization length on a
ID strip to the width of the strip, A = Ay /M (MacKinnon and Kramer 1981).

This approach will only be valid as long as the effective system size L is larger than
any other length scales associated with the irrelevant contributions in (127), In particular,
the mean free path £ constitutes a lower limit for L.

Once we have identified a single parameter several results follow from quite general
considerations. Firstly, the general solution of the 1D scaling equation (129) has the form

g = g(L/§). (130)

Everything is defined in terms of a single length scale £. Note, however, that the function
g{x) may be multi-valued. There may be several values of g corresponding to the same
value of x. Secondly, for very strong disorder, g <€ 1, we expect exponential localization,
ie.

g ~ exp(—2L/A) Blng) ~Ing. (131)

By comparing {130) with (131) we identify & as the localization length A. Thirdly, for very
weak disorder we expect classical Ohmic conductivity,

g~al?? Bllng) ~d — 2. (132)
Again, by comparing (130) with (132) we find that & is related to the conductivity o by

g~ o =D (133)
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The # function can now be sketched as shown in figure 3. Note in particular that, for
" B > 0, g tends towards case (133}, extended behaviour, whereas for § < 0, g tends
towards the localized state. 8 = O represents a fixed point. In one dimension 8 is almost
certainly always negative. The flow is always towards small g, i.e. localized states. In
three dimensions 8 must cross zero. There is always a fixed point and a metal~insulator
transition. Two dimensions represents the marginal case. It is impossible to tell whether 8
crosses zero without further information.

It follows from (128) that the exponent v is independent of which side of the fixed point
it is derived from. Hence, by using (133) we obtain a relationship between the conductivity
exponent s in

o~ |t -t (134)
and the iocalization length exponent v in

A~ =1 {135)
of the form

5= (d—2)w. (136)

This relation, originally derived by Wegner (1976), was earlier interpreted by many authors
as a prediction of a minimum metallic conductivity, s = 0, for 4 = 2. Note, however, that
this interpretation presupposes the existence of a fixed point on the 1D afiractor.

8.2. Perturbation Theory

As described in the previous section, it is possible to calculate corrections to these results
using diagrammatic perturbation theory. These corrections are equivalent to taking into
account enhanced backscattering. From the quantum cortections to the classical conductivity
one can derive the following form of the § function for the conductance:

Blng) = —-2)—b/sg. : (137}

Abrahams et al (1979) noted that this implies that 8 is always negative in two dimensions
and hence that all states are localized even for infinitesimal disorder.
Using (137) and ignoring higher order terms in 1/g it is found that

s=v=1 (138)

in three dimensions. In fact, in the case of systems containing magnetic impurities or spin—
orbit coupling {Schéfer and Wegner 1980, Hikami 1980, 1981, 1984a, b, 1986, Oppermann
and Jiingling 1980, Jingling and Oppermann 1980) the coefficient & in (I137) may be zero.
This leads to a more general result. When the leading term in an expansion in 1/g is (1/g)"
then, again by ignoring all higher-order terms, we find

1
d—2n’

(139)

=y =

In two dimensions on the other hand the solution of (137) can be written as

g=g—blnkL or — bIn(L/E). (140
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Clearly both forms are equivalent to that given for iwo dimensions in (121). The weak
logarithmic dependence is often termed weak localization. It was discussed in the previous
section.

In one diemnsion it is well known that all states are exponentially localized (see
section 6). By combining this with the formula derived by Landauer (1970) connecting
the conductance with the transmission coefficient (¢f equation (69))

g=T/(1-T) (141)

where T = exp(—y L), it is possible to derive a complete expression for the § function:

ding 1+¢
YA (1+g)ln( P ) (142)

The perturbation theory results are expected to be valid as long as the effective system size
L, usually the inelastic scattering length, is larger than the mean free path £, However,
in one and two dimensions the correction to the classical Ohm’s law behaviour increases
with L so that eventually the theory must break down. We expect the length scales for this
breakdown to be of the order of the localization length, which can be written as 5,},? mré
and 20 ~ fexp(mkre). These are perturbative estimates (Lee and Ramakrishnan 1985).
In three dimensions the correction to o goes as (£~' — L™!) which is small but significant
since statistical finite-size fluctuations go at least ag L=>/2,

8.3. Bound for the critical exponent

There have been various attempts to estimate bounds for the critical exponents at the
Anderson transition, Mott(1976, 1981), arguing from a model exhibiting minimum metallic
conductivity, concluded that v < 2/d. Otherwise, fluctuations of the wavefunctions would
smear out the transition. On the other hand, Harris(1974) used similar arguments and came
to the conclusion that v > 2/d in order for fluctuations to be irrelevant. Recently Chayes
et al (1986}, starting from the assumption of the validity of a one-parameter scaling law for
a somewhat abstractly defined ‘scaling” event, derived rather rigorously for a system with
statistically uncorrelated randomness that v > 2/d. Note the contradictions in the sign of
the inequality,

In the following we shall give an explicit derivation of the lower bound starting again
from the assumption of the existence of a one-parameter scaling law, but for a self-averaging
scaling variable, and presuming randomness which may be statistically correlated (Kramer
1993).

In order to generalize the lower bound it is assumed that a positive scaling variable
AM)Y = A(M, €, ...,ex) exists. It is supposed to depend on a set of N = N{M) random
variables. M denotes the size of the system. Physically, the random variables may represent
the values of a potential energy at certain sites, the positions of impurities, the values of
exchange or bond matrix elements, or, more generally, N of the matrix elements of the
Hamiltonian of the system when taken in a complete orthonormal basis.

{e1,....exy} are the members of a statistical ensemble described by a normalized
distribution function P(W, e, ...,exn) = W ¥f(e;/W,...,en/W). W is the disorder
parameter. P is assumed to be sufficiently rapidly decaying at infinity for each of the
variables to be continuously differentiable, and bounded, such that all of its moments exist.
For simplicity, it is also assumed that the odd moments vanish, and that the second moment
of each of the variables is given by W2,
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The random variables may be statistically correlated. Specifically, the correlation
function

K{, _])-—W-Zf j]’[de,e,e,.P(w €1,...,6n) = W e ) (143)

is supposed to be homogeneous, K (j, /"y = K{j — j), and to decay sufficiently rapidly for
[j—J'|— oo sothat 3, K(j — j) exists. Consequently,

P{WI €f, ---qu) = pj(ej)PNﬂl(Wr €14 . '-!Gj-lvej-i-]a T pEN) (144)

whenever ]e, *E;I —o0 (=1,...,N,i#j.

Consistent with experience from numcrlcal scaling studies (MacKinnon and Kramer
1981, 1983a, Kramer er al 1990) the scaling variable is assumed to be self-averaging, i.e.
its configurational average

AM, W)= (A(M,¢;,...,en) (145)

is identical to its most probable value in the thermodynamic limit. This implies that the
configurational average of a function of A is the same as the function of its configurational
average.

A. further crucial assumptlon is that there is a one-parameter scaling function

A(M, W) = h(E(W)Y/M) (146)

which can be expanded near the critical point, W, A(M, W) = A, — a(W — WM, (A,
and a positive). The scaling parameter must diverge at W, as |W — W;|™" with v = 1/y.

From (145) dA(M, W)/dW may be expressed by the derivative of the distribution
function. Since A is positive, and self-averaging, an upper bound for |[dA (M, W)/dW| at
W, can be derived by using the Cauchy-Schwartz inequality,

A 8% log P 2
C (=3
N — —_—C e ) 147
I~ “, ( { BEJ‘BEJH €€ )) ( )

dA
aw

The first term on the RHS is the result for independent variables. The second is due to
statistical correlations. If the latter does not increase faster than N

'dA

—_— < BALN)? 14
Wy, = (V) (148)

with a constant B < o0. Proportionality with respect t0 N is ensured by homogeneity,
convergence with respect to the summation over j* by the above requirements for the
properties of the distribution fanction.

The statement of (148} is that, independently of the nature of the randomness, and of
whether or not the system is interacting, there is an upper bound for the derivative of the
scaling function at the critical point, if it exists. It is proportional to the square root of the
numbet of random variables, provided the distribution function is bounded, continuously
differentiable, with all of its moments existing, and the correlations are of finite range.

Near the critical point the dependence of the scaling variable on the size of the system
is given by M”. On the other hand, the number of the random variables must increase with



1526 B Kramer and A MacKirnon

M, say as M*. In general, one cannot assume « to be smaller than 4, the dimensionality of
the system, otherwise the ‘concentration” N /M¢ would vanish in the thermodynamic limit.
Because of (148) we have y < %x, or, equivalently, v = vy = 2/«, consistent with the
earlier result for the uncorrelated randomness and « = d.

It should be noted that the above derivation is valid as long as a |[W — W | M7 <€ A..
This will automatically be satisfied for the above bound close to W, with the choice
M < My = |W = W,|7¥%.

All of the presently available numerical data on the critical behaviour at the Anderson
transition are consistent with this lower bound. On the other hand, the perturbative results
obtained by using the non-linear o model in connection with the ¢ expansion seem to suffer
from extremely bad convergence properties of the series in € (= 4 — 2). When only the
corrections to the lowest-order results (¢ €) are taken into account the exponent does not
satisfy the lower bound (Wegner 1989, Hikami 1990, 1991).

8.4. Field theoretical formulation

Shortly after the pioneering works on the scaling hypothesis (Wegner 1976, Abrahams ez al
1979) considerable effort by many researchers was devoted to a formal justification of the
underlying assumptions. Certain analogies between the present problem of the Anderson
transition, an essentially quantum mechanical phenomenon, and classical phase transitions
led to a considerable body of formal field theoretical approaches which culminated in a
non-linear sigma model. Here we attempt only the briefest introduction to these ideas. For
a full discussion we refer the reader to the review by Efetov (1983} and the lecture notes
by Wegner (1979¢).
Consider the integral form

oo . ) im
j DD expli (@' [E + in — €l)) = (149)

o E+ip—¢

Note that this is a 2D integral, because we integrate over ¢ and ¢ separately. Note, also,
that the integral only converges when 1 > 0 because the real part of the exponent is —n¢!e.
{149) can be generalized,

@
T detlE +in— Hyl

+oo N .
[ 1106 Dy exolicoltE + in = HyJo)) (150)
—
The proof of this relation is most easily performed by transforming to the complete system
of eigenstates of the Hamiltonian, H|a) = E.|a),

¢ =01y =2 (jlaXa|d) (151)

and recalling that the N-dimensional volume elements in the integral are invariant
under unitary transformations. Using (149) we see that the integral is proportional to
]'Ii"(E +in — Ex)~!, which is nothing but the result (150) since the determinant is also
invariant under unitary transformations.

Using the same technique it is possible to show that the following relation for the matrix
elements of the Green’s function holds:

—i(im )Y
™ det[E + in — Hy;]1

(152)

o0

+oa N
[ TIvsi vsgndlent. .1 =6
=L
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Note that this is nothing but the statistical average (quqb}:) where the integral in (150)
represents a thermodynamic partition function.

The disorder enters the left-hand side of (152) only via the exponential function.
Performing a configurational average would therefore be relatively straightforward, at least
as long as the distribution of the matrix elements of the Hamiltonian is Gaussian (cf
section 4). Unfortunately, such an average would not give the average of the Green’s
function-since the right-hand side of (152) contains the determinant as well.

There are various tricks for getting rid of this problem (Schifer and Wegner 1980,
Wegner 1979a, Efetov e? al 1980, Efetov 1980, 1983, Houghton er @/ 1980, McKane and
Stone 1981). The replica trick (Schifer and Wegner 1980, Wegner 1979a) consists in
applying the above procedure to m equivalent systems (replicas). The result will include
the unwanted factor raised to the power m. If we then take the limit m — 0 we obtain
(det[...])® = 1 and are left with the desired configurational average of the Green’s function.

In the supersymmetric method (Efetov et al 1980, Efetov 1980, 1983) one introduces
Grassman, anticommuting or fermionic variables. When the integral is evaluated using
Grassman instead of normal bosonic fields, the determinant appears in the numerator and
there are no problems with the convergence of the integrals (see below). By using fields
with both commuting and anticommuting parts, supersymmetric fields, the problem of the
determinant can be completely eliminated (Efetov 1983).

A caleulation of the conductivity requires quantities like G¥ G~ (see section 5), which
cannot be calculated from the same partition function because the G~ part violates the
condition for convergence of the integral. Instead, one calculates (¢é¢f]¢§, 12y using the
exponent

> UGLIE +in— Hyle), — L 1E —in — H;le%)

w=1

=i ([E ~ Hi1) [$latle — dldt] +in Y 8hel, + ol ?al) |
a=1 =]

(153)

which can be written as Hp + H). Hp is invariant under a global transformation which
leaves

1=3"[¢he), — oli0h] (154)

a=1

unchanged. H; is invariant under the unitary group U(2r) but, because of the minus sign,
which comes from the requirement that the integrals converge, the symmetry group of H,
is the non-compact group U(n, n), sometimes termed pseudo-unitary. Note that n plays the
role of a symmetry-breaking field, analogous to a smali magnetic field in a ferromagnet.
The field conjugate to 7 is

(Bladle + Dldl) =1{G(E +in) — G(E — in))
= 2np(E) (155)
where p(E) is the density of states. Note the peculiar aspect of the analogy with the

ferromagnet. In the problem of the mobility edge the order parameter is finite on both sides
of the transition.
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When the Hamiltonian is real the real and imaginary parts of the ¢ are independent
variables. This additional symmetry means that instead of the group U(n, n) we have the
pseudo-orthogonal group O(2n,2r). If spin-flip scattering is introduced in the form of a
constant or a random magnetic field, time-reversal symmetry is broken and the symmetry
group reverts to U(n, n). However, when the spin-flip scattering is due to spin-orbit
coupling time-reversal symmetry is preserved and the group becomes symplectic Sp(n, n).
Thus the Hamiltonians may be classified into four universality classes (see table 1).

Table 1. Universality classes and symmetry groups

Without spin With spin

Time-reversal symmetry Orthogonal Symplectic
O(2n,2n) Sp(n.n)

No time-reversal symmetry Unitary Unitary
Un, n) Uin, n)

8.5, Results of the non-linear ¢ mode!

Afier considerable algebra (153) is transformed into the form
£Q) = f dr{ieTre(VAVQ) + nTrg(QA))} (156)

where the @ are 2n x 2n matrices, which are derived from the combinations of the ¢ fields
of the form qbfuqt:f; , and A is a diagonal matrix with 1s in the positions corresponding to

s = 1 and —1s elsewhere. The function £(Q) is the effective Lagrangian for the so-called
non-linear o model. It has been the subject of a large body of work by field theorists and
its properties are generatly well understood. However, it cannot be solved exactly, so that
the results are effectively expressed in terms of an expansion in the coupling constant g~!
and € = d — 2 {compare (137)).

Until recently the situation was as follows. To leading order the critical exponents
are § = v = 1 for the orthogonal case and 5 = v = % for the unitary and symplectic
cases (Brézin et al 1980, Hikami et al 1980, Wegner 1981, Jungling and Oppermann 1980,
Hikami 1980, 1983) in three dimensions. These exponents show a superficial agreement
with experiment (ses section 3), where exponents 1 or % are found. However, it is difficult
to understand how the degree of compensation of a semiconductor could be related to the
presence of spin—orbit or magnetic effects. There have, however, been attempts (Lee ef al
1987, Milovanovic et al 1989) to explain the effect in terms of the magnetic properties of
a half-filled band.

In two dimensions the result of {(137) survives for the orthogonal case. However, in the
symplectic case (spin—orbit coupling) the coefficient & in (137} is negative (Jingling and
Oppermann 1980, Oppermann and Jiingling 1980) so that (140) now takes the form

g=go+|b/InL. (157)

Thus the conductance {or conductivity) increases logarithmically with increasing L. This
is called weak anti-localization and has been confirmed experimentally by Bergmann (see
section 3).
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Until recently it appeared that these results remain unchanged by higher-order terms
{Hikami 1983, 1985) until fourth-loop order. This includes the strange result that there
15 no fixed point (and hence no transition and no localization) for the 20 symplectic case.
Evangelou and Ziman {1987) investigated this point numerically and found a small fraction
of localized states. Liebert (1989) showed that the mobility edge coincides with a very
rapid, possibly discontinuous, fall in the density of states, which has a tiny tail out to the
Lifshitz limit (Englisch and MacKinnon 1990). Recently there have been some attempts to
calculate the critical exponent for the 2D symplectic case (MacKinnon 1990, Ando 1989,
Fastenrath 19923, b),

However, it has been shown that the field theoretical result is flawed (Bernreuther and
Wegner 1986, Wegner 1989) and that the corrections to fourth-loop order are of the same
order as the previous terms. This was confirmed by Hikami (1990, 1991) in a different
formulation by using superstring theory. Thus it seems that the series has clearly not yet
converged.

Doubts about the validity of the one-parameter non-linear o-model formulation of the
metal-insulator transition problem, which is based on a theory for the average of the
conductance, have alsc been raised by using more general arguments (Kravtsov and Lerner
1984, 1985, Kravisov et al 1988, 1989, Shapiro 1986, 1987, Lerner 1991a, b). Since
the statistical distribution of the conductance does not fulfil the certral limit theorem (see
section 10) the average of the conductance is not representative of the statistical ensemble.
At least all of the higher moments of the distribution must be considered in order to
formulate a scaling theory, which could then be of multi-parameter type. There is also
an explicit calculation for an exactly solvable model (Bethe lattice) which seems to indicate
that the one-parameter non-linear o-model formulation of the problem of the disorder-
induced metal-insulator transition is incorrect (Efetov et a/ 1980, Efetov 1984a, b, 1987a,
b, 1990, Zirnbaver 1986a).

8.6. Results from numerical scaling calculations

Using the Anderson model with diagonal disorder, the present authors formulated a
numerical scaling procedure for the average of the logarithm of the quantum mechanical
transmission probability, logt, through d-dimensional strips and bars of finite cross section
and essentially infinite lengths (MacKinnon 1980, MacKinnon and Kramer 1981, 1983a)}.
The transmission probability corresponds to the conductance through the system. Since the
logt is a statistically well-behaved quantity and its configurational average is representative
of the ensemble (see section 10), the above mentionad problems with the higher moments
are avoided in the thermodynamic limit.

The method of computation is a generalization of equation (64) to matrices.
Equivalently, one can use the transfer matrix formulation (see section 5.7} (Pichard and
Sarma 1981a, b, MacKinnon and Kramer 1983a),

The systems considered are quasi-one-dimensional. For any finite cross section the
localization length, &y = lim; ., —2L/logt, is finite, and its statistical accuracy can be
controlled by increasing the length L of the system. A set of raw data obtained for the
2D and 3D Anderson models with rectanguolar distribution of the site energies is shown in
figure 31.

In order 0 be able to extrapolate to infinite system size (M — 20) it is necessary to
investigate the scaling behaviour of £4r. In the centre of the band, and close enough to the
transition, it turned out to be possible to establish a scaling function within the accuracy of
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Figure 31. Raw data for the renormalized localization length, A = &y /M, of an infinitely fong
bar of cross-sectionat area M~ (cf figure 20) described by the Anderson Hamiltonian with box
distribution of the diagonal elements. (a) Strip-like (2D), (&) bar-shaped (3D} geometry, Values
of the disorder (widths of the distribution function) are as indicated. Energy is in the band
centre,
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m =\

that depends on the dimensionality for a given universality class, and not on the disorder.
The scaling function has the properties that were claimed in section 8.1 to be necessary
for one-parameter scaling. Examples for the numerically determined scaling functions are
shown in figure 32. The scaling parameter £, is a function of the disorder. It corresponds
to the localization length, and to the inverse of the conductivity in the localized and the
metallic regimes, respectively.

log(A}
log(a)

f (b)

-1 7 B
1 | | - | |

-2 0 2 4 & -1 Y 1 2
log{g/iM) ———n log(g/M)

Figure 32. Numerically determined scaling functions for the 2D {a) and the 30 (5) Anderson
models with rectangular distribution of the site energies. £, = £(W) is the scaling parameter
necessary to scale the raw data of figure 31 onto the same curves.

For several orthogonal models, including the 20 and the 3D Anderson models with
rectangular distribution of the site energies, and for the 3D Anderson mode] with Gaussian
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distribution of the site energies, the scaling function, the phase diagram of localization
{figure 33}, and the critical exponents for the localization length and the conductivity were
determined (MacKinnon and Kramer 1981, 1983a, MacKinnon 19852, 1990, 1993, Buika
et al 1985, 1987, Schreiber et al 1989, Kramer et al 1990) (figure 34). Calculations far

away from the band centre were also performed (Schreiber and Kramer 1987, Kramer et al
1990) (figure 35).
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Figure 33. The phase diagram of localization, W{(E(), for the Anderson model with box,
Gaussian and Lomentzian distributions of site energies, Energy E is in units of V, the off-
diagonal element of the Hamiltonian, W(0) = W¢ are the critical disorders for the Anderson

transition.
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Figure 34. The scaling parameters £ of the 30 Anderson model with box (left curve) and
Ganssian distribution (right curve) of the site energies as functions of the disorder W/ V.
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Figure 35. The scaling function of the 3p Anderson model with diagonal disorder and energies
|E] =6V,

The results may be summarized as follows.

1. Within the statistical accuracy of the raw data (19), in almost all of the cases the one-
parameter scaling function can be established when sufficiently close to the transition.
There is a quantitative criterium for the validity of the scaling behaviour,

2. The method yields complete localization in two dimensions with an essential singularity
at zero disorder, and an Anderson transition in three dimensions.

3. Box and Gaussian distributions of the site energies yield the same scaling function. This
is the explicit demonstration of the universality of scaling in the orthogonal class.

4. The localization phase diagrams show re-entrant behaviour near the unperturbed band
edges. There are two transitions. One, at low disorder, corresponds to delocalization
due to a strong increase in the density of states when increasing the disorder for a
given energy. The other, at higher disorder, corresponds to localization due to quantum
interference when increasing the disorder,

5. The critical exponents near the centre of the band are s = v = 1.5£0.1 for the box and
the Gaussian distributionsi. This is consistent with other numerical estimates (Sarker
and Domanyi 1981, Economou ef al 1985, Pichard and André 1986) but disagrees with
the resuits of perturbation theory (Vollhardt and Wolfle 1982, Kroha et af 1990, Kroha
1990} and ¢ expansions (Wegner 1985) discussed above.

These are at present the only available quantitatively controlled results for the critical
behaviour of the orthogonat class. They are consistent with one-parameter scaling for the
average of the logarithm af the conductance instead of the average of the conductance
clase to the transition. At present there exists no direct theoretical possibility of treating
the average of the logarithm of the conductance theoretically with the methods described
above. Thus the pumerical scaling method establishes, at least until now, the only source of
information when the critical behaviour at the Anderson transition is to be investigated, and
when comparisons with experiments have to be done. It seems, at least at this stage, that
none of the experimentally observed metal-insulator transitions, provided that the analyses

+ The disageeement batween the exponents for the box and the Gaussian distributions reported previously (Kramer
et al 1990} has been shown to be caused by the statistical error bars later obtained for the Gaussian model. Recent
calculations in which the statistical error was taken as 0.1% confirmed that the models with diagonal disorder have
the same exponeats within the errors (MacKinnon 1993, Hofstetter and Schreiber 1993, Grulbach and Schreiber
1992).
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of the critical exponents were correctly performed (M&bius 1988, 1989} can be explained
by the orthogonal model without taking into account additional physical effects.

9, Localization in a magnetic field

The motivation to study localization in a magnetic field is two-fold. First of all, the
application of an external magnetic field constitutes the most simple and controllable
method of changing the universality class of a system. As a consequence, experimental
investigations of the metal-insulator transition in the presence of a magnetic field were
performed (Biskupski and Briggs 1988, Chen et af 1989, Katsumoto et a! 1987, Kobayashi
et al 1980, Hopkins et al 1989) (cf figure 10(c}). Secondly, in order to understand the
quantized Hall effect (cf figure 36) (von Klitzing et al 1980, von Klitzing 1986), some
knowledge of the basic localization features of the electronic states in 2D disordered systems
is unavoidable (Acki 1987).
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Figure 36. The quantized Hall effect ag observed in AlGaAs/GaAs heterostructures of lower
(a} and higher () electron mobility. The Hall resistivity o, s a function of the magnetic field
B shows, at low temperature, distinct plateaux that are given by integer (@) and rational (&)
fractions of A1/e?, Simultaneously, the dissipative part of the resistance, p,.. shows pronounced
minima. Changing the magnetic field is equivalent to changing the flling factor v = neB/h.
The Hall plateaux oceur at integer ()} and rational (b) filling factors (after Paalanen et af (1982)
{a) and Chang et al (1984)).

The presence of a magnetic field introduces as an additional complication the non-
trivial nature of the energy spectrum, and the states, in the limit of vanishing disorder.
In the simplest case of an electron described in the effective mass approximation and
moving in a 2D plane we have the degenerate spectrum of the discrete Landav Jevels and
the corresponding Landau states. The discrete model (23) has an even more complicated
spectrum. The magnetic subbands are broadened by the inherent periodic potential (Harper
1955) and show chaotic and self-similar features depending on whether the number of flux
quanta per unit cell is rational or irrational (Hofstadter 1976, Wannier et al 1979). In three
dimensions the bands are additionally broadened due to the kinetic energy in the direction

of the magnetic field.
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9.1. Summary of results for two dimensions

The random potentizl is specified as described in section 4. Especially in connection with
the Landau model it is useful to consider a Gaussian correlated potential energy

(VmV ")) = (VY exp(=ir — 7'[/a?). (159)

The special case of a Gaussian white noise potential (a. = 0) as well as the more general
case of a spatially correlated potential (z ¢ 0) has been used in perturbation theories, and
in the recently developed field theoretical treatments. In the asymptotic limit where a > £,
where ¢, = (i/e|B|)!/* is the cyclotron length, the electronic problem is equivalent to a
classical percolation problem. In this case one can use the results of percolation theory
in order to discuss the localization properties of the states. However, as we shall see
later, it is imperative to study the influence of quantum mechanical effects (tunnelling and
interference). One possibility is to put in these effects by hand, as has been done by Chalker
and Coddington (1988} in a very interesting study. It would certainly be more satisfactory
to have a model which is able to cover both of the limits a/€; — 0 (white noise limit) and
a/é, — o¢ on an equal footing. A first attempt to develop such a model has been made
by Huckestein and Kramer (1989, 1990), Miek (1990), Ono et al (1991) and Huckestein
{(1992).

Besides the size of the system which has to be taken to be infinite anyway, the physical
situation described by the Hamiltonian is characterized by the magnetic length £;, and the
spatial correlation length, a, of the potential, In the lattice model, (23), there is still another
length scale, namely the lattice distance, which s usually taken as unity. A priori, it is
not obvious whether or not these additional length scales are important. The validity of the
one-parameter scaling hypothesis would imply that the spatial correlation of the potential
energy is no longer of importance when the critical regime is approached (Sajeev and
Stephen 1983, Johnston and Kramer 1986). One could then start without loss of generality
from the Gaussian white noise potential. For non-vanishing magnetic field it was not clear
until 1990 whether or not this is allowed, The fact that numerical data available at that
time seemed to indicate a breakdown of the one-parameter scaling theory, according to the
conclusions of the authors (Ando and Aoki 1985a, b, MacKinnon and Kramer 1983b, Ando
1985, MacKinnon 1989a, b, 1992} made it necessary to investigate the influence of a finite
correlation length. In addition to the disorder W it was necessary to take a/¢, as a physical
parameter (Pruisken 1988).

The main results for the problem of localization in a strong magnetic field in two
dimensions are obtained from perturbational, numerical and field theoretical treatments.
The conductivity, the localization length, the Thouless number and the participation number
were considered. In the limit of extremely high magnetic field percolation arguments have
been used (Kramer et al 1989).

9.1.1.  Perturbational approach. Most elaborate studies have been carried out using
perturbation theory {Ono 1982a, b, 1983, 1984, 1985, Hikami 1984a, b, 1986, Hikami
and Brézin 1985, 1986, Singh and Chakravarty 1986). The starting point was the density—
density correlation function

x(r v 0y =18 el 0, p(r, D)) (160)

which can be evaluated systematically as a perturbation series for weak randomness by
using diagrammatic techniques. The localization length is obtained from the static density
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response function x (g, 0) (Fourier transformed density correlation function) according to
PL

x(q, 0 = n(Ep)

The explicit result for the critical behaviour of the localization length for the case of 5-
Junction-like impurity potentials is

A(E) = constant x exp(A/(E — Ex)?). (162}

The constant A is of the order of the square of the disorder-induced bandwidth, and Ey
is the energy of the unperturbed Landau level. There is an essential singularity of A in
the band centre in this approximation. Although there are a number of assumptions in this
approach which are not easy to justify, this was the first hint obtained from theory that
extended states might exist only at a single energy in each of the Landau bands in the
quantuin mechanical high-magnetic-field limit. The limit of high Landau level index was
considered in extensive studies stressing the importance of quantum interference corrections
for the diffusive transport in the quantum Hall effect regime (Benedict and Chalker 1986,
Carra 1987, Chalker et al 1988, Carra et al 1989).

9.1.2. Thouless number study. One of the earliest numerical studies of localization was
performed by Ando (1984, 1985) by applying the Thouless number criterion to the random
Landau model (23). Calculations were done for -function potentials, as well as for impurity
potentials of a finite range and for as many as three Landau bands. An inverse localization
length y{E) was defined via the exponential behaviour of g(L} (see section 5.6},

8(E, L) = goexp(—y(E)/L}). (163)

In order to be consistent with the definition in the previous section we have to identify y with
2/A. The results for the case of short-range scatterers were consistent with a divergence of
the localization length only at the centres of the Landau bands, but (&) o |E — Ey|" with
v < 2 in contrast to the essential singularity obtained from the renormalized perturbation
expansion. In the case of finite-range potentials (@ = O(£;)) no conclusive result about the
critical exponent could be obtained due to the error bars in the numerical data being to
large.

9.1.3. The percolation limit. For |[B| — oo the quantum mechanjca! problem can be
replaced by a classical percolation problem provided that the random potential has a finite
correlation length, The basis of the percolation argument has been formulated by Tsukada
(1976). It can be shown that the Schrodinger equation in the single-band approximation,
which is justified in the high-field limit, can be written as

V(X, Y)C(X) = (E = Ep)C(X) (164)

where X, Y are the centre coordinates of the eyclotron motion defined by X = k£ and
Y = —id/8k, respectively. k is the wavenumber of the Landau state and C{X)} is the
expansion coefficient of the eigenstate with respect to the Landau basis. (164) holds in
the limit of £, <« a. It is seen that all Landau states that correspond to the equipotential
line V(X,Y) = (E — Ep) contribute with an equal amplitude to the eigenstate at energy
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Figure 37. Numerically determined electronic eigenstate near the centre of a Landau band of a
model with a Gaussian correlated random potential with correlation length @ = £.. Equipotential
lines are shown on the left and the probability density of the eigenstate is shown on the right
in a grey scale representation. Dark areas correspond to very small and light areas to high
probability density. It is seen that the regions of high probability density are essentially given
by the equipotential lines (courtesy of T Ohtsuki).

E (figure 37) (Tsukada 1976, lordansky 1982, Kazarinov and Luryi 1982, Ono 1982a,
Trugman 1983, Luryi and Kazarinov 1983, Apenko and Lozovik 1985).

The question whether or not an eigenstate is localized may be decided by investigating
the percolation problem for the equipotential lines (Trugman 1983). An intuitive insight
is obtained by considering the analogy with a hilly landscape (potential energy) that is
gradually filled with water, the water level corresponding to the energy E. For very low
water levels the water runs into the deep valleys. All shore lines (equipotential lines) are
closed paths, i.e. the states are localized. The same is true for very high water levels. Only
a few mountains are high enough to reach above the water level. The shore lines are again
closed paths. It is clear that in between there must be one water level at which it is possible
to travel either by boat or on foot from one side of the system to the other. This corresponds
to an extended state. Percolation theory says that there is exactly one percolating path. The
length ¢ of an equipotential line is given by

t=|E - Eo|™'/" (165)
with o = 36/91. The diameter § of the area covered is
§=|E -~ Eqo|™ (166)

with v = % {Kramer et al 1988).

Equations (165) and (166) may be used to estimate the critical behaviour of the states.
If we identify the localization length with & then the corresponding critical exponent is v.
Identifying the area covered by the cluster with 1£; gives the possibility of deriving the
critical behaviour of the participation number.
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9.1.4. The participation number. The (inverse) participation number (ratio) has been studied
for the random Landau model in different geometries using a variety of methods (Kramer
et af 1988, Hikami 1986, Hikami and Brézin 1986, Aoki 1983b, 19842, 1986, Kunz and
Souillard 1982, Zirnbauer 1986b, Ohtsuki and Ono 1989). The shape of the wavefunctions
were studied numerically (Aoki 1983a, 1984b, 1986, Ohtsuki et al 1992, Ono et al 1989,
1991). The spatial properties of the states turned out to be rather peculiar showing a
remarkable self-similar network structure (figure 37). Fractal behaviour has been inferred
near the critical energy. The fractal dimension d* of the states near the centres of the Landau
bands was estimated from the behaviour of the amplitudes of the wavefunction, d* ~ 1.6
(Aoki 1986), and from the behaviour of the inverse participation number upon changing the
system size (Ono et al 1989). It turned out that it was rather complicated to draw definite
conclusions because of the limitations in the sizes of the systems considered. In any case,
the fractal dimension of the states near the band centre seemed to be much smaller than
d = 2. The extended states, if they existed, had therefore to be of the spaghetti rype, i.e. not
space filling. This conclusion was supported by percolation theoretical arguments (Kramer
et al 1988). In this case one can derive the fractal dimension exactly, d* = 1.75.

In a recent numerical study multi-fractal behaviour of the states near the centres of the
magnetic bands was established for both the disordered Landau model and the Peierls model
(figure 38) (Pook and JanBen 1991, Huckestein and Schweitzer 1991, 1992a, Fastenrath et
al 1992).

Figure 38. 3D plot of an eigenstate of the disordered Peierls model. Again the probability
density is shown. It can be characterized as a multi-fractal (courtesy of B Huckestein and
L Schweitzer).

The critical behaviour of the inverse participation number has been systematically
studied for the lowest Landau level by Hikami using large-order perturbation theory (Hikami
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1986, Hikami and Brézin 1986). Taking
P'=A|E - Eg|" (167)

he obtained 7 = 3.8+ 0.4. Assuming P to be given by the localization length, i.e. P ~ A4,
this can be used to estimate v = 1.9 & 0.2. However, as mentioned above, this relation
between the participation number and the localization length is not necessarily fulfilled.

9.1.5. Non-linear ¢ model, Field theoretical methods were successful in treating the
localization problem B = (. For B £ () these methods have been used for the white noise
limit (Pruisken 1984) and for the correlated potential (Zirnbauer 1986a, Weidenmiiller 1987).
The results are qualitatively consistent with the existence of singularities in the localization
length as a function of the energy near the centres of the Landau bands. The essential point
here is that an gffective Lagrangian is derived by evaluating the configurational average over
the randomness exactly (this is possible due to the assumption of a Gaussian distribution),
and subsequently performing the remaining integration over the fermion fields approximately
by using the saddle-point method after a transformation to boson coordinates. The effective
Lagrangian contains two terms, one being related to the magneto-conductivity, and the the
other to the Hall conductivity. The second of these is due to the topological properties of
the model, and, according to the authors, not accessible to perturbational treatments. The
two-parameter scaling picture (Khmelnitskii 1983, Pruisken 1984, Chalker 1987, Chalker
and Daniell 1988), which can be derived by considering the two conductivity components as
scaling variables, eventually leads to singularities in the centres of the Landau bands which
are identified with a non-vanishing magneto-conductivity and divergences of the localization
length.

9.2, Numerical scaling in the quantum Hall regime

The scaling properties of the asymptotic exponential decay length of the modulus of the
Green’s function, (33), with respect to energy, disorder and the width of the system
have been studied for both the lattice model (Schweitzer et al 1984, MacKinnon et al
1984, MacKinnon and Kramer 1983b, Kramer and MacKinnon 1984) and the random
Landau model. In the latter, §-function potentials as well as Gaussian potentials have
been considered (Ando 1982, 1983, 1985, 1987a, b, 1988, Aoki 1982, 1983c, 1985, 1987,
1988, Ando and Aoki 1985a, b, Aoki and Ando 1987). In a recent study the equivalent
in Landau space of a Gaussian white noise potential was considered in a high-precision
numerical scaling study (Huckestein and Kramer 1989, 1990,Miek 1920, Huckestein 1990,
1992). Numerically, the iatter have been the most elaborate studies of the localization
problem. The main results are described in the following.

9.2.1. Universal one-parameter scaling. The early atternpts to apply this method to the 2D
localization problem in the presence of a magnetic field were based on the lattice model.
Attemnpts were made to find a one-parameter scaling relation of the type (158). This turned
out to be successful to a certain degree. However, due to the small system sizes, localized
states could only be established in the outermost parts of the magnetic subbands. In the
centres of the bands finite energy regions were found where the states are larger than the
diameter of the systems considered. No serious attempt was made at that time to extract the
critical exponent, although the data seerned to be consistent with results obtained from the
Thouless number study. There are theoretical reasons for the belief that the one-parameter
scaling relation, (158), has to be replaced by a two-parameter scaling law in the presence of
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a magnetic field. An attempt has been made to establish such a relation on the basis of more
refined numerical data for the lattice model (MacKinnon 1989a, b). The data seemed to be
consistent with a singularity of the localization length near the band centres, and v = 2.
There are, however, still inconsistencies that have to be removed by future work.

The application of the scaling method to the random Landau mode] yielded the most
precise and reliable information on the nature of the singularity in the centre of the band,
although here the situation is more complicated due to the large number of coupling matrix
elements between the Landau states. For the equivalent in the Landau space of the Gaussian
white notse model, the attempt to establish a one-parameter scaling relation

Sy M
aatd (E(E)) (168)

for the logarithm of the transmission probability through a system of length £ (- 00) and
width M

-1 _ _ o .
o= klﬁok log |G(E; 0, k)| (169)

was successful (Huckestein and Kramer 1990) (figure 39). This was achieved due to the
possibility of treating larger system sizes than before and using a new evaluation procedure
for the data, borrowed from metrology (Huckestein 1990). The critical exponent for the
lowest Landau band was extracted with an accuracy of better than 2%, v = 2.34 & 0.04,
Comparison of the data with those obtained from different models (Huo and Bhatt 1992)
including the quantum mechanically treated quasi-classical percolation limit (Chalker and
Coddington 1988, Milnikov and Sokolov 1989} indicates that this result being independent
of the microscopic details of the potential is truly universal. Thus, these numerical studies
represent the second case in which the universality of the critical properties could be
explicitly demonstrated.
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Figure 39. (a} Scaling in the quantum Hail regime. The renormalized exponential decay length,
Ay /M, is shown for a correlation length of the potential ¢ = £, and various energies £, (b)
Ay/M fora =0, a = & and 2 — 0o (Chalker and Coddington 1988) scaled onto 2 single
function. The inset shows the scaling parameters §(%) for @ = 0 and a = £; necessary to
achieve the fit. The critical exponent is v = 2.35 £ 0.03 (Huckestein er @/ 1991a).
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9.2.2. Comparison with experiment. The results of the scaling approach can be compared
with experimental data when identifying the size of the system with the temperature-
dependent phase coherence length L, (see sections 3 and 7). This idea (Wei er af 1988,
1990}, although not being particularly well supported theoreticatly for systems in the
localized regime, yields a striking agreement with the results of temperature- and frequency-
dependent measurements of the transport properties in the quantized Hall regime (Ebert et
al 1982, Wei er al 1988, Lim et af 1990).

Since the scaling function of (168) depends only on the variable x = EM'/Y near the
centre of the band, the derivatives d” f/dE" o« M™" near E = 0. Near the band centre
E « B — B* for fixed particle density, where B* is the magnetic field at half-integer
filling. Letting M = Ly(T) & T~7/2, it follows that if the nth-order derivative of the
scaling function has extrema at B* they must diverge according to T—™, where ¥ = p/2v.
Assuming further that the magnetoresistance and the Hall resistance depend on the same
variable x, then by comparison with the measured temperature dependences (figure 40)
which can be fitted with ¥ = 0.42, one obtains p = 2.0£0.2.
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Figure 40, The derivative of the Hall resistivity of an InGaAs/InP sample, dp,, /d 8. and inverse
of the widths of the corresponding peaks in oy, A, as a function of the temperature T. The
double logarithmic plot shows linear behaviour of all of the data with the same slope, ¢ =~ 0.4,
Lines b and g are obtained from an AlGaAs/GaAs sample at filling factor % All other lines are
for integer filling factors (after Wei ef af (1988) and Engel er af (1990)).

The result for p is presently theoretically not understood, but experimentally it seems
to be sample dependent. The exponent v of the localization length was recently confirmed
directly experimentally (Koch et al 1991).

Experimentally, the above value of ¥ was obtained for a variety of magnetoresistance
peaks corresponding to integer filling factor as well as a number of fractional fillings (Engel
et al 1990). This strongly suggests that the above scaling picture may also be valid in the
regime of the fractionally quantized Hall effect.

The temperature dependence of the width of the plateaux corresponding to integer
quantization of the Hall resistance has also been determined {(Huckestein et af 1991b).
Noting that the phase coherence length introduces effective (temperature-dependent)
moebility edges into the system (figure 41), the plateau widths as a function of the temperature
can be calculated from the number of states between the two successive mobility edges
belonging to two successive Landau bands (Huckestein and Kramer 1990). The result is
shown in figure 42.
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Figure 41. Mode! for the explanation of the temperature dependence of the Hall plateaux.
The phase coherence length Lo (T, w} introduces effective mability edges £¢ and £[ into the
system. They are defined by the condition §(E} = Lo (T, w). Only electrons with & > Ly
contribute to transport. p(E) is the schematic density of states.
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Figure 42. Width of the { = 4 Hall plateau in AlGaAs/GaAs as 2 function of the temperature
T. Experimental data are represented by dots. The theoretical curve was obtained by taking
x = 0.4 and adjusting Ty (Huckestein ef al 1991b).

It seems that a first step towards a quantitative and predictive understanding of the
quantized Hall effect has been made—vin the, at the first glance, rather abstract realms of
the scaling picture.

9.3. Magnetic-field-driven metal—insulator transition

As mentioned above, quite a variety of experimental efforts have been devoted to the
investigation of the MIT in 3D systems in the presence of a magnetic field. Clear experimental
evidence has been produced for the existence of an MIT driven by the magnetic field
(Biskupski et al 1984, Spriet ¢t al 1986, Biskupski and Briggs 1988). 1t has been
demonstrated that the mobility edge trajectory shows re-entrant behaviour for small B.
There are two transitions, insulating to metallic and metallic to insulating, when B is
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increased. Some of the experiments seemed to indicate a change in the critical exponent
for B % O (Shafarman er ! 1986, Castner et al 1987). Others were consistent with a
critical exponent that remained constant when switching on the magnetic field (Mansfield
et al 1985, Katsumoto ¢t al 1987, 1989, Katsumoto 1991). As mentioned previously (see
section 8) field theory, on the basis of the ¢ expansion, yielded that s should change from
1 (orthogonal class) to % (unitary class) when a magnetic field is applied. To make the
story complete, in the presence of interactions the corresponding scaling theories predicted,
again on the basis of the ¢ expansion, that s(B) = s{0} = 1 (Finkelstein 1984c, Castellani
et al 1984, Raimondi et al 1990). Thus, whether or not the critical exponent changes when
applying a magnetic field could be an indication of whether or not interactions are important
at the MIT.

Using the numerical version of the scaling theory, the scaling properties of the logarithm
of the transmission probability of a model that is a combination of a2 L.andau model (for the
motion of the electron within 2D planes) and a tight-binding model for the electronic motion
perpendicular to the planes, in the direction of the magnetic field, was performed (Ohtsuki et
al 1992, 1993). It turned out that again, when close enough to the critical point, the various
raw data obtained for different combinations of the system size, the energy and the disorder
obey a one-parameter scaling law (figure 43) that is very similar, even in its quantitative
aspects, to the one obtained for B = 0. The phase diagram for localization turned out
to be consistent with re-entrant behaviour for not too large B that can be traced back to
density-of-states-induced delocalization, as obtained previously for the Anderson model (see
section 8). Moreover, the critical exponent obtained, s = v = 1.3 & 0.2, was, within the
errors, the same as obtained for the orthogonal model. This result was corroborated in a
recent study for the 30 Anderson-Peierls model (Henneke et al 1993).

100

2=09,ExlS
AxDHE~12
05 Bx09
U=09E=C &
dmO6E:LS
U6 Eul T
Zim) 6 QS
extended 2 h06Ex0

s NA06.Ew0]

jocalised
o 1.0

% EciT
g '*'3 o5

"e G ool + NA06EQ
Qa 0002 04 06 08 10 =« ZmDIEmlS
LA 2tT 21=0.3,E=12
b 2=0.3,E=0 9

F -+ =03 E«086
r— Ac=0.74:0.08 TR e g s Yy
s

=03 Ex

20,15, En 15
ak o

=D 15,Em12

2mD.15.E=D9
0 scallng function
Em/M = f(E./M)

« B rONe A

Em/M

.

o+

D L1Eu0
UaflI5.Bx03
2a0.15,5x0
DL EntS
0 075.8x12
2=0.075,E=09
) . 2=0.075,Ex0.6
Py s \ o Z0.073,E=0.3
: . 0075, Ex0
E./M

XXM +iMwyroOnon @O

Figure 43. The scaling function of a 3p disordered system in the presence of a strong, quantizing
magnetic field. £w = £0a(£, 1) is the scaling parameter, ¢ denotes the off-diagonal element of
the Hamiltonian paralle] to the magnetic field. The inset shows the phase diagram of localization,

Ec(t), close to the edge of the band. T is the bandwidth induced by the disorder alone (Ohtsuki
et al 1992).

Thus, if scaling exists and is universal for B = Q there is no reason to believe that the non-
interacting orthogonal and unitary classes give different critical exponents on the basis of
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the presently available numerical data, in contrast to the analytical results mentioned above.
However, as the latter suffer from the fact that the approximations invoived (perturbation
expansion, € expansion) are at present not very well controlled (Wegner 1989), and that
the validity of the scaling approach seems questionable for the average of the conductance
{Lerner 1981a, b), there is, in our opinion, presently a small imbalance in favour of the
numerical scaling methed. Although still suffering from relatively large errors (= 20%) in
the determination of the exponent, it has been successful in establishing scaling—but not
for the conductance~-and is in principle, as well as in practice, quantitatively controllable.

If the numerical results are correctly interpreted, namely that they indicate no essential
difference between the critical exponents in the orthogonal and the unitary classes, then
there is a high probability that the experimental data that are consistent with s(B) = s(0)
(Katsumoto ¢t af 1987, 1989, Katsumoto 1991) indicate the presence of a generic disorder-
induced MIT in the Al,Ga;_,As system. It should then be of extraordinary interest to
measure the critical behaviour of doped semiconducting systems like Si:P in the presence
of a magnetic field (Stupp 1992).

10. Fluectuations

We have seen above that the average conductance and the inverse of the average resistance
of 1D disordered systems do not agree with each other (75). They are not self-averaging
in the semse of statistical physics, namely, that their relative flucteations vanish in the
thermodynamic limit as the square root of the number of degrees of freedom. As in one
dimension, the localization length is always finite, irrespective of the energy and disorder,
and it is tempting to conclude that non-self-averaging of transport is an intrinsic property
of the localized regime in two and three dimensions also.

In the metallic limit the conductivity may be calculated from a configurational average
of a quantum mechanical transition probability, as we have seen in section 7. Due to the
configurational average, most of the interference terms do not contribute to the transition
probability (76). If we consider the conductance of a given sample, however, the interference
terms dominate the total transition probability in a random.manner. As a consequence,
microscopic changes of the random potential in an impure metal of finite size should result
in large changes of the (coherent) conductance. Thus, even in metals it is by no means
guaranteed that quantum coherent transport is self-averaging.

It is also not clear what the consequences of non-self-averaging for the nature of the
Anderson transition would be. The study of the distribution functions of the physical
quantities of interest is therefore of crucial importance for a thorough understanding of
Anderson localization.

10.1. The statistics of transport in 1D disordered systems

The central limit theorem for the localization length has been shown to be valid for the
disordered harmonic chain by O’Connor (1975). Approximate treatments for the electronic
problem have been given by Anderson et a/ (1980) using a Landauer-type approach, and by
Mel’nikov (1981) by estimating the distribution function of the resistance, and calculating
from that the distribution function of its logarithm. The case of a Gaussian white noise
potential has been treated by Abrikosov (1981}, and by Kree and Schmid (1981). Numerical
resulis have been obtained by Andereck and Abrahams (1980), Sak and Kramer (1981), and
by Kantor and Kapituinik (1982). Tankei and Takano (1986) present somewhat different
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results in the himit of large disorder. The method of O'Connor can be directly applied to
the Anderson model by identifying

Inal,, +a2) = In(f, ) = xjn (170a)

aj/aj_] = tan BJ = y- (170'3)

xj, y; obey the recursion relations

2
Y 2 '
Xjpr = X; +In (] +y}(1 +}}+])) (171a)
Yirr = (E—¢) =y (171b)

This yields the most important result that the logarithm of the resistance (or of the
conductance, alternatively) is a statistically well-behaved quantity, its limiting distribution
function being approximately a Gaussian with a finite variance. The corresponding relative
average fluctuations can be calculated explicitly by using approximative methods (Kree
and Schmid 1981, Mel'nikov 1981, Abrikosov 1981, Tankei and Takano 1986), and by
numerical procedures (Andereck and Abrahams 1980, Kantor and Kapitulnik 1982), They
decrease with increasing length of the system, i.e.

((Alnr)3!

Ty = (2/yN)'7? yN > 1 (172)

where the notation is as in section 6. This holds for small p (Sak and Kramer 1981,
Abrikosov 1981, Tankei and Takano 1986). In the limit of iarge y, however, there seem to
be deviations from this behaviour (Sak and Kramer 1981, Tankei and Takano 1986, Shapiro
1999, Slevin and Pendry 1990, Slevin 1991). The reasons are not yet fully understood, but
they seem to be associated with the localization length becoming smaller than the lattice
constant (Slevin and Pendry 1990, Slevin 1991).

As the distribution of Inr is asymptotically well behaved, it is intuitively clear that
the resistance as well as the conductance must have statistical distributions which yield
asymptotically divergent fluctuations. This can be verified by considering the average of
the square of the resistance {r(L)?) which is given by

{r(L+ 1) o (Tl ) = (Tr U3 ), (173)

Uf,ﬂ,] is given by the recursion relation

WE ) = (T, @ T DU (TLr @ Ten)) (174)

The asymptotic behaviour of the average square of the resistance is, as in the case of the
average resistance, determined by the largest eigenvalue of this recursion relation, A,, i.e.

{r(L)? ocexp(L In Ap). (175)
For small disorder a straightforward calculation gives

da =14 o3v/3. - (176)
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Thus, the second moment of the resistance grows more rapidly with the length of the system
than the average resistance itself (Abrahams and Stephen 1980, Stone and Joannopulos
1982). Similar conclusions can be drawn for the higher moments of the resistance and
for large disorder. A full account of the asymptotic behaviour of all the moments of the
resistance and the conductance has been given by Kirkman and Pendry (1984a, b), and by
Abrikosov (1981) and Mel’ nikov (1981) by using approximative methods.

The result (175), together with (176}, implies that the root mean square (RMS)
fluctuations of the resistance grow exponentially with the length of the system. The
resistance is not self-averaging. The physical reason for this behaviour is the exponential
increase of the resistance in the localized regime when increasing the size of the system.
Small statistical fluctuations of the localization length in the exponent will thus cause
exponentially {arge changes of the resistance, Similar statements hold also for the
conductance.
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Figure 44. The probability distribution of the inverse Jocalization length, P{x), x = 2y L, of
a one-dimensional disordered system. It behaves approximately as a Gaussian arcund the most
probable value and is linear for x — O (inset) (Marko¥ and Kramer 1993a},

Recently, it has been shown that the fluctuations are governed by the equation (Pendry
et al 1990, 1992)

(et
Jim, Sy = G am
where L is the length of the system and ¢ is the {(current amplitude} transmission coefficient.
This result has been interpreted in terms of maximal fluctuarions. Naively, C, should tend
to zero. However, if 1tf only takes the values 1 or O then C, would be unity, That C,
is finite suggests that this is in fact a very good approximation to the truth, and that the
fluctuations are the maximum compatible with {#:1}. The result (177) may also be obtained
by employing a different point of view, starting from the numerical observation (Marko§
and Kramer 1993a) that the probability distribution of the inverse localization length y (L)
(cf section 6) for large L is given by (figure 44)

R Y
P o (- 0) 78



1546 B Kramer and A MacKinnon

where
¥o = ¥ +00/L)) (179)
and the variance A2

2vpa?
L

where a is a coanstant of order unity. Evaluation of the configurational average of the
moments of the conductance

2e? 14
h cosh®(y L)

A? =

(14+0(1/LY (180}

g= (181)

(Pichard 1984) by the method of steepest descent around the maximum y,, o L™! of the
integrand (a? > %)

P{E (y)cosh™"(y L) (182)
vields
" 1 ()L
(g )=QW3XP(—"E§") (183)
with
Cp xx n™ 2 cosh™(2). (184)

This agrees for # = 1 with the result obtained analytically criginally for weak disorder
{Abrikosov and Ryzhkin 1978) and later more generally (Kirkman and Pendry 1984a, b,
Roberts 1992) and confirms (177) for n > 1. Thus the ‘maximal fluctuations’ are seen
to be related to the linear vanishing of the probability density of the inverse localization
length for ¥ — O since ¥, o L~'. This strikingly demonstrates that the moments of
the conductance are only determined by a vanishingly small fraction of the samples of the
ensemble. These samples are very unrepresentative and have a conductance which is orders
of magnitude larger than the most probable value, gg o« exp(—2(y)L), which represents the
experimentally accessible vaiue.

Although there are important quantitative aspects to be resolved in the future there is
a probability that the reproducible conductance fluctuations observed originally in quasi-1D
confined inversion layers in Si-MOSFETs (see figure 13) (Fowler er al 1982, Kaplan and
Hartstein 1988, Hartstein 1988) can be identified with the fluctuations induced by strong
localization described above.

If the theoretically predicted resistance and conductance fluctuations exist in the regime
of strong localization they should also be observable in hopping transport (see section 3) (Lee
1984, Serota et al 1986, Medina et ol 1989, Medina and Kardar 1992, Nguen et o/ 1985a,
b, 1986, Raikh and Ruzin 1987, 1989, 1991, Shapir and Wang 1987). In recent experiments
done on short but wide inversion layers in GaAs field-effect transistors (Orlov er af 1989a,
b}, and on In;O5_, films (Millikan and Ovadyahu 1990) reproducible fluctuations that are
consistent with the hopping picture have indeed been detected, and an attempt was made to
analyse them quantitatively. They are, however, not yet very well understood, especially in
their quantitative behaviour (figure 45) (Kramer ef al 1992, Marko§ and Kramer 1993a, b).
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Figure 45. The fluctuations of the logarithm of the conductance in the hopping regime of a
Gaas field-effect transistor as a function of the temperature. Data points are taken from figure 6
of Orlov er el (1989a). Triangles denote theoretical results obtained by Orlov et al using a
mode! of inhomogeneous barrier structures (Raikh and Ruzin 198%). Dots are the experimental
data. The straight line is a fit obtained by assuming that the effective system size is given by
the Mott hopping lenpth for d = 2 (see section 3) such that s(log g) o /L o T-U/6,

10.2. Fluctuations in the metallic limit

The experimental and theoretical investigations of recent years have revealed a most
surprising feature of the transport properties of metallic systems which are defined by the
condition that the mean free path £ is much smaller than the system diameter L, with L
much smaller than the localization length (Wheeler ez af 1982, Umbach et al 1984, Skocpol
et al 1984, 1986, Licini et al 1985, Washburn and Webb 1986, Webb et al 1988, Popovic et
al 1991, Gao er af 1989, Mailly et af 1989, Mailly and Sanquer 1991, Caro ez ol 1991). At
very low temperatures, when inelastic scattering processes are frozen out to such a degree
that in a sample of finite size almost no phase randomization takes place, sample specific
statistical fluctuations of the conductance occur as a function of the Fermi ievel, an applied
magnetic field, or the configuration of the impurities. They were larger than expected. They
were well reproducible for a given sample. For a slightly modified sample (for instance
by heating up and cooling down again) their behaviour changed in its details (figure 46).
However, the root mean square deviation turned out to be approximately a constant,

g =f=0() (185)

and universal within certain limits in the sense that it did not depend on the average
conductance of the sample.

There is a simple theoretical argument, borrowed from the theory of random matrices
(Mehta 1967), which not only gives the correct order of magnitude of these ‘universal
conductance fluctuations’ (UCF) but also sheds some light on their physical origin (Imry
1986b).

The basic idea is easily understood. The starting point is the generalization of the
relation between the conductance and the quantum mechanical transmission properties,
equation (181), to the metallic limit (Pichard 1584),

2 N
A (156)
h 4o cosh®yL

exp(y;L) are the eigenvalues of the product of random transmission matrices, QQf (see
sections 5 and 6), of a quasi-iD system of length L and finite cross section o« N. For
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Figure 46. (a) Reproducible fluctuations of the magnetoconductance in units of ¢2/h at
T = 45 mK of a SiGaAs wire after heating and cooling down again (46 cycles). (&) The
mean value of the 46 curves and a 1D weak localization fit (Le = 3 xm), (¢) The variance of
the 46 curves in units of 1073(¢?/h)? (after Mailly and Sanquer (£991)).

very weak disorder, which can safely be assumed in the metallic limit, only a finite,
but nevertheless large, number of the Lyapunov exponents y;, say New, contribute to the
conductance. Terms for which L },j-l are exponentially small. On the other hand, if

L& yj_l cosh® y;L = 1. Therefore in the metallic regime to a good approximation
g = Neir. (187)

If all of the non-vanishing contributions to g were statistically independent one could expect
!

that the relative fluctuations of g behave as N;fz for large Neg. This is apparently not the
case. Therefore the contributions of the y; cannot be statistically independent.

The matrix QQ' as a product of random matrices is again a random matrix, and one
may ask whether or not the theory of random matrices is applicable in this situation where
the matrix elements are not uncorrelated, as required in standard random matrix theory.
However, there are strong analytical arguments (Jmry 1986b, Mello 1987, Pichard 1991a)
and numerical evidence (Marko¥ and Kramer 1993a, b) that this is indeed the case to some
extent, at least in the asymptotic regions of weak and strong localization. In the metatlic limit
¥; are not statistically independent but strongly correlated (figure 47). As a consequence,
the change in the conductance induced by a small microscopic change in the randomness,
e.g. due to the change in position of a single impurity, cannot be arbitrarily small. Either
Negr is unchanged, and the conductance will be the same, or Nz changes by unity such that
sg=1

The exact theory yields that there is only a small dependence of the fluctuations on the
dimensionality and the geometrical shape of the sample. There is also a striking dependence
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of the magnitude of the fluctuations on the universality class of the system. These very
interesting aspects of the UCF are well accessible to experimental investigations. In the
presence of a magnetic field the amplitude is reduced by a factor ; for a system without
spin—orbit scattering (figure 48). All of these findings were well supported by numerical
and analytical calculations (Stone 1985, 1988, Lee and Stone 1983, Stone and Lee 1985,
Altshuler 1985, Altshuler and Khmelnitskii 1986, Imry 1986a, b, Muttalib er al 1987,
Zanon and Pichard 1988, Giordano 1987, 1988, Mello 1987, 1988, Mallo et af 19833, b,
1989, 1991, Kamien et al 1988, Mafek and Kramer 1988, Kramer and Schreiber 1989,
Pichard and Sanquer 1990, Pichard er &l 1990a, Pichard 1991a, lida et af 1990a, b). The
conductivity is related to the conductance by the classical relation g = o L9~2, therefore
the relative fluctuations vanish only according to 8g/g o« L*? in contrast to what one
would expect from classical statistical physics, dg/g o L~%/2. This means that even in 3D
metallic systems the zero-temperature conductance and resistance {and hence conductivity
and resistivity) are not, strictly speaking, self-averaging when the system is coherent.

10.3. Fluctuations and one-parameter scaling

From the results of the studies of both of the asymptotic limits we can conclude that a
complete theory of Anderson localization must necessarily be a theory of the distribution
functions of the relevant guantities, and not only the configurational averages. This
viewpoint has been stressed during the last few years by an increasing number of researchers
(Kravtsov and Lerner 1984, Altshuler ez 2f 1986, 1989, 1990, Kumar and Jayannavar 1986,
Shapiro 1986, 1987, Efetov 19872, b, 1988, Lemer 1988, 1991b, Cohen er al 1988, Kravisov
ef al 1988, 1989, Chase and MacKinnon 1987, Schreiber and Kramer 1987, 1988). The
theory is presently far from being complete.
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Figure 48. The conductance fluctuations &I in a modulation doped AlGaAs/GaAs
heterostructure, {a) 4" as a function of the voltage V; applied to a gate for three different
magnetic field strengths, The change of Vg is equivalent to changing the Fermi energy Ef.
(b} Variance of 8T"(8) as a function of the magnetic field. Inset: ‘magneto-fingerprint’ for
V; = L0 V (after Debray et al {1989)).

Numerically, the results obtained so far indicate that the logarithm of the conductance,
In g, is self-averaging at least in the localized regime (figure 49). It is distributed according
to a Gaussian with a variance A that is a unique function of the average of In g (figure 50),
at least in the limit —{ln g} — 0. The statistical behaviour of the scaling variable introduced
in section 8 is thus determined only by one quantity, namely its average. In this sense one-
parameter scaling theory is valid even in the metallic limit where the distribution of Ing
becomes universal, i.€. independent of the disorder and the system size (figure 51} (Marko#
and Kramer 1993a, b).

Unfortunately, this does not tell us anything about the behaviour of the average of the
conductance except that its distribution function must have extremely long tails. In the
localized regime the distribution of g must be asymptotically of the form

P(g) o g7 exp[—(Ing — Ing)?/2A7]. (188)

From the similarity of the distribution function we expect that the relation between the
averages of Ing and g is similar to the one obtained in one dimension (section 6). g(L) is
exponentially decreasing but with a decay length that is larger than the localization length
(Marko$ and Kramer 1993a, b).

In the metallic regime we observe (figure 51)

P(g) g7 exp(|lng —Ing|) (189)

at least approximately within a certain region. This universality of the distribution of g
bears a close resemblance to the universal conductance fluctuations discussed above and to
the distribution discussed recently by Shapiro (1990).

An alternative view is the gencralization of the concept of maximal fluctuations
introduced in (177) above. In more than one dimension (177} becomes

(Te(tth)"y

Llngom = C,. (190)
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Figure 49. Distribution P of the logarithm of the transmission probability, log g, of bar-shaped
systems {see section 8) described by the Anderson Hamiltonian in the localized regime. The
diagonal elements of the Hamiltonian are distributed according to a box function with width
W =20V. System sizes M x M x L are M = 8 (»), 16 (+), 32 (%), 64 (*), 128 (o). The data
are scaled such that they can be fitted to a Gaussian (full curve}. Since the data scale within the
limit of accuracy log g is self-averaging {Kramer and Schreiber 1989).

a
o
2 + +
£ @ °
-
a By + % *
+
3 +i .,
2
A . B+
o *; box Gauss
o)
w*ﬁ e 20 ¢
! s + 30 x
4}

<yl>

Figure 50. The variance of the logarithm of the transmission probability, A2, as a function of
its average, {y L}, for box and Gaussian distributions of the diagonal elements of the Anderson
Hamiltonian in two and three dimensions with widths W = 2, 3, 10, 20 (zp) and W = 10, 12,
14, 186, 18, 20, 22, 24, 26, 28 (3p). System sizes are M x L with L = 10, M = 6, 10, 20. 40, 60
(2D, for W == 20 only M = 20, 40, 60 are considered), and L x M x M with L = [0, M = §, 10,
13 (3p). Energy and length units are nearest-neighbour hopping matrix elements and the laitice
distance, respectively {Kramer er @f 1992). The universal asymptotic behaviour for smail {y L)
is indicated by the straight line with the slope !, At larger values of (y L} deviations from the
universal behaviour are observed.

Again this may be interpreted in terms of open and closed channels as in one dimension
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Figure 51. The logarithin of the distribution P of the logarithm of the transmission probability
log g for the Anderson model at the band centre, £ = 0, in the metallic regime. Disorder and
systemsizes L x M x M (M =10 W=2,L=10(x;L=20@); W=6L=I10(}
L =20 (o} W =10, L = 10 (*). The fact that the data scale indicates universality (the scatter
of the data in the asymptotic regimes is a purely numerical effect) (Kramer and Schreuber [989).

(Pendry e af 1992). This behaviour can be readily understood by considering the disordered
system repeated many times to form a 1D crystal with a large unit cell. In this case tt! = |
in a band and &' =0 in a gap (Chase and MacKinnon 1987, MacKinnon 1991). Figure 52

shows that this concept continues to be valid even in the case of a single disordered system
with perfect leads.
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Figure 52. {a) {Te(ee Y /{Trizet ) plotted against inverse length for squares of size 4 < L < 256
and £ = 1.0 and W = 3.0 using the Anderson Model {16} averaged over 128 samples. (&) As
before but for cubes of size 4 < L <20 and £ = 1.0 and W = 10.0 {Pendry ef af 1992),
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11. Summary and conclusions

In this review we have tried to summarize the present status of the field of localization of
guantum states in random systems from the experimental as well as the theoretical point of
view. We have attempted not only to review the results of the literature, but also to treat
some of the key concepts like hopping transport, asymptotic behaviour of the density of
states, 1D localization, and the bounds for the critical exponents in a self-contained way.

After a brief review of the history of the field in the second section, which provides
insight into the way the fundamental concepts have developed in the course of time, a
concise description of the main experimental evidence is given in the third section. Here
we have again concentrated on the key experiments, which are characteristic of the different
regimes of interest. In most cases we have reported the first experimental evidence,
such as the logarithmic weak localization correction to the low-temperature behaviour of
the resistance of 2D metallic films, and the Aharonov-Bohm like quantum interference
oscillations of the magnetoresistance of thin metallic ¢cylinders. . We have summarized the
status of the experimental results concerning the critical behaviour at the disorder-induced
metal-insulator transition, while emphasizing the fact that the agreement between theory
and experiment is far from satisfactory. Needless to say, we consider this topic to be one of
the most important problems for future research, especially in the experimental area. The
connection between quanturn localization and other areas of physics such as classical wave
phenomena has been made using the two examples of water waves subject to scattering
from a random assembly of obstacles, and enhanced backscattering of coherent optical
radiation from a random assembly of glass spheres, An important consequence of quantum
coherence and localization is the occurrence of reproducible stochastic fluctuations of the
transport properties upon variation of external parameters of a system, such as an applied
magnetic field, and/or a gate voltage, at very low temperature. We have discussed a few
experimental observations in this rapidly developing field of current research at the end of
the third section.

The basic concepts and models have been introduced in detail in the fourth section. The
quantities of interest, and the concepts of self-averaging and the configurational average,
have also been explained here. The vast number of partially differing definitions of
localization including the asymptotic behaviour of quantum mechanical wavefunctions and
Green’s functions and multifractality of quantum states, and the connection between these
and the transport properties were summarized in the fifth section. As a key example,
localization in 1D disordered systems was covered in the sixth section in a self-contained
way, including the theory of the averages of the resistance, the conductance, and the
localization length. Here, the first explicit indication of the non-self-averaging property
of transport was obtained.

In section seven we have treated the weak localization approach in some detail, again to
some extent self-contained, explaining the essential steps and the approximations involved
in such a way that they can be followed and controlled without resorting too heavily to
the original literature. It is consistent that in the weak localization approach, which is a
perturbative approximation method for the quantum corrections to the conductivity, non-
interacting free electrons are used as a starting point for the mathematical treatment. In
addition we have given a comprehensive picture in position space which serves to illustrate
the basic physical content of the approach, and which can even be traced by experiment,

Section eight contained a concise treatment of the scaling approach for the Anderson
transition. Though definitely not aiming to be self-contained, we have tried to summarize
the recent status of the results of this method which, as it is now becoming more and
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more apparent, cannot yet be considered as the ‘solution of the problem of the disorder-
induced MIT". Besides outlining the concept of scaling from a general point of view at the
beginning of the section, we have provided a short summary and critical discussion of the
field theoretical formulation. We have also placed considerable emphasis on the numerical
results obtained by investigating the scaling properties of the transmission properties of
quasi-1D disordered systems of finite cross section. This includes results for the critical
exponents as well as explicit demonstration of the existence of a universal scaling function
in the critical regime, and a short discussion with respect to experimental data.

As an illustrative example, we have discussed localization in the magnetic field in
the ninth section. The reason for this is threefold. Firstly, 2D disordered systems in the
presence of a magnetic field are of considerable interest in connection with the quantum Hall
effect. Secondly, universality has been explicitly demonstrated for this limit, the critical
exponent has been determined with extraordinary precision, and has been confirmed in a
direct experiment. Thirdly, there are many experiments concerning the MIT in 3D systems
subject to a magnetic field with different and partially contradictory results. Astonishingly
enough, recent numerical work suggests that the critical behaviour is not changed when a
magnetic field is applied. Further experimental and theoretical work is definitely needed in
order to substantiate this first indication that the conventional scheme of universality classes
for the Anderson transition is incomplete,

Section ten has been devoted to a summary of the field of reproducible conductance
fiuctuations. As this is presently an open and still growing area, the discussion is necessarily
incomplete and exemplifies only specific points, such as the universal fluctuations in the
metallic regime, which can be considered to be more or less understood, at least in its
basic aspects, and the fluctuations in the regime of hopping transport, which is the subject
of thorough and extensive current investigations. The validity of the one-parameter scaling
approach, in particular, relies heavily on the choice of quantity to use as the scaling variable,
which should be self-averaging. It is one of the main objectives of the theory of the
fluctuations in the transport properties to contribute to the clarification of this question, i.e,
to clarify which quantity is measured in a transport experiment done on a disordered system
at very low temperature in the regime where quantum effects dominate.

Theory and experiments in the field of localization have matured considerably since the
early days when the problem was formulated by proposing the absence of diffusion in certain
random lattices. However, in contrast to the common foiklore in the past decade most of
the questions are far from being solved. Despite all of the efforts, the nature of most of the
experimentally observed metal—insulator transitions must be considered as not understood.
The determination of the critical behaviour turned out to be a forbiddingly complicated
enterprise. The sitvation in the theoretical section is not much better. It is presently not
clear whether or not the widely celebrated scaling idea can be used for the conductance. It
seems that it is the logarithm of the conductance that must be used as a scaling variable—
numerical works and theoretical considerations have yielded many hints in this direction.
If this is the case, then all of the moments of the conductance must be evaluated in order
to understand the nature of the disorder-induced metal-insulator transition.

It is, however, completely open how this is affected when interactions have to be taken
into account,

Although the problems are not yet solved, the situation is nevertheless encouraging for
the following reasons. Firstly, in the metallic limit a number of quantitative theoretical
results are available that allow for experimental tests of the main ideas, such as quantum
interference. Secondly, powerful methods, analytical as well as numerical, have been
devised that should, at least in principle, be capable of treating some of the open questions,
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such as the critical behaviour. Thirdly, experimental techniques have improved considerably,
especially in connection with low temperatures, sample preparation and characterization,
and measuring methods. Finally, the field of localization, originally restricted to solid state
physics, has widened by adopting new ideas from other fields, such as optics and classical
waves.

Altogether there are good reasons to believe that the field will be alive and extremely
active in the coming years, and that eventually the long-standing problem of the metal-
insulator transition in condensed matter can be solved.
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