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The scaling theory of the transitions between plateaus of the Hall conductivity in the integer
quantum Hall effect is reviewed. In the model of two-dimensional noninteracting electrons in strong
magnetic fields, the transitions are disorder-induced localization-delocalization transitions. While
experimental and analytical approaches are surveyed, the emphasis is on numerical studies, which
successfully describe the experiments. The theoretical models for disordered systems are described
in detail. An overview of the finite-size scaling theory and its relation to Anderson localization is
given. The field-theoretical approach to the localization problem is outlined. Numerical methods
for the calculation of scaling quantities, in particular the localization length, are detailed. The
properties of local observables at the localization-delocalization transition are discussed in terms
of multifractal measures. Finally, the results of extensive numerical investigations are compared
with experimental findings.
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As announced in a paper by von Klitzing, Dorda, and
Pepper (1980), Klaus von Klitzing discovered that, un-
der certain experimental conditions, the Hall conductiv-
ity o-» of a quasi-two-dimensional electron gas is quan-
tized to a high precision in integer multiples of e2/h while
at the same time the longitudinal conductivity o van-
ishes. A remarkable aspect of this integer quantum Hall
effect (@HE) is that the quantization exists over a finite
range of physical parameters, like the magnetic Geld B
or the carrier concentration n. This observation cannot
be explained by the semiclassical Drude theory of con-
ductivity. If the longitudinal conductivity o vanishes,
the Drude result for the Hall conductivity is given by
0 v

—ve2/h, where v = nh/eB = n2vrl2 is the filling
factor. Only if v is an integer, i.e. , if the Fermi level lies
exactly between two Landau levels, is the Hall conductiv-
ity quantized. Laugh1in (1981), Aoki and Ando (1981),
and Halperin (1982) showed that the Hall conductivity
takes on its quantized value ie /2h over a finite range in
filling factor around v = i if in that range the states at
the Fermi energy are localized. By the same argument,
when the Hall conductivity is quantized, there are states
below the Fermi energy that are not localized. The width
of the quantized plateaus then depends on the ratio of lo-
calized vs extended states.

The concept of localized states in disordered systems
was developed hy Anderson (1958). He showed that if
a quantum-mechanical system is sufIiciently disordered,
states have a finite probability of returning to a given site
in the long-time limit. This absence of diffusion implies
that these states are localized in a finite region of space.
The transmission probability decays exponentially on a
length scale, which is called the localization length. For
localized states the static conductivity vanishes at zero
temperature. On the other hand, if the disorder is weak
enough, extended states might exist that do not decay ex-
ponentially and Gll the whole system. Their contribution
to the conductivity is finite even at zero temperature.
The energy that separates extended from localized states
is called the mobility edge. At the mobility edge the
character of eigenstates is different from both extended
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and localized states, and we shall call these states critical
states.

The observation that an explanation of the QHE in-
volves both extended and localized states was the more
unanticipated, as the scaling theory of localization (Weg-
ner, 1976, 1979; Abrahams et a/. , 1979) predicted the ab-
sence of extended. states in two-dimensional systems. It
is the presence of a strong magnetic field that lead. s to the
emergence of noiilocalized states in two dimensions (Aoki
and Ando, 1981; Ono, 1982b). Chalker (1987) showed
that these states exist only at a single energy in the limit
that scattering between Landau levels can be neglected.
At zero temperature the Hall conductivity is thus ex-
pected to exhibit sharp steps whenever the Fermi energy
passes the critical energy. The longitudinal conductivity
vanishes for all energies except at the critical energy. The
quantum Hall plateau transition is thus a special case of
a metal-insulator transition. The insulating phases cor-
respond. to the plateau regions, in which 0 vanishes and.
0. „ is quantized. These insulating phases are separated
by mobility edges with a finite o. . Truly metallic phases
are absent in the quantum Hall system. The states at the
mobility edge show critical fluctuations (Wegner, 1980;
Aoki, 1983, 1986).

The description of this localization-delocalization tran-
sition in terms of a zero-temperature phase transition is
the topic of this review. We shall focus on the theory
of noninteracting electrons. Thus we do not consider the
fractional QHE (Tsui et al. , 1982), where the quantiza-
tion of the Hall conductivity in rational fractions of e /h
is due to electron-electron interactions. One notes, how-

ever, that experimentally the fractional quantum Hall
transitions show a remarkable similarity to the integer
transitions (see Sec. II). In the absence of an analytical
theory that is capable of providing quantitative results,
we shall mostly rely on numerical simulations.

The review is organized as follows. In Sec. II we shortly
survey the experimental investigations of the quantum
Hall transitions. Section III discusses the different mod-
els of disorder used in theoretical calculations. Section
IV provides an overview of the finite-size scaling theory.
Section V outlines the description of the Anderson tran-
sition in terms of a field theory and its extension to the
quantum Hall system. Sections VI and VII explain which
physical quantities are used in numerical finite-size scal-
ing studies and how they are computed. In Sec. VIII
the results of numerical calculations are presented and
analyzed in terms of the finite-size scaling theory. In
Sec. IX we characterize the critical states using a multi-
fractal analysis. In Sec. X we compare the experimental
and theoretical results presented in the previous sections
and discuss their implications for an understanding of the
quantum Hall transition. Except where noted, we other-
wise try to provide enough detail to allow readers to use
this review as a starting point for their own investigations
of the subject.

A comprehensive introduction to the QHE is provided
in the book edited by Prange and Girvin (1987). For re-

views about disordered electronic systems and localiza-
tion, see Thouless (1974), Lee and Ramakrishnan (1985),
and Kramer and MacKinnon (1993).

II. EXPERIIVIENTAL RESULTS

In this section we want to review experimental inves-
tigations of the transition between plateaus in the Hall
conductivity. We shall focus on those results that are
uniquely related to these phase transitions. In later sec-
tions we shall show how a simple scaling theory for the
integer quantum Hall transitions accounts for most of the
observed features. We shall therefore postpone the dis-
cussion of the experimental results until we are familiar
with the necessary theoretical framework (Sec. X).

Sections II.A to II.C are ordered roughly chronologi-
cally. We shall start with experiments on the temper-
ature dependence of the transition. Although these ex-
periments give the most indirect information about the
scaling behavior, they were the first to be performed and
were instrumental in developing the idea that the plateau
transitions are continuous phase transitions. Much more
direct contact with the concept of finite-size scaling is
made in experiments with varying sample sizes. Finally,
the dynamic aspects of the transition are elucidated in
high- frequency experiments.

A. Temperature-dependent scaling

Soon after the discovery of the QHE (von Klitzing
et al. , 1980), it became apparent that the quantized
plateaus can become extremely broad and the transition
between them extremely sharp as the temperature is low-
ered (Kawaji and Wakabayashi, 1981; Paalanen et al. ,
1982). At the same time, the longitudinal conductiv-
ity exhibits a series of sharp spikes at the position of
the plateau transitions. Since the Fermi energy is in a
region of localized states when the Hall conductivity is
quantized and the longitudinal conductivity vanishes, it
can be concluded from the wide plateaus that most of
the electronic states are localized at low temperatures.
Paalanen, Tsui, and Gossard (1982) estimated that, in
an AlGaAs/GaAs heterostructure at 50 mK, 95% of the
states in each Landau level are localized.

The temperature dependences of the longitudinal con-
ductivity o.~~ and the Hall conductivity o» of a Si-
MOSFET (metal-oxide-semiconductor field-efFect tran-
sistor) are shown in Fig. l. Even in the absence of local-
ization the temperature dependence of the Fermi-Dirac
distribution leads to a temperature dependence of the
conductivity,

(2.1)

If cr (T = 0) is finite only in an interval of width 4
near the center of each Landau band, Eq. (2.1) predicts
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FIG. 4. Hall resistivity p „, longitudinal resistivity p, and
the derivative dp „/dB of an InGaAs-InP heterostructure
(from Wei et al. , 1988).

2

a„„(B)= S„„L,g —(B —B*) (2 2)

where B* is the critical magnetic field of the plateau tran-
sition, L ~ is the effective system size, and v is the critical
exponent of the localization length [cf. Eq. (4.3)]. The
strongest support for this assertion comes from the pecu-
liar temperature dependence of the magnetic-field deriva-
tives of the conductivity tensor. At T = 0, L g is equal
to the system size. At finite temperatures the effective
system size is given by the phase coherence length L@
(Thouless, 1977). If L@ diverges as T "/ as the temper-
ature approaches zero, then L,& oc T " with r = p/2v
(Aoki and Ando, 1985). With Eq. (2.2) the nth deriva-
tive of the conductivity tensor at the critical point is

d"o„„(B')
(2.3)

dau levels where the spin splitting was not resolved,
(dp „/dB) "and (AB) diverge like T "/ (Wei et aL,
1990; Hwang et al. , 1993). The same exponent r. was
measured in the fractional @HE regime of high-mobility
A1GaAs/GaAs heterostructures for the scaling between
filling factors 2/5 and 1/3 (Engel et a/. , 1990).

The universality of the exponent K was questioned by
Wakabayashi et al. (1989, 1990, 1992), by D'Iorio et al.
(1992), by Koch et aL (199la), and by Dolgopolov et al.
(1991).Wakabayashi et al. studied two of the valley- and
spin-split subbands of Landau levels n = 0 and n = 1 in
a Si-MOSFET. For the rather limited temperature range
between 0.35 K and 1 K, they observed K = 0.29 + 0.10
and r = 0.16+0.02 for subbands (0 $ —) and (1 t —), re-
spectively. Between the two lowest subbands, the value of
r di/fered by a factor of 4 (Wakabayashi et a/. , 1992). Be-
low about 0.2 K, the temperature dependence saturates
(Wakabayashi et aL, 1990, 1992; Dolgopolov et aL, 1991).
D'Iorio et al. (1992) obtained values of r. between 0.2 and
0.65 for six subbands of Si-MOSFETs. Koch et al,. found
a dependence of r on the mobility of A1GaAs/GaAs het-
erostructures deliberately doped to decrease the mobility.
They observed power-law scaling with temperatures over
the range 40 mK to 1.1 K. For spin-split Landau levels
the measured values for K increased from 0.28 to 0.81
with decreasing mobility. If the spin splitting is not re-
solved, v is considerably smaller, but not by a universal
factor of 2 as found by Wei et al. (Koch et al. , 199la).

In the context of the finite-size scaling theory (see
Sec. IV), the power-law behavior of the transport co-
efBcients reBects the single-parameter scaling of the con-
ductivity tensor (Pruisken, 1988)

unless it vanishes due to symmetry.

I I l t I I

O. l 0.2 0.4 0.6 0.8 l.O 2 3 4
T(K}

FIG. 5. Temperature dependence of the maxima of dp „/dB
and the width 4B of the p peaks from Fig. 4. The slope of
the straight lines gives (dp „/dB) " oc T " and AB oc T"
with r = 0.42+ 0.04 (from Wei et al. , 1988).

B. Size-dependent scaling

Koch et aL (199lb) measured the exponent v directly
by studying samples of the same shape but different sizes.
For su/Iiciently small samples, (dp „/dB) " and b,B
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10

saturate at low temperatures (see Fig. 6). The satura-
tion temperature decreases with increasing system size.
This is interpreted as the temperature where the phase
coherence length I@, becomes comparable to the system
size, and the temperature-dependent scaling at higher
temperature crosses over to size-dependent scaling. The
saturation value of LB at low temperatures is then given
by the condition L/((AB) —1, i.e. , EB oc L r~". By
fitting their data to this relation, Koch et al. obtain
v = 2.3 + 0.1 for the three lowest Landau levels. Prom
the measured values of e they deduce that p is not uni-
versal and varies between 2.7 and 3.4. For a Landau level
in which the spin splitting was not resolved, v = 6.5+0.6
was measured while the value of p was comparable to its
value in other Landau levels.

C. Frequency-dependent scaling

AB oc f~, (2.4)

with p = 0.41 + 0.04 for spin-split Landau levels and

p = 0.21 for nonsplit Landau levels. The saturation tem-
perature corresponds to hf = k~T, in agreement with
the results of Huckestein et al. (1991).

The dynamical conductivity cr (f) of a low-mobility
AlGaAs/GaAs heterostructure was investigated by Engel
et al. (1993) by measuring the attenuation of a coplanar
transmission line on the sample surface. The losses in
the transmission line are due to the finite conductivity of
the two-dimensional electron gas below the surface. In
contrast to previous measurements using crossed rectan-
gular waveguides (Kuchar et al. , 1986; Huckestein et al. ,

1991)that were limited to a single frequency f = 35 GHz,
Engel et al. were able to sweep the frequency from 0.2
to 14 0Hz. As can be seen &om Fig. 7, the effects of
raising the temperature and increasing the frequency are
quite similar. With decreasing frequency the width AB
of the peaks in Re(o ) decreases 'and saturates below a
temperature-dependent frequency. Above this frequency
LB scales like

l

0 I I I I l I I I I i li I i

0 2 4 6 8 10
B (Testa)

Ili ilail s ~ I

l2 14 0 2 4 6 8 10 12 14
B (Tesla)

FIG. 7. Real part of the dynamical conductivity Re(o )
at different frequencies and temperatures (from Engel et al. ,

1993).

Similar to Eq. (2.2), a dynamical scaling ansatz for
o(I, f) is.

a (L, f) = S[L/((—B),fro (B)], (2.5)

III. MODELS OF OISOROER

Before we can attempt to understand the experiments,
we have to de6ne our system in theoretical terms. We
shall make several simplifying assumptions: (1) The elec-
tron system is strictly two dimensional. (2) The interac-
tions between the electrons can be neglected. (3) The
spin degrees of freedom can be neglected. (4) Boundary
effects, like edge states, are not essential for understand-
ing the critical behavior of the system. The electron gas
in real devices is only quasi-two-dimensional, in the sense
that the motion perpendicular to the plane of the elec-
tron gas is quantized into electrical subbands. If only
the lowest electrical subband is occupied, the electrons
have only two spatial degrees of freedom left and we may
treat them as two dimensional, justifying assumption (1).
Assumption (2) lacks an a priori justification. The treat-
ment of noninteracting electrons will turn out to be quite
successful in explaining the experimental static scaling
results. While this might serve as an a posteriori justi-

where ro(B) oc ((B)' oc ~B —B*~ ' is the relaxation
time of the system that diverges as the critical point
is approached. For: sufficiently high frequencies, 1'ro(B)
dominates the scaling behavior of S and AB scales like

f ~"'. Equation (2.4) thus implies p = 1/vz, and, using
the result v = 2.3 from the size-dependent scaling exper-
iments, z = 1 is obtained (Engel et aL, 1993).
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fication of our approach, a theoretical assessment of the
relevance of electron-electron interactions is still missing.
For an understanding of the observed dynamical scaling,
it seems to be essential to go beyond the noninteracting
electron approximation. Assumption (3) seems justified,
since most experiments deal with completely spin-split
Landau levels and we neglect interactions between the
electrons. For non-spin-split levels, spin-orbit scattering
might be important, and one would have to go beyond the
spinless-electron approximation. Assumption (4) treats
the phase transition, in the spirit of standard scaling the-
ory, as a bulk critical phenomenon. In the edge-state
approach (I andauer, 1957; Biittiker, 1986, 1988), the
conductances are given by transmission probabilities for
states at the Fermi energy. For quantum Hall systems
with edges, only edge states exist at the Fermi level if
the Fermi energy is situated between two bulk Landau
bands, and the quantized Hall conductance is given by
the number of edge states. In this picture the transi-
tion between consecutive plateaus is due to the mixing of
states at opposite edges by the bulk extended states. We
shall make use of assumption (4) by choosing boundary
conditions most suitable to the calculation at hand.

We shall &hus describe our system by a single-particle
Hamiltonian,

(3.5)

where A' normalizes the distribution. With this distri-
bution, the potential at di8'erent coordinates is uncorre-
lated,

V(r)V(r') = Vp d(r —r'), (3.6)

exp(v ) (3.7a)

where

~2ml. ( 1

)Vp i 2
(3.7b)

and has a Gaussian distribution at each point in space.
The overbar denotes the average with respect to the dis-
tribution P[V] of the disorder potential. This potential
distribution is well suited for analytic calculations, since
it allows one to perform the average over disorder, due
to the Gaussian dependence on the potential. For the
white-noise distribution, Wegner (1983) showed that the
density of states in the lowest Landau level is given by

where

Hp —— (p —eA)
2m

(3.2)

is the kinetic energy of the electron, and V(r) is the dis-
order potential. In the absence of disorder, V(r) = 0, the
spectrum of H for an infinite system is a set of equidis-
tant levels,

E„=(n+ 1/2)Ru„ (3.3)

separated by the cyclotron energy Ru, = heB/m. Each
Landau level n is infinitely degenerate with a degeneracy
of

n~ = 1/2vrl,' (3.4)

states per unit area. The length /, = (5/eB) ~ is called
the magnetic length and is the classical cyclotron radius
in the lowest Landau level n = 0.

In order to fully de6ne the model system, we shall now
describe di8'erent models of the disorder potential typi-
cally used in calculations.

V(r) = ) V,S(r —r, ), (3.8)

where the sites r; of the scatterers are randomly chosen
and there is an equal number of attractive V; = —V
and repulsive scatterers V; = +V. This potential has
the correlation function (3.6) and approaches the white-
noise potential (3.5) with Vp

——n;V2 in the limit that
the density of scattering sites n; becomes infinite. Due
to the symmetry of the potential, the density of states is
symmetric with respect to the center of the Landau level.
The self-consistent Born approximation (SCBA) for the
density of states of this potential is a semicircle,

If the integrand in the exponent of Eq. (3.5) contains a
more complicated function of V(r), but still depends only
on the potential at one point in space, the potential will
still be b correlated, but higher-order cumulants of the
potential at the same site will have nonzero coeKcients.
Brezin, Gross, and Itzykson (1984) generalized Wegner's
result (3.7) to this more general class of potentials.

For numerical calculations, it is not practical to specify
a random value for the potential at every point in space.
Instead, one uses an approximation'to the white-noise
distribution (3.5), the h-scatterers potential,

A. Real-space models 1 2 (E —E„']
2~l2 7rI' ], I' (3.9)

The statistical properties of a disorder potential are
completely determined by the joint probability distribu-
tion P[V] of the disorder potential V(r) for all coordi-
nates r. The starting point for most analytical calcula-
tions is the white-noise potential distribution

with the bandwidth I = (4n;V /2ml2)i~2 = 2Vp/+2vrl
(Ando and Uemura, 1974). Since this is also the energy
scale in Eq. (3.7), we shall frequently use I' as a measure
of the width of the Landau level.

Rev. Mod. Phys. , Vol. 67, No. 2, April 1995
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&s

V(r) = ) v(r —r, ),
i=1

v(r) oc e i&l /2~
271 0

(3.10)

(3.11)

the correlation function becomes Gaussian,

In numerical calculations, care must be taken that the
concentration ci = 2+i, n; of scatterers be large enough
to avoid a singularity in the density of states due to wave
functions avoiding the scatterers (Ando and Aoki, 1985).
To see the origin of this effect, we consider a square
of side I containing an integral number of flux quanta
Ng = L /2vr/, . From Eq. (3.4) we see that Ks is also
the number of degenerate eigenstates of the system in
the absence of disorder. We can form a superposition
of these Ng states that satisfies Ng constraints. Thus
if the number N, = n;l, of b scatterers is less than Ng,
the wave function can be made to vanish at the site of
each scatterer, and hence the energy of this state will not
be influenced by the disorder potential. This leads to a
divergence of the density of states at E = ~,/2 even
in the presence of disorder. In terms of the concentra-
tion ci, this divergence will occur for ci & l. Ando and
Aoki state that for ci = 40, a good approximation to the
white-noise limit is achieved (Ando and Aoki, 1985).

Disorder potentials with a finite correlation length can
be generated by replacing the h functions in Eq. (3.8) by
functions with a finite range. For Gaussian scatterers,

A = Bxe„, (3.13)

and for a strip geometry of width L„with periodic bound-

ary conditions in the y direction, these states are the
Landau states

@-~(r) = (rink) = """~-l, '
l

(314)l,„„(x—k/2 &

I„/, ( 4 )

where

~.(~) = (2"n!~~) "H„(~)e-*'/2 (3.15)

are the harmonic-oscillator eigenfunctions, and H„(z) are
Hermite polynomials. In terms of these states, the Hamil-

tonian including the disorder potential V(r) can be writ-

ten as

H = ) ) ink)(nk]Hln'k')(n'k'l,
nk n'k'

(3.16)

choose a set of basis states in which the kinetic-energy
part of the Hamiltonian Ho (3.2) is diagonal. In the
Landau gauge

V(r)V(r') oc e i' '
i /

271 0
(3.12)

(nklHln'k') =
l
n+ —1~.4,- ~~,A: + (nklVln'k')

The concentration necessary to reach the high-
concentration limit is much lower for Gaussian scatterers
than for b scatterers. The number of impurities an elec-
tron can feel increases with the range of the scatterers, so
that, for Gaussian scatterers, the effective impurity con-
centration is enhanced by a factor 1+0 //, relative to 8

scatterers (Ando and Aoki, 1985). For scatterers of the
same strength V, the bandwidth is reduced by a factor of
P = (1+cr2//, )~/ relative to the b scatterers, I' = I /P
(Ando and Uemura, 1974).

Choosing different numbers of attractive and repulsive
scatterers allows for the study of potentials that are not
particle-hole symmetric on average. A potential with
only repulsive scatterers was used by Huo et a/. (1993)
to show that in this case the critical energy is not simply
related to features in the density of states.

(3.17)

f(r, r') = V(r)V(r'). (3.18)

For a particular realization of the real-space potential,
the matrix elements (nklVln'k') can now be calculated.
Instead, one could try to calculate the distribution func-

tion of the matrix elements given a particular distribu-
tion of the real-space potential. However, to study the
universal critical behavior of the Hamiltonian, it is not
necessary to know the whole distribution. The universal

properties presumably only depend on a few statistical
properties of the Hamiltonian, like the correlation func-

tion

B. Landau-space models

This section gives an overview of models that spec-
ify the disorder distribution in the space of the Landau
states. While it provides the reader with the basic ideas
and results, a more detailed description is given in the
Appendix.

For the case of a strong magnetic 6eld, it is helpful to

Under this assumption it is not necessary to construct
the entire distribution function of the matrix elements.

By the same argument, only the second moment of the
matrix elements is important for the critical behavior.
Thus it suffices to construct a random matrix (nklVln'k')
twhich we shall call a random Landau matrix (RLM)]
with a second moment corresponding to (3.18). The cor-
relation function for the matrix elements can be calcu-
lated from the real-space correlation function f(r, r')
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(~F41&1 "~4)(~341&1~44) = f &'"~'~'("i4I')(~1~~4)(~s41~')(''I"44)&(')~(")

d"d'r'0.*.k. (r)4-,k, (r)4.'.k. (r') &-.k. (r') f (r r') (3.19)

If the real-space correlation function is translationally invariant,

f(r r') =g(lr-r'I)

Eq. (3.19) simplifies to

(3.20)

1
(~i41&1~24)(~341&I~44) =, ,4, -r.. a.-a. &P.g(P-, 4 —4) f ~»

L2g2 1 2 4 3

(X + p /2 —kil2 ) (X + p /2 —k2l2 )xx, I

l
x, I--

xx. I *l Ix. I

(X —p /2 —ksl2) (X —p /2 —k4l21

C C
(3.21)

where g(z, k) is the Fourier transform of g(z, y) with respect to y,

g(z, k) = dy g(z, y) e*"". (3.22)

The h function in Eq. (3.21) reflects the translational invariance of the correlation function. Equation (3.21) describes
the statistical properties of the RLM. For magnetic Belds much stronger than the disorder potential, the coupling
between the states within one Landau level becomes much stronger than the coupling between states in difFerent
Landau levels. Neglecting the coupling between difFerent Landau levels leads to the single-band approximation in
which the RLM becomes block diagonal in the Landau-level indices n,'. In this approximation the physics of each
Landau level can be discussed independently. For simplicity, let us restrict our discussion of the statistical properties
of the RLM in the single-band approximation to the lowest Landau level n = 0 and the case of a random potential
with Gaussian correlations

V2 ( Irj2 )
(3.23)

The correlation function (3.21) then becomes (up to terms vanishing exponentially in the limit I &
-+ oo)

(ok, iviok, ) (ok,
I
V

i
ok, ) = V()2 ( (ki —k2) 2(72 ) ( (*—*')' )4, -k. ,k.—k. exP ~— dz dz' exp I—

2 27roI„ ' ' ' ' ( 2 )
(z —kil,') (z —k2l,' & (z' —k3l2 l (z' —k4l2 )

V2 ( 1,, 1)
y'27r l,I„)9

exp
I

—-(ki —k2) '& I'xp I

—-(ki —k4) l.—,
I 4, -k. , k. -k. , (3.24)

where p = (0' + l, )/l, characterizes the correlation length of the potential projected onto the lowest 1 andau level
relative to the magnetic length. Due to the Kronecl(er & in Eq. (3.24), the matrix elements (Okilvlok2) are correlated
only if they belo ng to the same diagonal ki —k2 ——const. More precisely, if (OkiIVIok2) is split info its real and
imaginary parts, (OkilVlok2)R and (okilV10k2)i, respectively,

then, due to hermiticity,

(ok, ~vIok2) = (ok, IVIok2)R+, (ok, IVIok2)„ (3.25)

I
(okl IVIok2)R(04 IVIok4)R =

2
(~k —k, k —k + (4 —k, k —k )p(0 0 0 0 kl k2 4 k4),

1
(okiIVIok2)i(ok3IVIok4)i = -(4,-k„k.-k. —4, -k„k.-k. )p(0, o, o, o; ki, k2, k3 k4)

(3.26)

(3.27)

where p(0, 0, 0, 0; ki, k2, k3, k4) is the correlation function of Eq. (3.24) without the Kronecker h, and real and imagi-
nary parts are uncorrelated (Huckestein and Kramer, 1989). The first exponential factor in Eq. (3.24) leads to a band
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structure in the RLM; i.e., as ki —k2 becomes large, the average magnitude of the matrix element l(0kilVlOk2)l2
becomes exponentially small. The second exponential factor governs the strength of the correlations along the diago-
nals. Note that even for 0 ~ 0, i.e., for a b-correlated potential, the range of the correlations does not vanish due to
the Gaussian spread of the Landau wave functions.

We now want to express the correlated matrix elements (niki lVln2k2), which satisfy the correlation function (3.21),
in terms of uncorrelated random variables, which can be generated relatively easily on a computer. The correlation
function motivates the ansatz

(x —kil.' ) f x —k, l,' )
(nikilVI~&k2) = I dxdx' h(x —*' ki —k2)&p(x', ki k2)x i I I

'
I X ~ I

g C r "'«. r'
where the up(x, k) are uncorrelated, complex random variables satisfying

up(x, k)up(x', k') = b(x —x')bi,

(3.28)

(3.29)

For the simple case of Gaussian correlations, the intra-Landau-level matrix elements in the lowest Landau level are
given by

(3.30)

C. Lattice models

The standard model of localization is Anderson's tight-
binding Hamiltonian (Anderson, 1958),

II = ) .e'li)(~l+ ):Vali)(jl (3.31)

where i labels the sites on a lattice and (i, j) are nearest
neighbors. The site energies e; are independent random
variables, and, in the absence of a magnetic field, the hop-

Note that this is also the form of Eq. (A6) for any Landau
level ni ——n2 in the limit o/I, —i oo (Huckestein, 1992).

It is worthwhile to compare the RLM model with the
tight-binding model of Sec. III.C. The correlation func-
tion in (3.21) describes a random Hamiltonian on a one-
dimensional lattice where the lattice sites are labeled by
the integers i = kL„/27r. The diagonal matrix elements
(nklVlnk) correspond to the random site energies e;. The
differences to the Anderson Hamiltonian are in the ofF-

diagonal matrix elements that correspond to the hopping
matrix elements V;~. While in the Anderson case the ofF-

diagonal matrix elements are real constants~ and couple
only nearest neighbors, they are random complex vari-
ables in the RLM that couple all sites within the range
li —jl = L„/27rt, P. As shown in Sec. VIII for finite
L» the RLM has only localized states. However, the
largest localization length is of the order of L» and, in
the two-dimensional limit, L„—+ oo, both the range of
the hopping matrix elements and the maximum localiza-
tion length diverge.

ping matrix elements are constant, V~ = V, and define
the energy scale. With this Hamiltonian the Schrodinger
equation takes the form

a~ = Ea, ) (3.32)

where a; are the amplitudes of the wave function at site i.
For e; = 0 the Hamiltonian describes an electron moving
in a perfect crystal.

This model can be understood as the simplest form of
a more general tight-binding model where the V~ are a
function of i and j. Such a model can be derived from
the Schrodinger equation for a free particle in a periodic
potential by expanding the wave function in terms of a
complete set of orthonormal Wannier functions localized
at each atomic site (Thouless, 1974)

@(r) = ) ) u;" y~" l (r —R;), (3.33)

where R; is the position of atom i, and n labels the
atomic orbitals. Taking into account only a single or-
bital per site leads to an equation of the form (3.32).

In two dimensions on a square lattice, Eq. (3.32) has
eigenvalues E in the band between —4V and +4V. In the
presence of disorder all states in the system are localized
(Abrahams et a/. , 1979; Wegner, 1979; MacKinnon and
Kramer, 1981).

When a magnetic field is applied, the Hamiltonian
(3.31) has to be modified. To lowest order in the mag-
netic field, the infl. uence of the magnetic field on the
Wannier functions can be neglected, and the eKect of the
magnetic field is to change the phase of the wave func-
tion between two sites. This is achieved by replacing the

. constant hopping matrix elements by
In one dimension the hopping matrix elements can be made

real by a global gauge transformation, since closed paths can
enclose no flux.

lie
V~ = V exp

l

—— drA(r) l,h, . )' (3.34)
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a procedure known as a Peierls substitution (Peierls,
1933; Luttinger, 1951). In the absence of disorder, this
system shows a very rich band structure, the self-similar
"Hofstadter butterfly" (Azbel', 1964; Hofstadter, 1976).
In particular, if the number of Aux quanta per unit cell
of the lattice, a /2vrl„where a is the lattice constant, is
a rational number p/q, the tight-binding band splits into

q magnetic subbands.
In the presence of disorder this model can quite accu-

rately describe the lowest Landau levels of a continuum
model. This is the case in an intermediate range of the
disorder where the disorder broadening of the magnetic
subbands is large compared to their intrinsic width, but
small compared to the separation of the magnetic sub-
bands. Schweitzer et at. (1984) have shown by a recur-
sive Green's-function method that in such a situation the
density of states of the lowest magnetic subband agrees
well with the exact result, Eq. (3.7), for the continuum
model. It should be noted that this correspondence be-
tween the tight-binding model and free electrons holds
only for the lowest magnetic subbands near the edges of
the spectrum.

D. Semiclassical appraximation and network madel

FIG. 8. V(r) ( E, indicated by shaded regions. The eigen-
functions are localized within a distance l, of the edge of the
regions. The arrow indicates the direction of guiding-center
motion (after Trugman, 1983).

For potentials smooth on the scale of the magnetic
length t„ the localization in the integer quantum Hall
effect (@HE) can be discussed in terms of semiclassical
quantization and percolation. These ideas have been
developed by Tsukada (1976), Iordansky (1982), Kazari-
nov and Luryi (1982), Ono (1982a), Prange and Joynt
(1982), Trugrnan (1983), Shapiro (1986), Wilkinson
(1987), Chalker and Coddington (1988), Fertig (1988),
Mil'nikov and Sokolov (1988), Jaeger (1991), and Lee,
Wang, and Kivelson (1993). In the semiclassical limit,
the motion of the electron separates into two components
with vastly different time and length scales. On the one
hand, there is the slow motion of the guiding centers of
the cyclotron orbits along equipotential lines of the disor-
der potential that is governed by classical drift equations.
On the other hand, there is the rapid cyclotron motion of
frequency a around the guiding center within the clas-
sical cyclotron radius R, = +2n+ I/ from the guiding
center. The wave functions are nonzero on strips of width
B around the path of the guiding center. They are thus
located at the edges of the regions where V(r) ( E (see
Fig. 8). Near minima of the potential the wave functions
encircle these minima, while near maxima of the poten-
tial they encircle the maxima. In both cases the orbits
are closed and the states localized. Since V(r) is a ran-
dom potential, the properties of the regions V(r) ( E are
described by the continuum model of percolation (Trug-
man, 1983) with the regions bounded by the equipoten-
tial lines corresponding to the clusters of the percolation
model. At one energy between the minima and maxima

An expansion in I is also an expansion in powers of h.

the largest percolation cluster extends throughout the
whole system, and at this energy the wave functions are
extended. For a disorder potential with a distribution
that is symmetric, this energy corresponds to the band
center.

The rapid cyclotron motion around the guiding centers
and hence the extent of the wave functions perpendicu-
lar to the equipotential line become important whenever
two orbits approach each other on a distance less than
the cyclotron radius. This happens near saddle points of
the potential. There, tunneling between the two orbits
becomes important and effects of quantum interference
can become observable. These effects are most impor-
tant near the percolation threshold, because there the
percolating equipotential line is split up by saddle points
into localized, closed contours. Thus, while tunneling
and quantum interference have a negligible efFect in the
tails of the density of states, they can, in fact, change the
critical behavior of the system.

Chalker and Coddington (1988) created a model that
captures the physics of percolation, tunneling, and quan-
tum interference near the percolation threshold by intro-
ducing a network of saddle points connected by equipo-
tential lines. Due to its quantum nature, this network
model shows critical behavior that is different from the
classical percolation problem but coincides with that for
short-ranged potentials (see Sec. VIII).

In the following we shall 6rst introduce the semiclas-
sical picture of the @HE and then motivate the network
model as a simplification of this picture.

The semiclassical approximation is most conveniently
derived by replacing the coordinates (x, y) by guiding-
center coordinates (X, Y') and relative coordinates ((,q),
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given by The electron eigenfunctions can be approximated by

x= X+(,
y= Y+g,

(s.s5a)
(S.35b)

Q(u, v) = C(u)y„(v)e'~~"'"l, (3.43)

where the variables u and v parametrize the distance
along and perpendicular to the equipotential line, respec-
tively,

1
(pw eAw)eB

1
(p —eA ).

(3.36a)

(s.s6b)
C ( )" IVV(...)I

(s.44)

From the equations of motion for the pure system [V(r) =
0], we get

—[Hs, (] = (u, g,

—[Ho, rl] = —(u,(.

(3.37a)

(3.37b)

[(,g] =iL,',
[X,Y] = iL, —

(3.38a)

(s.s8b)

With Eq. (3.36), the Hamiltonian Ho can be written
in terms of ( and rL,

H. = „, (('+~'), (3.39)

which expresses the degeneracy of the Landau levels as
Ho does not depend on X and Y.

In the presence of a disorder potential V(r), the de-
generacy is lifted. The equations of motion for the center
coordinates are

i l2 BV
X = [H, X] = ——'—

5 By'
l2 BVY'= [H, Y] = —'—

(3.4Oa)

(s.4ob)

If the potential V(r) is smooth on the scale L„we can re-
place V(x, y) by V(X, Y) and obtain a drift of the guiding
center along equipotentials,

X= ——~ l BV
h BY' (3.4la)

l2 BVY= —'-' .
5 BX (S.41b)

In this limit, the eigenenergies are

E = (n + 1/2) Ru, + V (X, Y') . (s.42)

Due to the breaking of the time-reversal symmetry by
the magnetic field, the guiding centers can move in only
one direction determined by the magnetic field and the
slope of the potential (Fig. 8).

We see that ((,q) indeed rotate with angular frequency
~, around the guiding center. Due to the commutation
relations of p and r, both the guiding-center coordinates
and the relative coordinates obey canonical commutation
relations,

and P(u, v) is a gauge-dependent phase (Trugman, 1983).
The semiclassical quantization condition is that the phase
P(u, v) must change by a multiple of 2vr upon going
around a closed contour. This condition determines the
allowed energies. From Eq. (3.43) it follows that the over-
lap between difFerent states is exponentially small as long
as the separation between the corresponding contours is
large compared to the magnetic length.

The problem of finding the wave function of largest
extent is equivalent to the problem of finding the largest
connected cluster in a continuum percolation problem
(Stauffer, 1979). The "diameter" (I (E) of this cluster
grows on approaching the percolation threshold E, as

(I (E) oc iE —E,
i (s.45)

where the percolation critical exponent v~ is 4/3 (den
Nijs, 1979; Black and Emery, 1981).

In addition to the semiclassical drift of the guiding-
center coordinates, tunneling has to be considered near
saddle points of the potential, where two orbits approach
each other. In order to study the influence of tunneling on
percolation, Chalker and Coddington (1988) introduced
a network model. To introduce this model, let us look at
an electron moving along an equipotential line far away,
compared to /„ from other trajectories. Then its wave
function is given by Eq. (3.43). This wave function also
contains information about the degrees of freedom per-
pendicular to the trajectory that we are not interested in.
In its place, we consider a simpler quantity, the complex
function Z(u) of the coordinate u along the equipotential
line, defined by

arg (Z(u)) = arg (@(u,v = 0))

~Z(u) ~' = dv g*(u, v)j„g(u, , v), (3.47)

where j„is the u component of the current-density oper-
ator and u increases in the direction of net current fIow,
so that the integral is positive. Since no current can es-
cape perpendicularly to the equipotential line, Z(u) can
change its phase only along the trajectory. This phase
change depends on the gauge and arclength of the tra-
jectory in units of / .

Let us now consider the region near the saddle points
(Fig. 9). There, two degenerate wave functions meet,
and, due to tunneling, the description in terms of the
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(1988) showed how 8 depends on the energy,

sinh(8) = exp( —mp/2), (3.53)

where

4(E —Vi)
ll/2l2 ' (3.54)

FIG. 9. Equipotential lines of a smooth random potential.
The thick lines correspond to the links in the network model.
The circles enclose the saddle points (after Chalker and Cod-
dington, 1988).

f'Zil /Z4)
EZs) EZ&)

(3.48)

Current conservation constrains the 2 x 2 matrix M to
u»«rity IZil'+ IZ~I' = IZsl'+ IZ41'. Thi»mp»es

J = MtJM,

where

o )
i 0 —1

which has the general solution

(3.50)

Z(u) breaks down. I et us denote by Zi, Z2, Zs, and
Z4 the values of Z(u) on the four arms some distance,
large compared to l, away from the saddle point, where
the Z(u) are still fair descriptions of the exact eigenfunc-
tions. Due to the directedness of the trajectories, two of
these describe ingoing currents (say, Zi and Z2) and two
describe outgoing (Zs and Z4). Solving the Schrodinger
equation near the saddle point gives a relation between
the ingoing and outgoing currents,

V~ is the saddle-point potential, and V,; is the second
derivative of the potential in suitable coordinates.

The network model consists of a square lattice of sad-
dle points, each described by a 8 parameter (see Fig. 10).
Two neighboring saddle points are connected by directed
links representing the equipotentials such that at every
saddle point there are two incoming and two outgoing
links. Each link is characterized by the phase change of
Z(u) along the link. Since the lengths of the links, and
hence the phase change, depend on the random potential,
these phases are taken to be uniformly distributed ran-
dom variables. In the original paper (Chalker and Cod-
dington, 1988) the 8 parameter was fixed for all nodes in
the network. Generalizations of the model in which the
0's were random variables were studied by Chalker and
Eastmond (1993) and I ee et al. (1993).

In contrast to the other models of disorder, the network
model deals not with wave functions but with transmis-
sion probability amplitudes. Thus it lends itself natu-
rally to the study of properties of the transmission ma-
trix through the system, but it is not obvious how to
get information about the multifractal properties of the
system discussed in Sec. IX.C.

Mil'nikov and Sokolov (1988) employed the semiclas-
sical approximation to calculate the inverse localiza-
tion length ((E) in an intermediate energy range,
I' (l, /o) « E « I' . In this energy range the
equipotential lines differ significantly &om the percolat-
ing equipotential line only near the saddle points, where
the percolating equipotential line is split up. Due to the
first strong iiiequality, the parameter p of Eq. (3.54) is
large at these saddle points, and, with Eqs. (3.48) and

( e'~~ 0 l ( cosh 8 sinh 8 ) (' e'~' 0
0 e'&' ) ( sinh8 cosh8) ( 0 e'&' ) '

(3.51)

sinh 0 (3.52)

which has the solution 8, = ln(l + ~2) —0.8814. Fertig

with real 8, P. The phases P, can be set to zero by
a suitable choice of gauge so that the saddle point is
completely characterized by a real parameter 0. For 0 ((
1, the saddle point behaves classically and the electron
almost always goes from 1 to 4: lZil lZ4l . For 8 )) 1,
it also behaves classically, but now 1 goes to 3: lZil
lZsl . In between, the saddle point behaves quantum
mechanically. For a special value, 0, the saddle point will
be symmetric. At this value the probability of scattering
&om 1 to 3 and to 4 are the same. 0, is given by

FIG. 10. Network model of Chalker and Coddington. Each
node represents a saddle point, and each link an equipotential
line of the random potential (after Chalker and Coddington,
1988).
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(3.53), the transmission probability through the saddle
point is exponentially small. Mil'nikov and Sokolov as-
sumed that in this limit a single path, which consists of
saddle points connected by parts of equipotential lines,
is important for the transmission probability between
points far apart in space. They treated this problem us-

ing the semiclassical theory of tunneling through a one-
dimensional barrier. The solution to the eigenvalue equa-
tion. (3.42) defines a dispersion relation Y(E, X') similar
to the dispersion relation of a one-dimensional particle in
a potential k(E, x). The solutions Y(E, X) are real on
the equipotential lines, but are complex in the classically
forbidden regions near the saddle points. With Eq. (3.42)
the inverse localization length (6.2) can be written as

((E) ' = min ~lmY„(E)~/1„ (3.55)

where Y„(E) are the roots of Eq. (3.42). The average
distance between saddle points is given by the diameter
(I (E) (3.45). Thus we can rewrite Eq. (3.55),

((E) ' = (I (E) dX(lmY(E, X)~/L2 (3 56)

where the integral runs over the classically forbidden
range of X near a saddle point. Since both the width of
this region and the maximum of ~lm Y(E,X)

~

are propor-
tional to E ~, the integral in Eq. (3.56) is proportional
to E and, with Eq. (3.45), we find

((E)—1 Evy +1 E7/3

While the result v = 7/3 agrees with the numerical
value (8.4), it is not clear whether it describes the same
physical situation. The derivation of the result is based
on the assumption that only a single trajectory between
two points is important. While this assumption seems
justified if E )& I' (l, /0)2 and each saddle point trans-
mits predominantly into a single link, closer to the per-
colation threshold the probabilities for transmission into
both possible links become comparable. In this energy
range the two-dimensional character of the percolating
equipotential line has to be taken into account. It is
this limit that is described by the network model, which
has (see Sec. VIII.A) the same scaling behavior as the
random-Landau-matrix model.

near the transition in terms of scaling laws. In finite
systems there are no phase transitions and no singular-
ities in thermodynamic quantities. Nevertheless, in the
simultaneous limit that the temperature approaches the
critical temperature and the system size goes to in6n-
ity, the scaling laws of the in6nite system are reBected
in scaling laws for the finite system involving the system
size. It is this 6nite-size scaling theory on which we want
to focus in this section.

A. Single-parameter scaling

Let us consider a d-dimensional thermodynamic sys-
tem that is 6nite in at least one direction. Since we are
interested in the @HE in two dimensions, let us assume
d = 2. Then the system could have the geometry of
a quasi-one-dimensional strip or cylinder, depending on
the boundary conditions in the transverse direction, or it
could. be 6nite in both directions. Let us further assume
that the infinite d-dimensional system has a phase tran-
sition, but that the system with the 6nite length scale
has no transition. An example of such a system would
be the Ising model.

I et P (T) be a thermodynamic quantity of the infinite
system that diverges at the critical point T,

P (T)oct ~, (4.1)

T (L) —T,
(4.2)

where L is measured in multiples of some microscopic
length scale of the system.

The central idea of 6nite-size scaling is that the magni-
tudes of the 6nite-size efFects are determined by a single
length scale ((T) that diverges at the critical point,

as t = (T —T,)/T, m O. For the d = 2 Ising inodel,
this could be the susceptibility, and the parameter T is
the temperature. For a 6nite system, this divergence will
be rounded and the function PI, (T) of the finite system
will have a maximum at a position T (I) that will, in
general, be different from T, but will approach T, as I ~
oo. The approach is characterized. by a shift exponent A

de6ned by

IV. FINITE-SIZE SCALING ((T) oc t (4 3)

In this section we want to review the 6nite-size scal-
ing theory as it was developed for thermodynamic phase
transitions. Since the transitions between quantum Hall
plateaus are believed to be zero-temperature quantum
phase transitions, we want to analyze the numerical data
in Sec. VIII in terms of this 6nite-size scaling theory. We
base our discussion on the review of 6nite-size scaling by
Barber (1983).

For infinite systems, thermodynamic quantities can di-
verge at phase transitions. The "usual" scaling theory
describes the behavior of the thermodynamic quantities

~ = L/((T). (4 4)

For y && 1, the system does not feel the finite size, and
intensive quantities will not depend on L. For y 1,
the finite size rounds ofF the thermodynamic singulari-
ties associated with the phase transition. Thus y = 1
defines another characteristic temperature T*(L) of the

This length scale is identi6ed with the correlation length
of order-parameter fm.uctuations. Thermodynamic quan-
tities will depend on the ratio
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system where 6nite-size effects become important. From
Eqs. (4.3) and (4.4) it follows that

T*(L) —T,
T. (4.5)

&L(T) = L"&(y).

The exponent w is determined by requiring that Eq. (4.6)
reproduce Eq. (4.1) in the limit L ~ oo. This requires

If ((T) is the only relevant length scale, the shift expo-
nent A must also be given by A = 1/v (Barber, 1983).
In the following we shall not consider modifications to
the Gnite-size scaling analysis necessary to deal with the
shift of the "critical" point in finite systems. The sys-
tems that we want to analyze exhibit a symmetry such
that the maxima of scaling functions are always located
at the critical point of the infinite system.

The finite-size scaling hypothesis states that for finite
L and T near T

bwa ( (4.13)

f, ((i, . . . , L) = L F(L"'(i, . . .), (4.i4)

where I is the length scale of the system that is reached
after iterating the renormalization-group equation (4.11)
a number of times starting from the microscopic Harnil-
tonian, and I' is an analytic function of its arguments.
From the free energy (4.14) the scaling behavior of other
thermodynamic functions can be obtained by differenti-
ating the free energy appropriately,

I'r(&i ")=L &(L"'&i "). (4.i5)

where ( is a nonlinear scaling field that is a regular
function of the coupling constants K. In terms of the
scaling fields, the fixed point K' = K is given by ( = 0.

The singular part of the free energy per degree of &ee-
dom f„responsible for the divergence of thermodynamic
quantities at the phase transition, can then be expressed
in terms of the scaling fields ( instead of the coupling
constants K. f, ((i, . . . , L) has the scaling form

Q(y) oc y (4 7) This equation is equivalent, in the thermodynamic limit,
to the single-parameter finite-size scaling hypothesis (4.6)
if

(4 8)

For y ~ 0 at fixed I, Pl, (T) has to go to a finite value
and hence

alld

(i ——(|, oc t+ O(t )

yi ——1/v,

(4.16)

(4.i7)

Q(y) ~ const, (4.9)

&1.(T) = L&((y) (4.10)

since comparing Eqs. (4.1) and (4.3) yields p = v and
hence ~ = 1.

The phenornenological finite-size scaling theory for
a particular thermodynamic quantity outlined above
can be related to and derived from the scaling theory
based on the renormalization group for infinite systems
(Suzuki, 1977; Brezin, 1982; Barber, 1983). The renor-
malization group establishes a relatiori between the cou-
pling constants K of a Hamiltonian H and the coupling
constants K' of a Hamiltonian H', in which all lengths
have been rescaled by a factor b relative to H,

K' = R(K), (4»)

where R is an analytic function of K. At a phase transi-
tion there exists a nontrivial fixed point K* of the recur-
sion Eq. (4.11), K* = R(K*). Near this fixed point the
transformations (4.11) can be linearized, and the matrix
BB /BKp evaluated at K* has the eigenvalues

A =b" (4.12)

For the particular case of the correlation length (r, of
the finite system, the finite-size scaling relation (4.6) be-
comes

where we have used Eq. (4.3). Furthermore, all other
scaling fields (;, i ) 2, have to be irrelevant, i.e. , y; ( 0,
i & 2. We can interpret this statement in the follow-

ing way. The Hamiltonian H of a system depends, in
general, on a large number of coupling constants K, . In
the representation in terms of the scaling field (, it de-
pends on a large number of scaling fields. However, the
thermodynamic properties in the limit L —+ oo depend
only on a small number of scaling fields ( that have
positive scaling indices y . In conventional phase transi-
tions, these are related to the temperature t (4.16) and
the symmetry-breaking field 6,

(& oc 6 + 0(ht'). (4.18)

P(K(L)) = "'„", (') (4.20)

The fixed points of the renormalization group are given
by the zeros of the P function (4.20). Near the fixed point
the P function can be linearized,

If a coupling constant K shows single-parameter finite-
size scaling, it means that the coupling constant K(bL) of
the rescaled system is a function of the coupling constant
K(L) of the original system and the scale factor b only,

K(bL) = f(b, K(I)). (4.i9)

In the continuum limit, b ~ 1, this property allows one
to define a P function that is a function of K only,

Using these eigenvalues, we can rewrite Eq. (4.11) as P = ylc ln(K/K*), (4.21)
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where Eq. (4.12) was used. For yIc ) 0 (yIc ( 0), the
fixed point is repulsive (attractive). Comparison with
Eq. (4.17) shows that the localization-length exponent
v is given by the inverse slope of the P function at the
critical point.

(p~ (2) L Q(p L—
I l(2) (4.24)

Equation (4.24) shows that the corrections to scaling due
to the irrelevant scaling field gz exhibit finite-size scaling
at the fixed point (i ——0.

B. Corrections to scaling C. Dynamic scaling

The scaling fields ( with negative scaling indices

y & 0 are irrelevant in the thermodynamic limit L ~ oo.
However, for finite systems, they lead to corrections to
the asymptotic scaling laws, and it can be necessary to
take these into account when analyzing numerical or ex-
perimental data for finite systems. For two scaling fields,
a relevant field (i with yi ) 0 and an irrelevant field (2
with y2 ( 0, the renormalization Qow of the "coupling
constants" xi ——L"'(i and 2:2 ——L"'(2 under increase of
the length scale I is depicted in Fig. 11. The arrows in-
dicate the direction of change of x; when I is increased.
The point x~ ——x2 ——0 is the fixed point of the renor-
malization group. The How corresponds to the downhill
How near a saddle point in a potential.

Near the fixed point a thermodynamic quantity
PI.((i, (2, . . .) can be expanded in the arguments x
From Eq. (4.15) we obtain

So far we have focused our discussion on the static
properties of scaliDg quantities. VVe shall now consider
quantities varying in space and time. Analogously to
Eq. (4.1), we expect in the infinite system the wave vector
q and kequency u dependence

P (T, q, (u) oc t ~Q(q((T), s)7-O(T)). (4.25)

ro(T) oc (' oc t (4.26)

In a finite system, fluctuations on long length scales are
cut off by the system size L; and, from Eq. (4.25), we

obtain the dynamic finite-size scaling relation

The relaxation time wo(T) describes the rate at which the
system relaxes tow'ards its equilibrium state. It diverges
at the transition, and the dynamical exponent z is defined

by

PLI(C1 C2 . ) = L (Qo + ciiL"'(i + ci2L l"' (2 + .).
(4.22)

Pg(T, u)) = L Q(L/((T), ~~o(T)),
= I;q (I,'~"~ -'~.*~)

(4.27a)

(4.27b)

If the largest irrelevant scaling index y~ is sufBciently
large compared to the next leading index, it might be
su%cient to take only these two indices into account, and
one arrives at a two-parameter scaling theory. If there are
other scaling indices close to y2, it might be necessary to
treat more scaling fields.

For the saddle-point fixed point shown in Fig. 11, the
fiow along the line (2 ——0 away from the fixed point is
described by the single-parameter scaling relation

PI, (ji, p) = L Q(L"'(i, p), (4.23)

where yi = 1/v. The flow along the line (i ——0 towards
the fixed point is also described by a single-parameter
scaling relation,

In the limit ~ ~ 0, we recover the static scaling relation,
Eq. (4.6).

V. SCALING BEHAVIOR AND FIELD THEORY

In this section we discuss field-theoretical approaches
to the localization problem and their relation to scaling
theory. While field theory in the context of the integer
@HE provides a framework for a scaling analysis, it can-
not, at present, provide quantitative results suitable for
a comparison with experiments. We shall therefore re-
strict ourselves to an outline of the basic ideas. Thus
this section lacks the technical details found in the other
sections.

A. Anderson localization

FIG. 11. Renormalization-group Hove near a saddle-point
fixed point xg ——z2 ——0.

We shall start with a brief survey of the problem of
Anderson localization in the absence of strong magnetic
fields. For a more detailed review, see Kramer and Mac-
Kinnon (1993).

Using prior work of Thouless and co-workers (Edwards
and Thouless, 1972; Thouless, 1974; I icciardello and
Thouless, 1975) and of Wegner (1976), Abrahams et al.
(1979) argued that the average dimensionless conduc-
tance g = Gh/e should obey a single-parameter scaling
relation. They calculated the P function of the conduc-
tance,
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ding
(5 1)

in the limits g &( 1 and. g )& 1. In the localized regime,
g && 1, the conductance decreases exponentially with sys-
tem size, g = go exp( —nI) and hence

lim P(g) oc lng.
g —+0

(5 2)

For large conductance, macroscopic transport theory ex-
presses for a d-dimensional "cube" of side I the conduc-
tance G in terms of the conductivity o,

so that

G(I) = aI" (5.3)
FIG. 12. P function according to Abrahams et al. (1979).
The slope of the dashed line is 1/v [cf. Eq. (4.21)].

lim P(g) = d —2. (5.4)

Assuming a continuous P function, Abrahams et al. ar-
rived at the flow diagram depicted in Fig. 12. The P
function has a zero in only d ) 2 dimensions. They ar-
gued that the P function has no zero in d = 2 dimensions,
since the first correction to P in 1/g is negative in pertur-
bation theory (Langer and Neal, 1966; Abrahams et aL,
1979).

G+(r, r', E) = (r[(z —H) '[r'), (5 5)

z = E+ ie, e ) 0, as path integrals,

The same behavior is obtained when the disordered
electron problem is mapped onto a nonlinear 0. model
(Wegner, 1979; Efetov et aL, 1980). We shall briefly
sketch how this model is derived. We start by represent-
ing Green's functions, like

G+ (r, r', E) =
lD[4+]D[C+]C+(r)4+(r') exp d'r4+(r)(z —H)4+(r)

[

r
det(z —II) (5.6)

Z= DC+DO+ exp d rC+(r)(z —H)4+(r) [.)
(5.7)

The sign of e ensures the convergence of the integral.
To represent advanced as well as retarded Green's func-
tions, ere need to introduce two additional fields C and
4 with the opposite sign of e. Equation (5.6) can be
interpreted as the statistical average (4+(r)C+(r')) with
the partition function

fields cancel exactly.
When one of these schemes is used, the average over

disorder in Eq. (5.7) can readily be performed for th.
Gaussian white-noise potential (3.5). Since the disor-
der potential couples two fields, this leads to a term
containing a product of four fields in the exponential.
These quartic terms can be decoupled by a Hubbard-
Stratonovic transformation to matrix fields Q(r). The
efFective Lagrangian for this matrix is (Pruisken and
Schafer, 1981)

Higher-order Green's functions are given by higher-order
correlation functions of the fields.

In order to perform the average over disorder, one
needs to eliminate the determinant in Eq. (5.6) that de-
pends on the disorder potential. One way of achieving
this goal is to use the replica trick (Wegner, 1979; Efe-
tov et at. , 1980; Schafer and Wegner, 1980). Here the
fields are replicated m times so that the denominator
becomes '[det(z —H)] . In the formal limit rn -+ 0,
performed at the end of the calculation, the determi-
nant becomes unity. Instead, the supersymmetry method
(Efetov, 1983) can be employed when commuting as well
as anticommuting (Grassmann) fields are used. Then
the determinants for the commuting and anticommuting

L[Q]= d r 2 Tr Q (r) + Tr ln(E —Hp —Q)

(5.8)

I (Q) = d'r ——Tr(BQ)'

where the coupling constant 1/t is proportional to the

where we dropped convergence-ensuring terms. This
equation is the starting point of the derivation of the non-
linear 0 model. It proceeds through an evaluation of the
integral in Eq. (5.8) in saddle-point approximation, suit-
ably decomposing the Q matrix and expanding the trace
of the logarithm. The result is an e8'ective Lagrangian,
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conductance.
The symmetry of the matrices Q depends on the sym-

metry of the original Hamiltonian and the choice of com-
muting or anticommuting variables.

For the nonlinear 0' model (5.9), the P function for
the coupling constant and hence for the conductivity
can be calculated (Brezin et a/. , 1980). The results de-

pend on the symmetry class of the Q fields. One distin-
guishes three universality classes: the orthogonal class
for random potential scattering; the symplectic class in
the presence of spin-orbit coupling; and the unitary class
in the presence of a magnetic field. The results of Weg-
ner (1989) may be written in terms of the dimensionless
conductance g:

'
(d —2) —g i —s((3)g 4 + D(g s), orthogonal case,

p(g) = ~ (d —2) —2g 2 —6g 4 + O(g s), unitary case,
(Q —2) + g

i —s((3)g 4 + D(g 5), symplectic case.
(5.10)

Only in the symplectic case does the P function have a
zero in d = 2 dimensions, while in the other cases all
states are localized. In particular, the presence of a mag-
netic field in the unitary case does not lead to extended
states necessary for explaining the @HE. We shall return
to this problem in the next section.

Further support for the scaling picture of Abrahams
et a/. (1979) comes from numerical calculations (Mac-
Kinnon and Kramer, 1981, 1983; Pichard and Sarma,
1981; for a recent review, see Krarner and MacKinnon,
1993). Numerically, it is easier to calculate the local-
ization length instead of the conductance. This can
be done recursively for strips or bars using either the
Green's-function method of Sec. VI.A or the transfer-
matrix method. of Sec. VI.B. The numerical results are
compatible with the finite-size scaling hypothesis (4.10).
In one-dimensional systems, no extended states are ob-
served. In two-dimensional systems, a transition is ob-
served only in the presence of spin-orbit scattering. In
three-dimensional systems, a localization-delocalization
transition is observed at a critical disorder.

After the discovery of the absence of self-averaging in
mesoscopic systems (Anderson et a/. , 1980; Altshuler,
1985; Lee and Stone, 1985), it became apparent that
the description of the metal-insulator transition in terms
of the average conductance was incomplete. Altshuler,
Kravtsov, and Lerner (1986, 1989) argued that the whole
distribution of the conductance needs to be considered.
Single-parameter scaling in this context was discussed by
Shapiro (1987). His scaling parameter need not necessar-
ily be the average or typical conductance, but any param-
eter that uniquely determines the distribution function.

l

cal term in the efFective Lagrangian that is not accessi-
ble to the perturbative treatment that leads to the La-
grangian (5.9). A review of the discussion can be found
in Pruisken's chapter in the book by Prange and Girvin
(1987). Here we want to sketch the main features of this
Geld theory.

The Lagrangian (5.9) must be augmented by a term
proportional to the Hall conductivity,

d2r ——oo Tr a 2+ —oo Tr a, ay8** 8

(5.11)

The values of the coupling constants o and o 0„ in (5.11)
are the mean-field values corresponding to the conductiv-
ity tensor on short length scales. They are given by the
self-consistent Born approximation (SCBA; Ando et a/. ,
1975). Upon increase of the length scale, the conduc-
tivities are renormalized to their physical values on long
length scales. We shall use the correspondence between
the scaling on short length scales and the SCBA in our
discussion of the corrections to scaling in Sec. VIII.B.

The occurrence of two coupling constants o and o „
in the Lagrangian leads to a coupling of the renormal-
izations of o and o „and. changes the critical behav-
ior compared to the nonlinear o model for Anderson lo-
calization. In a dilute-instanton-gas approximation for
the physically relevant field configurations in the weak-
coupling limit o )) 1, Pruisken derived P functions for
the renormalization with system size I of both o and
0 ~y &

—a De "cos(2ma „),
B. Nanlinear sigma madel and tapolagical term

In the previous section it was pointed out that the ab-
sence of extended states in the nonlinear cr model for
the unitary two-dimensional case apparently contradicts
the explanations for the @HE (Aoki and Ando, 1981;
Laughlin, 1981; Halperin, 1982), which require the ex-
istence of extended states for sufIiciently small disorder.
Pruisken (1984) and collaborators (Levine et a/. , 1983,
1984a, 1984b, 1984c) argued that the failure of the non-
linear o model is due to the emergence of a topologi-

P „= *" = oDe "sin(—2vro &).6lnI.

(5.12a)

(5.12b)

This leads to the renormalization-group Bow diagram
proposed by Khmel'nitskii (1983) shown in Fig. 13. It has
two kinds of fixed points: stable fixed points at o = 0,
o» ——n and Gxed points at half-integer values of o»
with a finite conductivity o . The former fixed points
correspond to the localized wave functions of the model
in the absence of the topological term, while the latter
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/4
+XX

particle Green's function

G(r r'E) = (rlE ~lr') (6 1)

2 o y(e2/h)

The disorder average of G(r, r'; E) is a short-ranged func-
tion due to the average over the phase Huctuations. It
decays on the scale of the elastic mean &ee path and does
not show critical behavior. By averaging the modulus,
these phase cancellations are avoided and ~G(r, r', E)

~

be-
cornes long-ranged near the phase transition.

~
G(r, r', E)

~

is not a self-averaging quantity and has a broad distribu-
tion. The inverse localization length

FIG. 13. Renormalization flow diagram of o. vs cr „(after
Khmel'nitskii, 1983}. 1

((E) = — lim, ln ~G(r, r', E) ~, (6 2)

correspond to the extended wave functions that carry the
current in the @HE. Furthermore, the How diagram is pe-
riodic in 0~& so that the critical behavior is independent
of Landau-level index, since (Levine et aL, 1983)

~0

8
d rTrQ 8 Q, O„Q = 2vriqo „. (5.1S)

VI. LOCALIZATION LENGTH

The localization length ((E) is one of the simplest
quantities to calculate numerically that shows the occur-
rence of a metal-insulator transition. It can be defined
by the asymptotic behavior of the modulus of the single-

The delocalization fixed points at half-integer 0. „are
partly attractive and partly repulsive, like the fixed point
discussed in connection with Fig. 11. They are character-
ized by a relevant scaling index yt ——1/v ) 0 associated
with the deviation from cr*„= (2n+ 1)j2 and an irrele-
vant scaling index y2 ( 0 associated with the deviation
from o* . The starting point for the How in Fig. 13 at
microscopic length scales is given by the expressions for
the conductivity tensor in the SCBA (Ando et a/. , 1975).

While the Held theory with the Lagrangian (5.11) pro-
vides a very appealing framework for the quantum Hall
transition, it has major shortcomings. To date, it has
not led to quantitative predictions, besides the existence
of isolated critical fixed points. It has not been pos-
sible to calculate the longitudinal conductivity o at
the critical point, the localization-length exponent v, or
the irrelevant exponent y2. The validity of the dilute-
instanton-gas approximation that forms the basis of the
approximate How equations (5.12) has been questioned
by Weidenmiiller and Zirnbauer (1988). Recently, Zirn-
bauer (1994) has argued that the How diagram (Fig. 13)
does not describe the Bow of the coupling constants in
the nonlinear 0 model (5.11) and that a different the-
ory is called for. We conclude that, at present, the most
promising tool for obtaining quantitative results about
the critical properties of the integer quantum Hall sys-
tem seems to be numerical simulation, on which we shall
focus our attention.

on the other hand, is a self-averaging quantity; so it takes
on the same value for almost all members of the disorder
ensemble. The self-averaging property makes it particu-
larly useful for numerical calculations. In Eq. (6.2) the
energy E has to have an imaginary part, since after aver-
aging ~G(r, r'; E)

~

is nonanalytic on the real axis. Using
the self-averaging property and calculating the localiza-
tion length for a single disorder realization in a finite
system, we can set this imaginary part to zero as long as
E is not an eigenenergy of the system.

In order to implement a finite-size scaling analysis of
the localization length, one studies long strips (in d = 2
dimensions) or bars (in d = 3 dimensions) and calculates
the localization length along the in6nite direction of the
system. This localization length then depends on the
perpendicular dimensions of the system (MacKinnon and
Kramer, 1981, 1983). In Sec. VI.A we review a method
for calculating recursively the localization length for sys-
terns of this geometry and extend. it to the case of the
random Landau matrix.

Another way to define the localization length is to iden-
tify it with the inverse of the smallest Lyapunov expo-
nent of the transfer matrix of the system (MacKinnon
and Kramer, 1981, 1983; Pichard and Sarma, 1981). We
shall return to this in Sec. VI.B.

A. Recursive Green's-function method

The recursive Green's-function method was developed
by MacKinnon and Kramer (1981, 1983) for the Ander-
son model (3.31). In one dimension the corresponding
Schrodinger equation (3.32) reads

a;+t —(E —e;)u; —a; (6.S)

A;it ——(E —II;)A; —A, (6.4)

II; is the Hamiltonian of the ith (d —1)-dimensional slice

where the hopping matrix element was set to unity.
Equation (6.3) allows one to calculate recursively the
wave-function amplitudes a;. In higher d.imensions the
corresponding equation is
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of the d-dimensional "bar, " and all quantities are (d —1)-
dimensional matrices. Equation (6.4) can be rewritten in
terms of Green's functions Gl coupling sites in slice 1
to sites in slice i,

Gl, i+1 —Gl, iGi+l, i+1)
G'+i, +i = (E —H +i —G )

(6.5a)

(6.5b)

(6.6a)

(6.6b)
Gl ori+1 Gl, i Hi, i+1Gi+1,i+1 )

—1G'+i '+i = (E —H +i —H +i G 'H +i)''' '

Through iteration of Eq. (6.5), the matrix elements of
the Green's function connecting sites at both ends of long
"bars" can be calculated without the need for diagonal-
ization of the Hamiltonian of the whole system.

Equation (6.5) is tailored to the Anderson model
with constant nearest-neighbor couplings. To apply this
method to the Hamiltonian (3.16), it must be modified.
The random Landau matrix (nkilVlnk2) of Eq. (Al) de-
scribes a random one-dimensional tight-binding Hamil-
tonian similar to the Anderson Hamiltonian but with
long-ranged hopping matrix elements. To be able to ap-
ply recursion relations similar to Eqs. (6.5), Aoki and
Ando (1985; Ando and Aoki, 1985) reinterpreted the
one-dimensional Hamiltonian (nkilVlnk2) as the Hamil-
tonian of a two-dimensional system with couplings only
between sites in neighboring slices. This is possible, since
l(nkilvlnk. )l' is essentially zero for Iki "2I & K and
can be neglected, where K is a constant of order (Pl, )
such that Klr = KI„/27r is an integer. States with
k C

I (i —1)K + 1,iK] belong to slice i and are coupled
only to states in slices i —1, i, and i + l. &nkilvlnkq&
can then be rewritten as a tridiagonal matrix with di-
agonal elements Hi i being the NK x NK submatrices
of (nkilVlnk2) connecting states within slice i, and off-
diagonal elements Hi i+1 being the NK x NK submatrices
connecting states within slice i with those in slice i + 1.
The matrix elements in the ofF-diagonal matrices Hi i+1
are now random numbers, in contrast to the case of the
two-dimensional Anderson model, so that the recursion
relation (6.5) must be modified to

H&~+'l = ) lk&&klvlk'&&k'I, (6.7a)
A:, A. "=1

= Hp+ H',

H. = H~~l+ IK&&KlvlK&(KI,

H' = ) (lk)(klVIK+ l)(K+1I+H.c.), (6.7d)

(6.7b)

(6.7c)

where we have suppressed the Landau-level index. The
related Green's functions are G~~~ = (E —H~~~) i and
Go ——(E —Ho), for which we obtain the recursion
relation

G(z}+ 1K+ 1)&K+ 1I

E —(K + llVIK + 1)
' (6.8a)

G + =Gp+GpH'G + . (6.8b)

The last relation can be used to calculate GK+, owing
to the fact that the matrix H' couples only to site K+ 1.
Using the property that the random Landau matrix is a
banded matrix, we can keep the dimensions of the matri-
ces in Eqs. (6.8) finite even in the limit K ~ oo. Choos-
ing matrices of dimension 2M/P, where M = I„/+2rrl„
results in neglecting matrix elements of order exp( —4vr)

compared to the diagonal matrix elements. Let N be the
dimension of these matrices; then the recursion relations
(6.8) for the matrix elements are

A difFerent approach was introduced by Huckestein
(1990), who generalized the one-dimensional Green's-
function method to the case of long-ranged. hopping ma-
trix elements. Consider the random Landau matrix H~K&

of dimension K describing a system containing states
k = 2vri/I„, i = 1, . . . , K. In the following, we shall
label the states by integers A: instead of quasimomenta
2mk/I». Adding the state K + 1 to the system leads
to a Hamiltonian H~ + ~ that can be decomposed into
a block-diagonal part Hp and the couplings H' of state
K + 1 to the rest of the system,

&K+1IG&~+'&IK+1) =, z —&K+1IVIK+1)—
',j=K—N+2

(K+ 1lvl~&&ilG' 'l~'&&ilvlK+ 1) (6 9)

for the diagonal matrix element,

&&IG' +'1K+1) = (K+1IG' +'1K+1) ) &iIG' 'l»UIVIK+1)
j=K—N+2

(6.10)

for i & K, and

(IG' +'l~& =
&

IG' 'l~&+ &~IG' 'lk&&klvlK+»&K+1IG' +"li&
Ic=K—N+2

(6.11)
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fori&Kand j &K.
The localization length AM of a system with width M = L„/~2m'l, and length K is given by

(6.12)

In calculating &llGi ill), we are faced with the diKculty that this is an exponentially decreasing quantity. To
circumvent this problem, we introduce variables q~ ——&1IGl ilK)/&llG~ llK —1) for the change in &1IG~~llK)
when the system size is increased by one state. In terms of the ql„Eq. (6.12) is given by

M &llG&~&IK) (IIG&~ 'ilK —1) (,)
G~ -"lIZ (6.13a)

Z /2~I. . .ln lq, l, {6.13b)

where we set qq
——&llG~ l ll) = (E —&llVll)) . From Eq. (6.10) we obtain a recursion relation for qlc+q,

m+ = &~+1IG' +'I~+1) ). (1lg' 'li)&~II'1~+1)
j =K—N+2

(6 14)

where &llgl~llg) = (1IGl~llg)/&IIG&~llK) is normalized to compensate for the exponential decay. With Eq. (6.11),
we obtain the recursion relation for (1lg~ + i

I j),
(

&11~' "'l~) = (1lg' 'l~)+
9K+x

&11~' 'lk)&klan'1&+1)(~+1IG' "'l~) (6.15)

B. Transfer-matrix method composing the system,

The transfer-matrix method deals with a physical sit-
uation in which a long, narrow disordered system is con-
nected at both ends to semi-infinite ideal conductors.
The transfer matrix T relates the amplitudes on the
right-hand. side of the system to those on the left-hand
side. For the Anderson model (6.4), the transfer matrix
T; of slice i is given by

T2j (6.18)

where M is the transfer matrix of the system consisting
of n slices and T; is the transfer matrix of slice i. Os-
eledec's theorem (Oseledec, 1968) states that a limiting
matrix I' exists,

(6.16) r = »m (M'M )'~ " (6»)

where I is the unit matrix, since Eq. (6.4) can be rewrit-
ten as

4&;) (6.17)

For Chalker and Cod.dington's network model of
Sec. III.D, the transfer matrix T consists of a product
of four matrices, T = ABCD, where A and. t are diag-
onal matrices with random phases, corresponding to the
links connecting the nodes of the network, and B and D
are block diagonal, consisting of the 2 x 2 matrices M of
Eq. (3.51). Note that the network of Fig. 10 is periodic
when using two columns of nodes as a unit.

From the definition of the tr ansfer matrix lt follows
immediately that the transfer matrix of a long system
is just the product of the transfer matrices of the slices

with eigenvalues exppq, . . . , expp2, where 2m is the
dimension of the transfer matrix. The p; are the char-
acteristic I yapunov exponents of M . The inverse local-
ization length ( is given by the I yapunov exponent of
smallest absolute magnitude, ( ~ = minlp;I.

Vl}. OTHER SCAL}NG QUANTIT}ES

The localization length is by no means the only quan-
tity that can be used in finite-size scaling studies. In
fact, early numerical calculation on the @HE used the
size dependence of the Thouless number to obtain infor-
mation about the critical behavior (Ando, 1983, 1984a,
1984b). Information about the localization properties of
eigenstates can also be obtained from their topological
character. Huo and Bhatt (1992) used the density of
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states with nonzero Chem number as a Rnite-size scaling
quantity.

A. Thouless number

Edwards and Thouless (1972) have argued that the
sensitivity of eigenenergies of finite systems to changes in
the boundary conditions can be used to distinguish be-
tween extended and localized states. For localized states
the eigenenergies should be insensitive against the change
in boundary conditions if the system size is large com-
pared to the localization length. Extended states should
feel the change in the boundary conditions, and the shift
in energy should be of the order of h/w, where r is the
time it takes the electron to diffuse to the boundary
(Thouless, 1974). In second-order perturbation theory,
the change in energy bE when periodic boundary condi-
tions are replaced by antiperiodic boundary conditions
is approximately related to the conductivity o by
(Licciardello and Thouless, 1975)

(7.1)

B. Chem number

While the Thouless number relates to the longitudi-
nal conductivity o, the ability of an eigenstate to con-
tribute to the Hall conductivity o~y serves as another
means of distinguishing extended from localized states.
For a system with generalized periodic boundary condi-
tions,

t(I.-) 14) = exp('8') l4) (j = 1, 2), (7.2)

where t(L&) is the magnetic translation operator (Zak,
1964; Haldane and Rezayi, 1985; Arovas et al. , 1988).
The Hall conductivity may be written as a sum over
all occupied states below the Fermi energy E (Thouless
et aL, 1982; Pook and Hajdu, 1987),

where AE is the mean level spacing at the Fermi en-

ergy and f is a constant of order unity depending on
details of the microscopic model. g(L) is called the
Thouless number. In the presence of a strong mag-
netic field, Ando (1983) argued, the constant f is vr/2.
The Thouless number g(L) for a particular level is a
strongly Huctuating quantity as a function of level index.
To get a less Buctuating quantity, the geometric mean
8E = exp((lnb'E, ),) is typically used, where the aver-

age is taken over a given energy interval. On the other
hand, the very fact that g(L) is strongly ffuctuating was
used by Fastenrath, Janoen, and Pook (1992) in a mul-

tikactal analysis of the integer quantum Hall transition
(Sec. IX.C).

cr y(E) = —) — d 80(E —E )
iq

~ ~~-(~) ~v-(~))
)98i c))8z

~0-(8) ~@-(8)
)982 )98i

(7.3)

l&-) = exp[- i(8»/L*+ 8»/L. )~l&-& (7.4)

where T* is the torus 8; 6 [0, 2m[, i = 1, 2. It has
been shown by Thouless and co-workers (Thouless et al. ,

1982; Niu et a/. , 1985) and others (Avron et aL, 1983;
Kohmoto, 1985; Aoki and Ando, 1986; Pook and Hajdu,
1987) that the integral in Eq. (7.4) is 2' times an inte-

ger Ci(m), the first Chem index, which is a topological
invariant characterizing the topological properties of the
wave functions. Arovas et at. (1988) have shown that for
states with finite Ci(m), the zeros of the wave function
can be moved to any position in real space by a suit-
able choice of the boundary angles Oi, 02, while states
with zero Ci(m) have zeros that are confined in space.
This leads to a natural distinction between extended and
localized wave function. Again, as in the discussion of
the Thouless number, the sensitivity to boundary con-
ditions is used to distinguish extended from localized
states. Since the first Chem index is an integer, it al-
lows a clear definition of extended versus localized states
even for finite systems.

VIII. NUMERICAL CALCULATIONS

The erst numerical calculations of the critical prop-
erties for two-dimensional systems in a strong mag-
netic field were performed by Aoki (1977, 1978, 1985),
Ando (1983, 1984a, 1984b), and Schweitzer, Kramer, and
MacKinnon (1984). Due mostly to the insufficient com-

puting power available at the time, these studies were
not able to obtain accurate information about the be-
havior of the localization length or the. Thouless number.
Ando (1983, 1984a, 1984b) interpreted his results ob-
tained from the size dependence of the Thouless number
as being compatible with an extended state at a single
energy in each Landau level, a result previously obtained
by Ono (1982b) by summing a certain class of diagrams
analytically. However, the divergence of the localization
length obtained numerically was much weaker than Ono's
result ((E) oc exp(l/E2), where the energy was mea-
sured relative to the critical energy. While Ando was
not able to extract a result for the localization-length
exponent v from his data, he found the first signs of a
single-parameter scaling law, since his numerically con-
structed P function for the conductance depended only
the conductance itself. Schweitzer, Kramer, and Mac-
Kinnon (1984), on the other hand, interpreted their re-
sults for the localization length as indicating a band of
extended states separated from localized states in the
band tails by two mobility edges.
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In the following we shall concentrate on more recent
results that shed light on the critical behavior near the
band centers of the Landau levels. In our discussion we
have to keep in mind that numerical calculations always
deal with finite systems, while, strictly speaking, phase
transitions exist only in infinite systems. Thus we need a
theoretical framework in which to analyze data for finite
systems in order to extrapolate results to infinite system
size. The finite-size scaling theory outlined in Sec. IV
provides such a &amework.

We shall first review calculations for Hamiltonians pro-
jected onto a single Landau level. In the strong-magnetic-
field limit, Ru )) I', this seems to be a reasonable ap-
proximation. The e6'ects of Landau-level mixing will be
discussed in Sec. VIII.D, while the inQuence of a periodic
potential on a single Landau level is considered. in Sec.
VIII.E.
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0.02—
0.01—

I I I I I I I I I

0.5 1 2 4 8 16 32 64 128

FIG. 14. Normalized localization length AM/M in the lowest
Landau level for b-correlated potential as a function of system
width M (in units of ~2vrl ) for energies 0.01 (s), 0.05 (~),
0.07 (w), 0.1 (o), 0.18 (o), 0.30 (*), 0.5 (o), and 1.0 (~), in
units of I'. After Huckestein and Kramer (1990).

A. Lewest Landau level

The first calculation that produced reasonable esti-
mates of the critical exponents for the quantum Hall
system was performed by Aoki and Ando (1985; Ando
and Aoki, 1985). They used a real-space model for the
disorder, with the random potential given by a sum over
either short-range scatterers (3.8) or Gaussian scatter-
ers (3.11). Using the recursive Green's-function method
of Sec. VI.A, they calculated the localization length for
strips of width 1.25 to 40.1 /, . In the direction perpendic-
ular to the strip, periodic boundary conditions were em-
ployed to avoid the eKects of edge states extended along
the edges of the strip. Aoki and Ando tried to interpret
their data in terms of Pruisken's two-parameter scaling
theory (Sec. V.B). However, in view of later calculations
(Huckestein and Kramer, 1989, 1990), it must be real-
ized that their systems were too small to be in the criti-
cal region. Nevertheless, they found. that the localization
length diverges at a single energy at the center of the
Landau band, and they estimated the localization-length
exponent to be v 2 in the lowest Landau level.

Huckestein and Kramer (1990) extended these calcu-
lations by introducing the random-Landau-matrix model
(Sec. III.B). Comparing their results for the localization
length with the results of Aoki and Ando shows (Huck-
estein and Kramer, 1989) that the diiferent random po-
tentials give the same results for a width of 40l, the
largest calculated by Aoki and. Ando, while for smaller
widths differences are observed. Microscopic details of
the disorder potential therefore seem to become irrele-
vant for the behavior of the localization length on this
length scale for b-correlated potentials. In Fig. 14 the
normalized localization length A~(E)/M is plotted as a
function of the system width M = I„/(2m)~ I, for ene'r-

gies between 0.01 and. 1.0I' relative to the band center.
The length of the systems was 2.5 x 10 I, (2.5 x 10 t for
the widest systems), and the width ranged up to 321/ .
The data within the dotted region are compatible with a
single-parameter scaling law

AM(E) = MA(M/((E)),
—V

&(E) =6
(8.1a)

(8.1b)

At this point we want to elaborate on the significance
of this statement. In Sec. VI.A it was argued that the
inverse localization length calculated &om the Green's
function is self-averaging for system length L ~ oo. Nu-
merically, it can be calculated only for finite I. The
value obtained fluctuates within the disorder ensemble.
The statistical error can be estimated from sampling dif-
ferent realizations of the disorder. In addition, system-
atic errors of the order of ((E)/I have to be expected.
In the present calculation the statistical errors are typi-
cally less than lfg, with possible systematic errors of the
same ord.er. Through the use of a statistical test, de-
scribed in detail by Huckestein (1990), it was determined
that the data in the dotted region are compatible with
both scaling relations in Eq. (8.1) within the statistical
errors. In this procedure a least-squares fit is applied
to a subset of the data, and the parameters ((E;) for
the diferent energies E; and the function A, as well as
their covariance matrix, are obtained &om Eq. (8.1a).
The minimized value of the weighted mean-squared de-
viation is then compared. to its expected value. If these
values agree within their statistical accuracy, a second
least-squares fit of the localization lengths ((E;) is per-
formed, taking into account all the correlations between
these quantities introduced by the first fit. Again, the
goodness-of-fit is tested and the parameters (o and v are
obtained. The dotted regions in Figs. 14, 17, and 18 are
the largest subsets of the data that pass both statistical
tests, for the single-parameter scaling, Eq. (8.la), and
for the power-law divergence, Eq. (8.1b). Corrections to
Eq. (8.1) larger than the statistical errors are ruled out
by this procedure.

The deviations from scaling behavior for smaller width
in Fig. 14 are not only due to irrelevant scaling fields,
as discussed in Sec. IV.B, but are also associated with
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the particular one-dimensional limit of the system. As
pointed out by Ando and Aoki (1985), for M -+ 0 the
localization length can be calculated analytically. In
this limit the distance b,X = Akl, = 2vrl, /I& between
the center coordinates of neighboring Landau states be-
comes large compared to l„so that the matrix elements
(nklVlnk') fall off rapidly as a function of jk —k'l. The
random Landau matrix becomes a tridiagonal Hermi-
tian matrix corresponding to a tight-binding model with
nearest-neighbor hopping. Applying the exact result for
the localization length of that model (Thouless, 1974),
we obtain

1000—
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10—

0.01 0.1

F

AM 21
llm

M~o M z. P2' (8.2)
FIG. 16. Localization length ((E) as a function of energy
normalized by the bandwidth I' for n = 0, cr = 0 (~), n = 0,
o = I (z ), and n = 1, rr = I, ( ). After Huckestein (1992).

lim A(z) = x (8.3)

The divergence of the localization length in Fig. 16 is
given by the exponent

v = 2.35 + 0.03. (8.4)

This value for the exponent is in remarkable agreement
with the experimental values 2.3+0.1 (Koch et al. , 1991b)
and 2.4 + 0.1 (Wei et a/. , 1994). By performing similar
calculations for smaller systems of up to 150/ width,
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FIG. 15. The scaling function ANI(E)/M = A(M/g(E)).
From Huckestein (1992).

independent of energy.
The critical region starts at system width M = 16,

the same size at which the difFerences between the real-
space model of Aoki and Ando and the random-Landau-
matrix model vanish. For energies larger than 0.5I', no
scaling is observed, since the localization length does not
decrease arbitrarily in the band tails but levels ofF at
about one magnetic length. Figure 15 shows the data
from the dotted region of Fig. 14 scaled according to
Eq. (8.1a). Note that this figure contains data not only
Rom Fig. 14 but also from Figs. 17, 18, and from the
network model (Sec. VIII.C). The scaling relations (8.1)
determine ((E) only up to a constant prefactor. This
prefactor can be fixed by observing that in the localized
regime, M/( )) 1, AM(E) converges to $(E) for large M,
so that
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FIG. 17. Normalized localization length A~/M in the lowest
Landau level for correlated potential (o. = l, ) as a function of
system width M (in units of ~2vrl, ) for energies 0 (s), 0.03
(x), 0.05 (~), 0.07 (w), 0.1 (a), 0.14 (*),0.18 (o), 0.3 (o), and
0.5 (~ ) (in units of I'). After Huckestein et al. (1992).

Mieck (1990) obtained an exponent of v = 2.3 + 0.08.
In the previous analysis the critical energy E was

taken to be the band center, so that the localization
length diverges only at a single energy. The absence of
extended states within a finite range of energies is consis-
tent with the field-theoretic picture of Sec. V.B and was
proven for single Landau levels by Chalker (1987).

The inhuence of a correlation length o. = l on the be-
havior of the localization length can be seen in Fig. 17
(Huckestein et aL, 1992). Single-parameter scaling be-
havior is again observed for the data in the dotted re-
gion. The necessary width increases by a factor of 4
relative to the b-correlated potential. One reason for this
behavior is the increase in the efFective length scale by a
factor P = (I, + cr )/I, . Furthermore, due to the one-
dimensional limit (8.2), the How in Fig. 17 starts at values
of AM/M, smaller by a factor of P2 compared to o = 0.
For large systems, M & 64, the scaling behavior is the
same as for o = 0. Consequently, the data can be fitted to
the same scaling curve in Fig. 15, and the localization-
length exponent is again given by Eq. (8.4). The pre-
factor of the localization length is roughly independent
of the correlation length if the correlation-length depen-
dence of the bandwidth I' = I'o/P (Ando and Uemura,
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AEoc A (8.5)

with v = 2.4 + O.l. Equation (8.5) is obtained by as-

1974) is taken into account. This result is in contrast to
calculations by Ando (1989b) that showed a strong de-
pendence of the prefactor on the correlation length. Pre-
sumably, the difference can be attributed to the limited
system size, M & 20, of that calculation.

For significantly larger correlation length, it seems dif-
ficult at present to reach the system width necessary to
observe scaling behavior. For a. = 4t, Mieck (1990) esti-
mated a value for v of about 2.3.

In another approach to the localization problem, Huo
and Bhatt (1992) calculated the Chem numbers of the
eigenstates in fixxite systexns using Eq. (7.4). By studying
the size dependence of the disorder-averaged density of
states with nonzero Chem numbers, they found that a
finite portion of the states in the band center is extended
in the thermodynamic limit. They also found that, away
Rom the band. center, the width LE of the band of states
with nonzero Chem number decreased with the area A
of the system as

suming that the states are extended in an energy range
where the localization length ((E) oc ~E —E,

~

exceeds
the linear system size I, and A = I . They obtained
the same exponent from the scaling of average number
N of states with nonzero Chem number, N oc A", with
xI = 1 —1/2x.

Ando (1992) studied the transmission. through a dis-
ordered system with edges connected to two ideal leads.
Using a lattice model for the system, he calculated the
transmission probability through the system as a func-
tion of the width of the system. He found that the energy
range LE over which the transmission probability rises
from zero to unity scales with the width M of the system
as aE o M-'~ with v = 2.2 + O. t. In the edge-state
picture the finite conductivity near the center of the Lan-
dau levels is d.ue to backscattering between edge states
located at opposite sides of the sample. The backscat-
tering is facilitated by extended bulk states and hence
scales with the bulk critical exponent v.

Chalker and Daniell (1988) calculated numerically the
two-particle spectral function S(q, w; E) near the critical
energy E,. S(q, ur; E,) is the Fourier transform of

S(r, ~;E.) = ) ~(E. —h /2 —E.)~(E.+ h /2 —E~)& (O)&*(r)A(r)&~(O)

Employing current conservation, we can express
S(q, u; E) in terms of a wave-vector and frequency-
dependent difFusion coeffxcient D(q, ~),

p(E) h q'D(q, (u)

(u2+ (q'D(q, ~))'

0. .= e'p(E. )DO. (8.8)

Chalker (1987) has showxx that due to a sum rule the
difFusion coefficient D(qI ) at large values of qI is re-
duced,

D(qI ) oc (qI ) (8.9)

A nonzero value for g is related to the multifractal
properties of eigenfunctions at the mobility edge dis-

For a scale-invariant system, i.e. , at the critical energy
E, the diffusion coeIIIicient can depend. only on the di-

xnensionless quantity qI, where I = (hp(E, )cu) is
the size of a system with mean level spacing u. Com-
paring this result, which is supported by numerical cal-
culations (Chalker and Daxuell, 1988; Huckestein and
Schweitzer, 1994), with the dynamic scaling relation
(4.25) applied to the spectral function, we can conclude
that the dynamic critical exponent z = 2.

In the limit q, u -+ 0, the difFusion coefficient D(q, ~)
becomes the diffusion constant Do that is related to the
conductivity by the Einstein relation

cussed in Sec. IX. Chalker and Daniell obtain values
of xI = 0.38 + 0.04 and o' = 0.45e2/h.

Huo, Hetzel, and Bhatt (1993) improved the calcula-
tion of the conductivity at the critical point using the
same method as. Chalker and Coddington. They found a
universal value of 0' = 0.5e /h within uncertainties of
about 10% for seven different kinds of disorder potentials.
Using the Kubo formula (Aoki and Ando, 1981),they cal-
culated the Hall conductivity to obtain. 0'„= 0.5e /h.
While this result is trivial for random potentials, which
are particle-hole symmetric on the average, they showed
that it also holds for potentials with an asymmetric den-
sity of states, again with uncertainties of about 10%%uo.

B. Higher LandaIj levels

While the behavior of the localization length in the
lowest Landau level seems to be well described by a
single-parameter scaling relation, the situation in higher
Landau levels seems to be less clear. Published values for
the localization-length exponent v in the second Landau
level n = 1 range from 2.3 (Mieck, 1990) to 6.2 (Mieck,
1993). Indeed, it has been argued that the critical ex-
ponent v should be nonuniversal in higher Landau levels
and should depend on details of the disorder potential, in
particular, the correlation length o. of the disorder poten-
tial (Mieck, 1990; Mieck, 1993; Liu and Das Sarma, 1993,
1994). Only recently have these discrepancies been rec-
onciled with a universal value of v by considering correc-
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tions to single-parameter scaling behavior (Huckestein,
1994).

The first estimate for the exponent v in the second
Landau level was again given by Aoki and Ando (1985),
who found v = 4. The disorder potential consisted of
short-range scatterers in this case. The first systematic
study of the effect of the correlation length of the dis-
order was performed by Mieck (1990, 1993). He noticed
that the correlations of the matrix elements, Eq. (Al),
in the random Landau model become independent of the
Landau-level index for large correlation length o (Huck-
estein, 1992). Mieck obtained values of v = 6.2 for o. = 0,
v 3.7 for o = 0.5l, and v 2.3 for o = 4t, . In per-
forming a fit to the single-parameter scaling relation (8.1)
for the short correlation lengths, he used data from the
energy interval between 0.5I' and 0.8I'

Huckestein (1992) showed that for a correlation length
o. = l, the scaling behavior of the system is indeed the
same as in the lowest Landau level. Figure 18 shows the
normalized localization length. The data &om the dotted
region can be fitted to the scaling curve of Fig. 15. Note
that Fig. 18 differs from Fig. 17 for the lowest Landau
level only for small width. The behavior for short-ranged
correlations with u = 0, as shown in Fig. 19, is drastically
diferent &om both the behavior in the lowest Landau
level (Fig. 14) and the correlated potential (Fig. 18). The
important features of Fig. 19 are the slow but noticeable
decrease of A~/M as a function of M in the band center,
the very weak energy dependence near the band center
(E ( 0.3I'), and the strong energy dependence towards
the band tails (E ) 0.3I'). The first observation showa
that the system width is too small to reach the critical
region of single-parameter scaling, as AM(E, )/M = A, is
constant at the critical point. This prohibits an analysis
of the data in terms of a single-parameter scaling relation.
If the strong energy dependence in the tails of the band
is still analyzed using a single-parameter scaling relation,
large, nonuniversal values for v are obtained (Aoki and
Ando, 1985; Mieck, 1990, 1993; Huckestein, 1992; Liu
and Das Sarma, 1993, 1994). In view of the absence
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FIG. ]9. Normalized localization length A~/M in the second
(n = ]) Landau level for uncorrelated potential (o = 0) as a
function of system width M (in units of ~27rl, ) for energies
0.01 (s), 0.1 (~), 0.18 (E ), 0.3 (o), 0.5 (o), 0.65 (*), 0.8 (o),
and 1.0 (~ ) (in units of I'). Prom Huckestein (1992).

AM(E„P*) = MA (O, M '""'j;,,), (8.10)

of scale invariance in the band center and of the fact
that these energies are mostly outside the critical energy
range in the lowest Landau level, it seems highly doubtful
that these exponents describe the critical behavior of the
system.

The weak system-size dependence in the band center
is due to corrections to the single-parameter scaling laws,
as discussed in Sec. IV.B. To analyze these corrections,
we must connect the behavior in the band center for
short correlation length to the universal single-parameter
scaling at larger correlation length where the corrections
are too small to be observed. Prom the dependence of
AM(E, )/M on P and M in Fig. 20, we see that the
asymptotic single-parameter scaling regime is reached at
about P = 1.8. The corrections for smaller values of Pz
show single-parameter scaling as a function of P~ and M,
as expected &om two-parameter finite-size scaling with
one relevant and one irrelevant scaling index (see Sec.
IV.B and Huckestein, 1994). Equation (4.24) for the lo-
calization length AM reads
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FIG. 18. Normalized localization length AM/M in the second
(n = 1) Landau level for correlated potential (a = l ) as a
function of system width M (in units of ~2vrl, ) for energies
0.01 (*), 0.03 (~), 0.05 (w), 0.07 ( ), O. l (o), 0.18 (*), 0.3 (o),
and 0.5 (~ ) (in units of I'). From Huckestein (1992).
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FIG. 20. Normalized localization length AM/M at the band
center of the second Landau level as a function of P = (o' +
I,)/I, for system width M = 16 (o), M = 32 (~), M = 64 (o),
and M = 128 (*). After Huckestein (1992).
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where A[(M/((E)), 0] is the single-parameter scaling
function of Eq. (8.1). The physical nature of the irrele-
vant scaling field (;„is unclear, except that it depends in
some way on the disorder potential, particularly on the
correlation-length parameter P . In the present context,
Eq. (8.10) is an ansatz that describes the numerical data
well.

Relating the unknown irrelevant scaling field (;„ to
an irrelevant length scale (;„ccg;„""',we can rewrite
Eq. (8.10) as

(8.11)

This is a single-parameter scaling law similar to
Eqs. (8.1), but this time describing the Ilaw towards the
critical point as indicated by the negative scaling index.
By applying the same fitting procedure as that used in
Sec. VIII.A, we can obtain the scaling function A(0, x)
and the dependence of (;„on the correlation length of the
disorder potential. Figure 21 shows AM/M as a function
of M/(;„. The irrelevant length scale (;„ increases by
four orders of magnitude when the correlation length of
the disorder potential is reduced from 0.8l,. to 0 (Fig. 22).
The overall scale of (;„ is not given by the fitting pro-
cedure. It is approximately known by observing that it
becomes of the order of the magnetic length /, as the
correlation length approaches t . The asymptotic single-
parameter scaling governed by the localization length (
can only be observed for length scales larger than the
irrelevant length scale (;„.Systems numerically accessi-
ble at present are three to four orders of magnitude too
narrow to reach the asymptotic single-parameter scaling
regime. The e8'ects seen in all previous numerical calcu-
lations for short-ranged. potentials in the second Landau
level do not re8ect the asymptotic single-parameter scal-
ing regime, but are dominated by corrections due to irrel-
evant scaling fields. The fact that these corrections can
be analyzed using a two-parameter scaling relation shows
that the system sizes accessible in numerical simulations
are, in fact, suKcient to reach the critical regime. It is
just the description in terms of single-parameter scaling
laws that becomes valid only after the irrelevant length

I I I

I I I I
I

I I I I

10000—

100—

I

1.0 1.5 2.0
p2

FIG. 22. Irrelevant length scale (~„(in units of ~2nl ) as a
function of P . From Huckestein (1994).

scale (;„is exceeded.
For small values of M ~"'"~(;r» we can expand the

function A in Eq. (8.10) to obtain

(8.i2)

Prom the width dependence of A —A in Fig. 23, we
obtain the irrelevant scaling index y;„= —0.38 + 0.04
(Huckestein, 1994). For M/(;„& 0.1, this exponent de-
scribes the data well. This suggests that, at least in this
regime, corrections due to further irrelevant scaling fields
with scaling indices less than y;„are negligible.

The structure of the fixed point described by the two-
parameter scaling relation

(8.i3)

is identical to the one expected by Pruisken (1987) for
the delocalization fixed points at half-integer o. „(see
Fig. 13),

Here Ao;z are the linear deviations from the fixed-point
values of o,~. Near the critical point, Ao „ is propor-
tional to AE, so that the scaling with respect to the first
variables in Eqs. (8.13) and (8.14) is the same. For the

0.5

0.1

I I I

0.001 0.01 0.1

~/(irr

I

10

FIG. 21. Scaling tovrards the fixed-point value A, = 1.14 as
a function af M/(~„ far the data shawn in Fig. 20. Fram
Huckestein (1994).

0 05

0.001 0.01 0.1

M/(irr

1 10

FIG. 23. Deviations of the scaling function A from its asymp-
totic value A . From Huckestein (1994).
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(0 —l. exp(vr'o' ') . (8.15)

Using the result for the conductivity in the SCBA for
short-range scatterers (Ando and Uemura, 1974), we find
the dependence on Landau-level index n,

(o(n) = l, exp (2n+ 1) (8.16)

While this length scale is of the order of the magnetic
length in the lowest Landau level, it is more than three
orders of magnitude larger for n = 1. This explains why
the corrections are not observed in the lowest Landau
level even for b-correlated potentials. The strong varia-
tion of the irrelevant length scale in Fig. 22 can also be
understood from the range dependence of the conductiv-
ity in the SCBA and Eq. (8.15). For n = 1 the conduc-
tivity decreases by about a factor of 6 between o = 0 and
cr = l, . The corresponding length scale (o decreases from
about 10 l to about one magnetic length. In the lowest
Landau level the conductivity changes by a factor of 2,
and (o decreases by only about the same factor.

Direct calculations of the critical value of the longi-
tudinal conductivity o are missing in higher Landau
levels. Ando's results for the Thouless numbers for a
lattice system with several Landau levels do not show
a strong Landau-level dependence as expected from the
SCBA (Ando, 1989a). It has been suggested that zero-
temperature quantum phase transitions in two dimen-
sions should have a universal value for the conductivity
at the transition (Fisher, 1990; Fisher et al , 1990; Lee.
et al. , 1992). Lee, Wang, and Kivelson (1993) argued
that the critical value 0* is related to the fixed-point
scaling amplitude A, . They obtained o'* = 1/2 for
A, = 1/ln(1 + i/2), which is very close to the best-fit
result A, = 1.14 j 0.02 (Huckestein, 1994). Since the
scaling curve, Fig. 15, and, in particular, A, is indepen-
dent of Landau-level index, this would support the notion
of a universal value of cr* = 1/2, in accordance with the

second variables, (;„and b.o, a direct relation is not
obvious. Though both quantities depend on the corre-
lation length of the potential, it is not clear that (;„is
proportional to Lo.

We can understand the dependences of the corrections
to single-parameter scaling on the correlation length of
the disorder potential and the Landau-level index in the
field-theoretical &amework. As discussed in Sec. V.B,
the mean-field approximation to the field theory is given
by the noncritical self-consistent Born approximation
(SCBA; Pruisken, 1987). To observe the localization-
delocalization axed point brought about by Buctuations
around the mean-field saddle point, the system size has to
exceed the localization length in the SCBA. The scaling
in this approximation is described by the corresponding
unitary nonlinear o. model without topological term and
is given by the P function in Eq. (5.10). The localiza-
tion length is obtained by integrating the leading term
in Eq. (5.10) for the unitary case. In terms of the con-
ductivity cr on small length scales, it is given by (Wei
et aL, 1985)

numerical calculations in the lowest Landau level (Huo
et aL, 1993). Landau-level independence of the critical
conductivity is also a feature of Khmel'nitskii's fIow dia-
gram) Fig. 13.

C. Network model

The first single-parameter scaling function for the
quantum Hall effect (@HE) was obtained by Chalker and
Coddington (1988). They studied the scaling behavior
of the network model described in Sec. III.D using the
transfer-matrix method of Sec. VI.B. Their scaling func-
tion is not reproduced here, as it is identical to Fig. 15. In
fact, Fig. 15 was obtained by jointly fitting data from the
network model and the random-Landau-matrix model for
n=0, 0 =0;n=l, u=l, ;andn= l, o =L„toa
single scaling function. The exponent v was estimated
by Chalker and Coddington to be about 2.5 + 0.5. The
large uncertainties are due to the nonlinear dependence
of the parameter 0 on energy, Eq. (3.53). Prom the fact
that the scaling functions of the models are identical, it
follows that the exponents are identical, too.

The network Inodel has the remarkable feature that
it shows very small finite-size corrections to single-
parameter scaling. In contrast to the systems discussed
above, the data are already close to the scaling function,
Fig. 15, for small system width. This behavior can be un-
derstood from the diBerent one-dimensional limits of the
models. In this limit the normalized localization length
of the network model is given by (Jaeger, 1991)

AM(E)
ln 2+ lncosh

1
(8.17)

where p is related to the energy E by Eq. (3.54), In con-
trast to Eq. (8.2), the network model retains an energy
dependence in the one-dimensional limit, and the value
at the critical energy AM(E, )/M = 1/ln 2 is only about
20% larger than the fixed-point value A, .

A generalization of the network model in which the
0's are taken to be random variables was discussed by
Chalker and Eastmond (1993) and Lee, Wang, and Kivel-
son (1993). From finite-size scaling studies, they find
that this generalization is an irrelevant perturbation of
the original model. If the distribution of the 0 s is nar-
row, the scaling behavior is unchanged. Lee, Wang, and
Kivelson obtain v = 2.43 + 0.18 in this case. In the
limit that the width of the distribution of 0 s goes to in-
finity, the system behaves classically, since each saddle
point transmits into only one of the two possible links.
Lee, Wang, and Kivelson find single-parameter scaling
with v = 1.29 + 0.05 compatible with the classical per-
colation exponent 4/3. The classical percolation fixed
point is unstable against quantum effects, and the sys-
tem Bows towards the quantum fixed point described by
v = 2.35 + 0.03. Close to this fixed point the corrections
to single-parameter scaling due to the finite width of the
distribution of 0's can be analyzed in the same way as
that discussed above. It was in this context that Chalker
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and Eastmond (1993) pioneered the analysis in terms of
irrelevant scaling fields in the context of the @HE. They
obtained the irrelevant scaling index y;„= —0.38+ 0.02,
in agreement with the results in the previous section.
However, for the network model the corrections to the
fixed-point value A are negative, as opposed. to Fig. 21
where they are positive.

D. Effects of' Landau-level coupling and spin-orbit
interaction

When the strength of the disorder is not negligible
compared to the cyclotron energy Ru, one has to go
beyond the single-Landau-level approximation and in-
clude the effect of Landau-level coupling by the d.isor-
der potential. In this context two different questions are
important. For weak Landau-level coupling such that
each Landau level still contains a critical energy, does
the Landau-level coupling change the critical behavior at
these critical energies? On the other hand, for strong dis-
order the system is expected to become insulating even-

tually (cf. Sec. V.A). In this limit the question is, How

do the divergences in the localization length disappear
with increasing disorder? Numerically, these questions
are hard to answer, since the inclusion of several Landau
levels necessitates much smaller systems; so Rnite-size
effects become very prominent. It is also not obvious ex-
actly how many Landau levels must be taken into account
to capture the essential physics.

The first question has been approached by Liu and
Das Sarma (1994). They considered the two lowest Lan-
dau levels and studied the scaling behavior of the lo-
calization length as a function of the strength of the
Landau-level coupling for short correlation length of the
potential. They found that, while in the lowest Lan-
dau level the critical exponent v does not change when
the Landau-level coupling is included and is close to the
value of Eq. (8.4), in the n = 1 Landau level there is a
change in the exponent. While Liu and Das Sarma erro-
neously concluded from these data that Landau-level cou-

pling is essential for universal scaling for short correlation
length, we can understand this behavior by considering
the influence of Landau-level coupling on the magnitude
of corrections to scaling. With increasing Landau-level
coupling, the inter-Landau-level scattering increases and
the conductivity on short length scales decreases. Prom
Eq. (8.15) we see that this drastically decreases the char-
acteristic length scale for single-parameter scaling. The
system thus moves closer to the quantum critical point,
and 6nite-size corrections become smaller.

The dependence of the critical energies on Landau-level
mixing has been studied by Ando, both for continuous
systems (1984b) and for lattice systems (1989a), using
the Thouless number. For 8-function scatterers and a
Hamiltonian projected onto the three lowest Landau lev-

els, he Gnds that the localization length diverges at criti-
cal energies in each Landau level and that these energies
move upward in energy when the Landau-level coupling

E. Presence of' a periodic potential

In this section we want to consider the influence of
an additional periodic potential on the scaling behavior
of the integer @HE. For definiteness, let us consider a
periodic potential of the form

V(c) = 4Eo cos (v 2oc/o) cos (s/2scy/o) . (8.18)

In the absence of disorder, each Landau level splits into

p subbands if n = 2nl2/a2 = q/p (Azbel', 1964; Hofs-
tadter, 1976) and the Hall conductivity in the gaps be-
tween these subbands is quantized in integer multiples
of e2/h (Thouless et al. , 1982). While the contribution
of each subband to the Hall conductivity takes on large
positive and negative values if p is large, the sum of these
contributions over a whole Landau level equals unity. We
see that, at least in the absence of disorder, the additional

is increased. It should be pointed out that when the level
broadening becomes comparable to the Landau-level sep-
aration, the localization length becomes very large, even
for energies between the original Landau levels. For lat-
tice systems, the critical energies also move upward and
eventually vanish. The square-lattice system studied by
Ando is symmetric with respect to the center of the tight-
binding band, and for every Landau level below this cen-
ter there exists another Landau level above with the op-
posite Hall conductivity. When two Landau levels merge
in the center of the tight-binding band, their contribution
to the Hall conductivity vanishes, and so does the associ-
ated critical energy. Due to this symmetry for the lattice
system, it is not clear whether the upward motion of the
critical energy with increasing Landau-level coupling is a
generic feature.

Ando (1986) calculated Thouless numbers and Hall
conductivities for a real-space potential with dense b-

function scatterers, taking into account the mixing of the
three lowest Landau levels. He obtained an asymmetric
0 —0 „Aow diagram, in contrast to Khmel'nitskii's
conjecture in Fig. 13. In view of the rather small system
size of 25 magnetic lengths, one must wonder whether
this discrepancy is due to corrections to scaling in the
numerical calculation.

The inBuence of spin degeneracy on the critical be-
havior has been studied by Lee and Chaiker (1994) and
Wang, Lee, and Wen (1994b) in an extension of the net-
work model. To account for the spin degree of freedom,
two quantum-mechanical Buxes are carried by each link.
The random phases on the links are then replaced by ran-
dom U(2) matrices. The numerical results of both cal-
culations support the existence of two separate plateau
transitions even in the spin-degenerate case. The critical
exponent of each transition is in agreement with Eq. (8.4)
for single Landau levels. If, on the other hand, the data
are analyzed assuming a single critical energy over a lim-
ited range in energy, a fit with an exponent v 5.8 is
possible.
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periodic potential is quite relevant in that it completely
changes the phase diagram and produces phases with new
quantized values of the Hall conductivity. Under the in-
Quence of disorder, the subband gaps will eventually be
filled in and the intricate structure of the phase diagram
will evolve into the simple phase diagram of the integer
QHE, Fig. 13.

The phase diagram in Fig. 24 was obtained by perform-
ing finite-size scaling studies for a system with a = 3/5
as a function of the ratio I'/Eo of the strength of disorder
to periodic potential (Huckestein, 1993). The Hall con-
ductivity was calculated from the Diophantine equation

pared to y;„; so they are not observed in the numerical
simulations.

The critical behavior at the other Bxed points intro-
duced by the periodic potential is still an open question.
Numerically, it is a difEcult problem, since the 6nite-
size corrections to single-parameter scaling become very
strong and the position of the critical energy is not known
a priori as it is for the critical state at the center of the
Landau level. Since the new 6xed points are connected
to the band-center fixed point (see Fig. 24), one could
conjecture that the critical behavior is the same for all
6xed points.

{8.19)

where 0 is the Hall conductivity in units of ez//i; t labels
the subband gap; and s is an integer (Thouless et al. ,

1982). In the presence of disorder, the Hall conductivity
can change only when a critical energy moves through
the Fermi energy. For strong disorder, there is only one
critical energy at the center of the Landau level where
the Hall conductivity changes from zero to 1, while for
weak disorder all phases of the nondisordered system are
recovered.

The preceding discussion raises the question of whether
or not a periodic potential is a relevant perturbation
of the fixed point at the center of the Landau level.
For a fixed system width, the ratio AM(E, )/M increases
with increasing strength of the periodic potential and de-
creases with increasing system width for fixed Eo (Huck-
estein, 1994). The analysis of this behavior shows that
it is compatible with the scaling due to an irrelevant
scaling field according to Eq. (8.11). The scaling index
obtained in this way is, within error bars, the same as
in the second Landau level and in the network model,
y;„= —0.38 6 0.04. Thus the periodic potential is irrele-
vant at the fixed point at the center of the Landau level.
The universality of the irrelevant scaling index suggests
that further scaling indices are sufBciently small com-

IX. MULTIFRACTAL ANALYSIS

So far our discussion has focused on quantities, like the
localization length, that are self-averaging in the ther-
modynamic limit, even at the localization-delocalization
transition. These quantities are a rather special class.
In general, phase transitions are accompanied by large
Buctuations in physical observables. At the transition
where the natural length scale, the localization length,
diverges, these Huctuations appear on all length scales.
In this section we want to analyze critical Huctuations of
local observables in terms of multi&actal measures. %"e

shall first outline the language of multi&actal analysis,
then apply this apparatus to computer simulations, and
6nally put this discussion into the context of the scaling
theory.

A. Generalized dimensions and singularity strengths

The multi&actal analysis of measures was pioneered by
Mandelbrot (1983) and further developed, among others,
by Hentschel and Procaccia (1983), Halsey et aL {1986),
and Chhabra and Jensen (1989). A recent review in the
context of the localization-delocalization transition was
written by Janaen (1994).

Consider a normalized measure on a two-dimensional
square of linear dimension L,

2.0— (9 1)

1.0—

0.5—
l4

o.o ,1.5 —1.0 —0.5 0.0 0.5 1.0 1.5
& /E()

FIG. 24. Phase diagram of the lowest Landau level in the
presence of a periodic potential with n = 3/5 unit cells per
Bux quantum. Indicated are the positions of the critical en-
ergies and the Hall conductivity in the difFerent phases. The
bars at zero 1'/Eo show the subbands in the absence of disor-
der.

An example of such a measure is the local density, i.e. ,
the squared modulus ~@(r)~ of an eigenfunction of the
Hamiltonian. The large Huctuations of this quantity can
be seen in Fig. 25, where the local density for a state at
the center of the lowest Landau level is shown.

With this measure we can define box probabilities p(l)
by integrating the measure over squares A(l) of linear
dimension l,

At least for certain values of n.
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FIG. 25. Local density ~vP(r)~ of an eigenstate at the center of the lowest Landau level of a lattice system with 150 x 150 sites.
From Huckestein and Schweitzer (1992a).

d'r l&(r) I'.

(p(l))L, oc A,

where the average is defined as

(9.3)

In our example p(l) is just the probability of finding an
electron in the box O(l). The dimension of the support
of the wave function is d = 2, since the wave function
has only isolated zeros. By covering the system with
squares A(l), we obtain K(A) = A difFerent box prob-
abilities p;(l), where A = ljI. Due to the normalization

p;(l) = 1, the average box probability scales withx(w)

the ratio A as

i (q) = (q —1)d. We therefore define generalized dimen-
sions D(q), such that

~(q) = (q —1)D(q). (9.6)

We need to clarify under which conditions we expect
power-law scaling as in Eq. (9.5) to hold. As already
pointed out, the localization length ( must not set a rel-
evant length scale. For 6nite system size I, this gives
the condition I (( (. For short length scales, micro-
scopic lengths become important. In the quantum Hall
system, wave functions are smooth on scales of the mag-
netic length or the correlation length of the disorder. In
order to see power-law scaling, we therefore need L &( l,
where / is a microscopic length. In summary, the con-
dition for power-law scaling is

(9 4)

The scaling law (9.3) is not useful in distinguishing be-
tween localized, extended, and critical wave functions, as
it holds for all normalized wave functions. This situa-
tion changes if we look at the scaling of moments of the
box probabilities. In the absence of length scales, these
will also show power-law scaling but with nontrivial ex-
ponents 7 (q),

(9.5)

Here q is real, but not necessarily integer. For a ho-
mogeneous measure, p;(l) = p(l) = I/K(A), one finds

In the limit I ~ oo, this condition is fulfilled only at the
critical energy where the localization length diverges. In
this limit the generalized dimensions are given by

(q —1)D(q) = lim
1n(p'(A))1,

&-+0 ln A
(9 8)

For finite system size, the condition (9.7) is met over
a Gnite range of energies. In this case the generalized
dimensions can be estimated from the slope of ln(p'i(A)) I,
vs ln A over a range of parameters that satisfies Eq. (9.7).

For q = 0, we find from Eq. (9.5) that D(0) = d is the
dimension of the support of the measure. The exponent
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D(2) is related to the scaling exponent d* of the inverse
participation ratio, defined by Wegner (1980),

P,. p, in@,;
1 A

(9.i5)

(9 9)

Formally, this equation is obtained from Eq. (9.5) for

q = 2 in the limit I -+ 0. In this limit, d = D(2). In the
limit q —+ 1, »~'i ii can be expanded in Eq. (9.8), and Di
is given by

(»(A) ln»(A))g
~h~o (»(A)}1,ln A

(9 1o)

D(1) is sometimes called the information dimension.
The function D(q) has the following analytic prop-

erties, which we only sketch here. For a complete dis-
cussion, see Hentschel and. Procaccia (1983) and Halsey
et al. (1986). D(q) is a monotonically decreasing, pos-
itive function of q bounded from above and below by
D = D( oo) an—d D = D(oo), respectively, the
generalized dimensions that describe the scaling of the
minima and maxima of the measure.

Another way of expressing the multifractal proper-
ties of a Ineasure is through the spectrum of singularity
strengths f(a) It is r.elated to the function 7(q) by a
Legendre transform; i.e. , we change from the variable q
to the variable

dr(q)
dq

f(n(q)) is then implicitly given by

(9.ii)

&(~(q)) = ~(q)q —~(q) (9.i2)

I '(q &) = I»'(I)]' ) .[»'(l)1' (9.i3)

that act as q microscopes on the original measure. For
each value of q, the corresponding values of n(q) and

f (q) = f(n(q)) can be calculated f'rom

( )
Q, kiln»i

1 A
(9.i4)

From the analytical properties of the Legendre trans-
form and the function w(q), one finds (Chhabra and
Jensen, 1989) that f (n) is a positive function of negative
curvature with a single maximum. o. ranges from D to
D . At these points f(n) vanishes with infinite slope.
For q = 1, f(n) has slope 1 and f(n(1)) = n(1) = D(1).
It takes on its maximum value f (no) = d for q = 0, where

no ——n(0) ) d.
Chhabra and Jensen (1989) introduced a method for

calculating f(o.) directly. It has the advantage of being
numerically more stable than calculating r(q) and per-
forming the I egendre transform (9.12). In addition to
the box probabilities, we need to define a one-parameter
family of normalized probabilities

(A.(», A)} = d»P(», A)A(»). (9.i6)

Changing the integration variable to o. = ln»/ln A and
defining P(n, A)dn = P(», A)d», we see that Eq. (9.16)
becomes

(&(» A)} = dnP(n, A)P(A ) (9.17)

From this we recover Eq. (9.5) for the scaling of the mo-
ments of » if (Pook and JanQen, 1991)

P(~, A) ~ A-~~-~+", (9.i8)

where f (n) is given by Eq. (9.12). We see that f(o.) de-
scribes the scaling of the whole distribution of box prob-
abilities, while the v (q) describe the scaling of certain
moments of that distribution.

The connection between the shape of the f (n) curve
and the distribution function P(n, A) becomes more
transparent if we approximate the maximum of the f (o.)
spectrum by a parabola,

y( ) d
(~ ~&)

4(no —d)
'

Note that this parabolic approximation depends on only
one parameter o.o, besides the dimension d of the sup-
port of the measure, which follows from the property
f(n(1)) = n(1). The corresponding probability distri-
bution of the box probabilities is log-normal,

P (ln Pj ln A, A) oc exp
i

( (ln P —as ln A)
2 l

4no —d lnA )
(9.20)

We see that the absence of length scales that is reHected
in the f (o.) spectrum corresponds to broad distributions
of local quantities like the box probabilities. The param-
eter o,o that defines the parabolic approximation is the
value of n at the maximum of f (a) and describes the
scaling of the typical value»i&~(A) of the box probability
defined by

Geometrically, the f (n) has a quite intuitive interpre-
tation. If a certain box probability»;(I) scales with a sin-

gularity strength n, i.e. , »;(1) oc I, then f (n) is the frac-
tal dimension of the set of boxes with singularity strength
between o. and o. + do. .

Another aspect of the f(a.) spectrum becomes clear
when the average (9.4) is interpreted as an average over
an ensemble instead of as an average over the whole mea-
sure (Pook and Janaen, 1991; Fastenrath et al. , 1992;
Janoen, 1994). In terms of the distribution function

P(», A), the average of a function A(») can be written
as

»~yp(A) = expI(ln»(A)}] oc A '. (9.21)
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The multifractal density Auctuations lead to anoma-
lous difFusive behavior (Chalker and Daniell, 1988). This
is reHected in power-law decay of density correlations
and slow decay of temporal wave-packet autocorrelations
(Huckestein and Schweitzer, 1994). The exponent r/ of
density correlations,

2.()—

f(oi, „

I I I I I I

14( )&( +R)I' 0.5—

p2(/) oc /
" (9.23)

A comparison with Eqs. (9.5) and (9.6) yields the result

is related to the generalized dimension D(2). If we re-
place in Eq. (9.4) the average by an ensemble average
and express p2(/) as an integral over (9.22), we obtain

0.0
0.5 1.() 1.5 2.() 2.,") 3.0 3.5 4.0

o.(q)
FIG. 26. The f(n) spectrum of the local density of the eigen-
state shown in Fig. 25. Crosses show the errors in f(n(q))
and n(q) for q = —2, —1, 1, and 2 (from right to left). From
Huckestein et a/. (1992).

r/ = d —D(2). (9.24)

At fm.nite wave vector and frequency, the exponent q
describes the decay of the wave-vector and frequency-
dependent diffusion coefficient [Eq. (8.9)]. The value
r/ = 0.38 + 0.04 obtained by Chalker and Daniell (1988)
from this quantity agrees well with Eq. (9.24) and D(2) =
1.62+0.02 obtained by Huckestein and Schweitzer (1994).

The anomalous diffusive behavior can be seen directly
in the spreading of wave packets (Chalker and Daniell,
1988; Huckestein and Schweitzer, 1994). While the vari-
ance B(2, t) = Jd2rIrIzIQ(r, t)I~ of a wave packet p(r, t)
at the critical point grows linearly in time, which merely
reQects the scale invariance of the system, thp return
probability p(t) = IP(0, t) I

to the origin is enhanced and
scales like

1 1
ti —g j2 tD(2}/2 ' (9.25)

A nonzero value of g should be observable in mea-
surements of the Coulomb drag in double layer systems
(Shimshoni and Sondhi, 1994) and in hot-electron re-
laxation rates and. electron-electron and electron-phonon
scattering rates (Brandes et a/. , 1994).

The scaling of the two-particle spectral function
S(q, ur) with q /ur allows us to relate the correlation di-
mension D(2) of the local density to the correlation di-
mension D(2) of the spectral measure associated with the
local density (Ketzmerick et a/. , 1992; Huckestein and
Schweitzer, 1994). In two dimensions, D(2) = D(2) j2.

2.()—
I I I I I

not only describes a single eigenstate, but is a universal
feature of the system studied. While these calculations
were performed for a tight-binding Hamiltonian, the re-
sults agree with calculations by Pook and Janmen (1991)
for a real-space potential on a square of linear size 70l;
they obtained o.p = 2.3 + 0.07, D = 0.95 6 0.1, and
D = 3.7 6 0.1 (Janoen, 1994).

These calculations give a strong indication that the
f(n) spectrum of the local density is universal at the
critical point and that exponents, such as np, are suit-
able for describing the phase transition. It is not clear
to what extent this universality holds for other physical
observables. Calculations by Huckestein and Schweitzer
(1992a) for the equilibrium current density Ij(r)I as the
local observable (see Fig. 27); by Schweitzer (1992) for
the local magnetization Irn(r)I = Ir x j~; and by Fasten-
rath, Janaen, and Pook (1992) for the Thouless num-
bers give the same spectrum within the error bars and
support the notion of universality. On the other hand,
it is easy to construct multifractals with diB'erent f(n)
spectra. Given a normalized multifractal measure p,
the normalized moments p generate new measures with
nb' }(q) —mn(mq) —7(m) and fbi' I(nb ]) —f(n(qm))
(Jangen, 1994). While this f(n) spectrum is simply re-
lated to the spectrum of p, it is not identical.

B. Universality cf multifractal spectra

In this section we review some numerical results about
f (n) spectra for different models of the quantum Hall sys-
tem and different physical quantities. We start with our
prototype measure, the local density ~@(r)I . The f(n)
spectrum in Fig. 26 is calculated for the density shown in
Fig. 25. In addition to the numerical data, the parabolic
approximation (9.19) is shown with no ——2.29 + 0.02
(Huckestein et a/. , 1992). The variation of no for difer-
ent eigenstates in the energy range where ((E) &) I is
of the same order. This shows that the f (n) spectrum

(o.} 1.()—

0,5—

I I I I I I

0.5 1.0 1.5 2.() 2.5 3.0 3.5 4.0
o.(q}

FIG. 27. The f(n) spectrum of the local equilibrium current
density of the eigenstate shown in Fig. 25. Crosses show the
errors in f(n(q)) and n(q) for q = —2, —1, 1, and 2 (from
right to left). From Huckestein and Schweitzer (1992a).
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C. Multifractality and scaling

We now want to relate the results about the multi-
fractal properties at the quantum Hall transition to the
discussion about scaling in the previous sections.

Bauer, Chang, and Skinner (1990) considered the
scaling of generalized inverse participation ratios [cf.
Eq. (9.9)j

(9.26)

2.45—

2.3B

2.30—

I—3.10 —3.05 —3.00

E/V
as a function of system size L and distance from the
critical energy AE. Wegner (1980) introduced critical
exponents m(q) defined by

(9.27)

Using a standard finite-size scaling ansatz for P~~~,

P(~)(L, E) oc L ( )F (L ~ AE), (9.28)

we find that the condition that P('i) is finite for E g E,
leads to the scaling relation

vr(q) = v~(q). (9.29)

In particular, for the inverse participation ratio, one finds

vr(2) = vD(2). Hikami (1986) calculated the exponent
vr(2) = 3.8 + 0.4 for the lowest Landau level. Neglecting
the multi&actal structure of the wave functions and as-
suming P(z) oc ( 2, he concluded v = ir(2)/2 = 1.9+0.2.
Using D(2) = 1.62 +0.02 obtained from numerical calcu-
lations (Huckestein and Schweitzer, 1994) and the correct
relation (9.29), we obtain

v = 2.4 + 0.3,

crp(E) = A(L "AE) = crp(E, ) + aL ~ ~b, E~ +
(9.31)

The linear energy depend. ence is compatible with the nu-
merical simulations presented in Fig. 28 (Huckestein and

in agreement with the result (8.4) obtained from finite-
size scaling of the localization length.

In the spirit of Shapiro (1987), one can try to study
the scaling of the whole distribution of box probabilities
P(p, A). At the critical point, this distribution becomes
universal and is determined by the f(n) spectrum. The
bulk of the distribution is log-normal with deviations in
the tails of the distribution that account for the differ-
ences between the parabolic approximation and the true

f (n) curve in Fig. 26. In this limit the parameter np char-
acterizes the whole distribution. Away from the critical
energy, as long as ((E) » L, the distribution will still
show power-law scaling (9.18). Since the system moves
towards the localized regime, the typical box probability

pt„~ will decrease, and, by Eq. (9.21), np will increase.
If single-parameter scaling of the distribution holds, o.o
must obey a Bnite-size scaling law,

FIG. 28. Energy dependence of np(E) near the center of the
lowest Landau band. The straight line is a guide to the eye.
From Huckestein and Schweitzer (1992b).

Schweitzer, 1992b), but these calculations do not rule out
a quadratic energy dependence. For larger distances from
the critical energy, when ((E) becomes smaller than the
system size L, power-law scaling breaks down on length
scales larger than ((E). Equation (9.18) no longer de-
scribes the whole distribution P(p, A), and np loses its
meaning as the single parameter describing the distribu-
tion.

Employing conformal invariance in two-dimensional
systems, Cardy (1984) was able to show that the scaling
amplitude A, = limM~ M/AM of the inverse correla-
tion length AM of the correlation function of an operator
on a cylinder is related. to the scaling dimension x of the
operator in the plane by

A = 2vrx. (9.32)

1
A )

~(crp —d)
(9.33)

which yields A = 1.1+0.1, in accordance with the finite-
size scaling result. A similar relation has been derived by
Ludwig (1990) for a random 2D ferromagnet.

The discussion of multi&actals can be extended to the
description of non-normalized observables Q (Ludwig,
1990; Duplantier and Ludwig, 1991; Pook and 3anaen,
1991; Janoen, 1994). If the normalized observables

For the local density, one is tempted to identify A with
the amplitude derived from the localization length on the
cylinder, and x with the exponent rI/2. This argument
neglects the broad distribution of the local density and
the corresponding broad distribution of the correlation
functions. Instead of mapping a single correlation func-
tion from the plane onto the cylinder, one needs, in the
presence of broad distributions, to map the whole dis-
tribution function. Since the scaling amplitude A, was
extracted by averaging the logarithm of the density corre-
lation function, the corresponding scaling dimension de-
scribes the scaling of the typical correlations 2: = o.o —d
(Janoen, 1994). Noting that, by convention, the localiza-
tion length is defined by the absolute value of the Green's
function, we obtain
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p~&j = Q/ P,. Q form a multifractal measure, the distri-
bution of Q can be described by the f+j(n~@) spectrum
of p~&~ and the normalization exponent Xt@, de6ned by

) Q(l) oc A (934)

Analogous to Eq. (9.21), the scaling of the typical value

Qq~~ is then given by (JanQen, 1994)

Q,rp(t) = exp[in(Q(l))] oc l ' + (9.35)

Janoen (1994) interpreted Qt,z~(l) as the value of Q for
a system af size I, and the average in Eq. (9.35) as an
average over an ensemble of systems. If single-parameter
Bnite-size scaling holds for Qq~~, and if Q~~~ is scale in-
variant at the critical point, then close to the critical
point

Qtrp(l) = Q,
* + al'~"t.

The box observable Qt~~ ——Qt„~ —Q~„ thus scales like

Qtrp oc l ~" (9.37)

close to the critical paint. Identifying Eqs. (9.35) and
(9.37) relates the critical exponent v of the localization

length to the multi&actal exponents o,o and XI~~,

1/. =.P + X~~~. (9.38)

X. DISCUSSION AND CONCLUSIONS

Having reviewed the experimental and theoretical re-
sults, we are now in a position to compare both. The
most important result of the comparison is that both ex-
periments and nuIIlerlcal slIIlulatloIls show slIIlllaI' scal-
ing behavior. The plateau transition in the integer @HE
can thus be understood as a continuous phase transi-
tion of noninteracting electrons with a single diverging
length (. If we focus an spin-split Landau levels, we
see a remarkable agreement in the value of the exponent
v, describing the divergence of the localization length
(, between experiment [2.3 + O. l (Koch et a/. , 199lb),
2.4 + O.l (Wang eg aL, 1994a)] and numerical simula-
tion [2.35 + 0.03 (Huckestein, 1992)]. This suggests that
the temperatures in these experiments are, in fact, low
enough for observing the critical behavior, and inBuences
of the 6nite width of the Fermi-Dirac distribution are
negligible.

Fastenrath, Jan6en, and Pook (1992) calculated Thou-
less numbers near the center of the lowest Landau level
for systems of varying size. They found that the typical
Thouless number gtr~(l) = exp[{lug(l))] scales accord-

ing to Eq. (9.35), with aa = 2.25 + 0.05 and &~gj
—1.75 + 0.05. Using Eq. (9.38), we find & = 2.2 + 0.3, in
accordance with Eq. (8.4).

From the value of v and the value of 1/vz = 0.41 +0.04
measured in the dynamic scaling experiment of Engel
et aL (1993), we obtain the dynamic critical exponent
z = 1.0+ 0.1. Dynamical scaling can also be used. to
explain the temperature dependence of the transition.
In the approach outlined in Sec. II.A, the temperature
sets the effective system size I,g oc T "~ that must
be compared to the localization length ( oc ~AE~ . In
this interpretation, the measured temperature exponent
v, = p/2v. In the dynamic scaling interpretation, the
temperature enters as the frequency range m = k~T/5
over which excitations are present in the system. Scaling
as a function of wr w'ith v oc (' leads to the identifi-
cation I" = 1/vz, in agreement with the results of Wei
et aL (1988, 1990) from experiments on InGaAs/InP
heterostructures and on A1GaAs/GaAs heterostructures
(1992). However, Koch et aL (1991a, 199lb), using
AlGaAs/GaAs heterostructures, find values of I" that
vary between samples. Wei et al. (1992) argue that
there is a characteristic temperature below which univer-
sal scaling behavior is observed and that this temperature
is much lower in AlGaAs/GaAs than in InGaAs/InP. The
agreement between the dynamic scaling experiment and
the temperature scaling below the characteristic temper-
ature suggests that these experiments are indeed probing
the asymptotic low-temperature regime described by the
dynamic exponent z. Which interpretation describes the
experiments correctly depends, presumably, on the rela-
tive size of L,~/( and kJBTv /h

Polyakov and Shklovskii (1993a, 1993b) argue that the
mechanism for the conductivity peak broadening is vari-
able range hopping in the presence of Coulomb interac-
tions. They de6ne the peak width by the condition that
the variable range hopping conductivity on the plateaus
become comparable to e /Ii, and they derive expressions
for the peak width that show power-law scaling as a func-
tion of temperature and frequency with an exponent 1/v.
Obviously, this agrees with experiment and with the ar-
guments in the previous paragraphs with p = 2 or z = 1.
However, in this approach, one would expect the expo-
nents of the system size and temperature dependence to
be the same, contrary to the experimental findings of
Koch et aL (199lb).

We further need to understand why some experiments
see power-law scaling with temperature but with nonuni-
versal exponents. This difference could be due to the dif-
ferent ranges of the d.isorder potentials in the different
materials. In InGaAs/InP, the electron gas is formed in
the IncaAs, which is an alloy with a potential presum-
ably varying on an atomic length scale. By contrast, in
AlGaAs/GaAs heterostructures, the electron gas is sit-
uated in the GaAs, which forms a perfect crystal. In
conventional heterostructures, doped in the AlcaAs to
increase the mobility, the major scattering mechanism is
remote ionized donor scattering. The samples used in
the experiments by Koch et al. were additionally doped
in the plane of the electron gas. Since this introd. uces
charged impurities into the quasi-two-dimensional gas, it
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is not obvious that the range of the scatterers is actually
sufficiently difFerent in both materials. An increase in
the correlation length of the disorder potential leads to
an increase in the irrelevant length scale (;„and hence
to an increase in finite-size efFects.

The temperature dependence of difFerent phase-
breaking mechanisms could also account for difFerent
characteristic temperatures. At sufIiciently low tem-
peratures, phase-breaking occurs, presumably due to a
single process, Coulomb interaction between the elec-
trons, associated with the dynamical exponent z. At
higher temperatures, other processes, like the electron-
phonon interaction, become important. Since these pro-
cesses will, in general, have different temperature de-
pendences, the observed nonuniversality of K might be
a crossover phenomenon. The characteristic tempera-
ture of the crossover to the asymptotic, universal low-
temperature regime is nonuniversal and might show a
strong sample dependence.

In addition to the relevant length scale (, the numeri-
cal simulations show the inhuence of an irrelevant length
scale (;„.For higher Landau levels and short correlation
length of the disorder, the irrelevant length can become
orders of magnitude larger than the magnetic length and
hence comparable to the phase coherence length in ex-
periments. On length scales smaller than (;„, the scal-
ing is described by a two-parameter fIow according to
Eq. (8.13), while the asymptotic scaling behavior for
large length scales is given by a single-parameter scal-
ing relation. In a u -vs-0. „flow diagram, we expect the
renormalization-group fIow to produce a set of difFerent
curves in the former regime and a single scaling curve in
the latter. The difFerences in the Bow diagrams of Wei
et al. (1987), of Yarnane et al. (1989), of Kravchenko et
al. (1990), and of McEuen et aL (1990) might have their
origin in the difFerent size of the crossover length scale.

The value z = 1 extracted from the experiments does
not agree with the result z = 2 for noninteracting elec-
trons. This means that another mechanism is necessary
to describe the dynamics of the system. It has been ar-
gued by Polyakov and Shklovskii (1993a, 1993b) and by
Lee, Wang, and Kivelson (1993) that the Coulomb inter-
action between the electrons gives rise to z = 1. This can
be justiGed by the naive scaling argument that the rel-
evant energy scale is the Coulomb energy on the length
scale (, E oc e /(, which immediately provides z = l.
If Coulomb interactions must be taken into account to
understand the dynamic scaling behavior, this raises the
question of whether these interactions are relevant for the
static scaling exponent v, too. The agreement between
experiments and simulations for noninteracting electrons
suggests that v is not changed by Coulomb interactions.
However, no calculation of v for interacting electrons un-
der quantum Hall conditions has been performed so far,
although Lee, Wang, and Kivelson (1993) claim that the
edge states of interacting quantum Hall droplets behave
like noninteracting particles and that the results of the
network model apply in the presence of interactions as

well.
For spin-degenerate Eandau levels, the measured val-

ues of v do not agree with the numerical value v = 2.35
(Koch et al. , 1991b). In addition, the measured value of
r is much smaller in the spin-degenerate case (Wei et al. ,
1988; Koch et a/. , 1991a; Engel et al. , 1993). The data
analysis in all experimental investigations assumed a sin-
gle critical energy in the center of the spin-degenerate
Landau level. Polyakov and Shklovskii (1993a, 1993b),
Lee and Chalker (1994), and Wang, Lee, and Wen
(1994b) argued recently for the existence of two separate
critical energies even in the completely spin-degenerate
case. Lee and Chalker (1994) and Wang, Lee, and Wen
(1994b) supported their arguments with numerical re-
sults that were compatible with two critical energies and
v = 2.35. When fitting their data with a single critical
energy, they observed a divergence of ( with an exponent

5.8 in some intermediate range of energies. It remains
to be seen whether experimental data can also be Gtted
with two critical energies and v = 2.35.

As far as the value of the conductivity tensor at the
transition is concerned, there is little agreement be-
tween experiment and theory. While theoretical argu-
ments and calculations seem to favor o = 0.5e2/6 and
o~y ——(n+1/2) e/h (at least in the lowest Landau level),
the experimental situation is completely unclear.

So far, there exists no direct experimental evidence
for the multifractal structure of eigenfunctions at the
transition. Since multifractality leads to an anomalous
behavior of the density-response function, signatures of
multifractality might be observable in the temperature
dependence of transport processes (Chalker and Daniell,
1988; Brandes et ol. , 1994).

We have shown that numerical simulations are a suit-
able instrument for calculating the critical behavior of
noninteracting electrons in the quantum Hall system.
The observed behavior agrees with the description of the
plateau transitions as continuous phase transitions with
a single diverging length scale. The numerically deter-
mined critical exponent v = 2.35 + 0.03 agrees well with
experimental results. In addition to the relevant scaling
Geld driving the transition, an irrelevant scaling field is
observed in the numerical simulations. The associated
crossover length can become macroscopic, in which case
the irrelevant scaling Geld must be included in the scaling
fIow.
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APPENDIX: RANDOM-LANDAU-MATRlX MODEL

The generalization of the result for the correlation
function (3.24) to the arbitrary Landau-level index n was
given by Miecl(: (1993),

V2
(nkvd! V!nk2}(nks!V!nk4) = exp ——(k,/2~!.I,„P

min(2k, 2m)

I =0 m=o i=o

((k —k) l )

—k2) l.p ! exp! ——(kl —k4) l.—,! ~k, k„k.—k. —
) &

2 P')
(2k (2m) l!(k+ m —l)! 2( +k, )

ql q l ) k!m!

g/2 ((kg —k2) l, ) g/2 1(k) —k4) l, b
zk —rn

~ 2 ) k+~ —l 2 p2(p2 (A1)

It is instructive to study the dependence of the corre-
lation function on the correlation length of the disorder
potential and the Landau-level index. As the correlation
length, and hence P, increases, the oK-diagonal matrix
elements become smaller, but the range of the correla-
tions along the diagonals increases. In higher Landau
levels, additional polynomials enter the correlation func-
tion (Al) due to the presence of the Hermite polynomials
in the harmonic-oscillator functions. %'bile in the lowest
Landau level the correlations (3.24) are always positive,
in higher Landau levels the correlations start to oscillate
for short correlation lengths and small diBerences kq —k4.
In the limit of large 0'/l„ the correlations become inde-

pendent of the Landau level and take on the universal
form given by the equation for the lowest Landau level,

Eq. (3.24). This limit corresponds to the semiclassical
limit, discussed in Sec. III.D, that is independent of the
Landau-level index.

In order to use ansatz (3.28) for the matrix elements

(nqk&!V!n2k2), the weight function h(x, k) appearing in
it has to be expressed through the correlation function

g(x, k) of the disorder potential. Using the translational

invariance of the disorder-potential correlation function
and the fact that the disorder potential is real, we see that
the weight function h(z, k) is a real symmetric function,

h(x, k) = h( —x, k) = h(x, —k) = h( —z, —k). (A2)

With Eq. (3.21), h(x, k) is related to the correlation func-
tion g(x, k) by

g(xz —z„k) = f dx'k(zz —z', k)k(z, —x', k), (Ak)

which can easily be solved by Fourier transformation to
give

- 2

(A4)

h( k)
o —k o /4 —x2/~~

/2~1,„o.
and Eq. (3.28) becomes

(A5)

g(q, k) = h(q, k)

where g(q, k) and h(q, k) are the Fourier transforms with
respect to z of g(z, k) and h(x, k), respectively. For the
simple case of Gaussian correlations, we find that h(x, k)
is given by

dkxx (()(+ (kg + k2)l
2

-, (k& —k2)!. ! «p( —(')
~

l2+ 0' ) ( (k, —k2)l, ) ( ( (k, —k2)l,
dqexp — -g

! II, g+ ——
P 2 ) "'q P 2

'
I
~,

I
n+ —+

which gives Eq. (3.30) for nq ——n2 ——0.
For numerical calculations, the integration in

Eq. (3.30) needs to be discretized. Huckestein and
Kramer (1989) chose a step width of AA/2/„where

Akl, = 27rl, /I„ is the difference in the center
coordinate of neighboring Landau wave functions. The
discrete version of Eq. (3.30) then reads

(Okg! V!Ok2) = Vp ( (k) —k2)2l2p2)
exp I—

(+2~l.l,„y) E 4

&& ) 'u2k, +',k, —k, exp! —
+2

(A7)
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with With these operators, i p . r can be expressed as

( vr'l,' .,)Z=) expl —2 'i (As) zp I' = (e, x p)('P —II).eB (A12)

The limits on the summation over i can be chosen so
that the infI.uence of the neglected terms is less than the
statistical fluctuation due to disorder.

All that remains is to specify the distribution function
of the random variables u I, . So that they correspond
to a Gaussian distribution in real space, they should also
be taken from a Gaussian distribution. Numerically, it is
faster to generate random numbers with a uniform dis-
tribution. While the distribution function of the matrix
elements seems to inBuence strongly the finite-size efFects
for the three-dimensional Anderson model (Kramer et al. ,
1990; MacKinnon, 1994), in the present case no notice-
able difFerences could be observed between Gaussian and
uniform distributions of the same variance.

A similar approach to that presented above was devel-
oped by Weidenmiiller and Mieck (Weidenmiiller, 1987;
Mieck, 1990, 1993; Mieck and Weidenmiiller, 1991). Cen-
tral to their idea is the observation that operators pro-
jected onto a single Landau level can be expanded in ma-
trix polynomials that are related to the magnetic trans-
lation operators (Weidenmiiller, 1987). For the corre-
lation function of the disorder potential, this expansion
proceeds as follows. Equation (3.19) can be rewritten in
terms of the Fourier transform g(p) of g(r —r') as

(nr kr
I Vln2k2) (n, k, Ivln, k, )

Using the commutation relations (All), we can exponen-
tiate this to give

exp[ip r] = exp[(i/eB) (e, x p) (P —H)]
= exp[(i/eB)(e, x p)'P]

x exp[ —(i/~eB)(e, x p)II].

The matrix elements of exp[ip . r] are then given by
the matrix elements Uk, k, (p) = (nrkrl exp[i/eB(e, x
p)P]ln, k2) and W„, „,(p) = (nrk, l exp[ —i/eB(e, x
p)II]ln2k2),

(nlkl
I
exp[ip . r] ln2 k2) —Uk, k (p) W „,(p) (A14)

Note that due to the commutation relations, Uk, k, (p)
does not depend on the Landau-level index, and
W, , (p) does not depend on the internal quantum
numbers k. Using Eq. (A13), we can now express the
correlation function (A9) in terms of the matrix polyno-
mials,

(nr kr IVln2k2) (nsks
I
Vln4k4)

CL P
g(lpl) Uk. ,k. (p) W-. ,-.(p) Uk. ,k. (—p)

xW„, „,(—p). (A15)

p
27'

g(lpl)(n»rlexp[ip»]ln2k2)

x (nsksl exp[ —ip r2] In4k4). (A9)

The particular form of the matrix polynomials depends
on the choice of the gauge. For the Landau gauge (3.13),
they are given by (Mieck, 1993)

The matrix elements of the plane waves can be expressed
using the magnetic translation operators. These are gen-
erated by the operator P that complements the canon-
ical momentum II = p —eA. In the gauge A
B[—(1 —n)ye + nxe„], these two operators are given
by

(A16)Uk k (p) = exp[ip (k + k')/2]8(p —k + k'),

, (p) —,l&~l
I

'
e

—Ir I'/4
((~+ l&nl)'

X p 2 I,~I~"
~ p ' 2 e-'~"'-"&~,

(p + eB(1 —n)y) ( p —eBny
py —eBnx ) (py + eB(1 —n)x)

(Alo)

The commutation relations for these operators are those
of the two-dimensional harmonic oscillator where the
canonical momentum II is diagonal in the degenerate,
internal states k of each Landau level, while P is diago-
nal between the Landau bands n, ,

v = min(n, n'), tang = py/p . (Als)

The delta function in the matrix polynomial Uk ki (p) re-
produces the delta function that we already observed in
the correlation function (3.21).

The matrix-polynomial representation (A14) of the
plane-wave operator can also be used to generate the
matrix elements (nrkr IVln2k2). For this, we express the
real-space potential V(r) by its Fourier transform V(k),

[II,II„]= ieBh, ['P, 'P„] = —ieBh, [II, P] = 0. (All)
V(r) = d2k *"'V(k). (A19)

For simplicity, we discuss the limit L„~ oo in the
following.

Using Eq. (3.18), we obtain the second moment of the
Fourier transform,

Rev. Mod. Phys. , Vol. 67, No. 2, April 1995



394 Bodo Huckestein: Scaling theory of the integer quantum Hall effect

V(k, )V(k, ) = 2~g{]k,])S(k, + k, ). (A2O)

Thus the Fourier transform of the random potential is
b correlated and can be expressed by Gaussian random
variables v(k) of unit variance,

V(k) = (27r)'I [g(]k])]'I v(k).

The potential V(r) is then determined by v(k),

(A21)

V(r) = d2k„,[9(lkl)l" e '"'v(k) (A22)

where the second moment of v(k) is given by

v*(k, )v(k2) = h(k, —k2). (A23)

Using Eq. (A14), we can now express the matrix ele-
ments of the disorder potential in terms of the random
variables v(k) and the matrix polynomials,

(ngkt]vin2k2) =,, [g(]pi)]'
'

x«, , (—p) ~a, ~, (—p) v(p).

Since V(r) is real, v*(k) = v( —k).
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