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Problem set for the course ”Phase Transitions and Criticality”, 2019

Rules: You can choose at wish from problems having the same main number (i.e. from a given section), but you can
collect only 30 points at maximum from all other sections. You may submit more but the points per section will be
limited to 30. There is one more constraint from problems 1.1 and 1.2 only one can be submitted.
You are supposed to work alone as much as possible but you are allowed to consult other students and discuss
with them. While discussions among students are encouraged, solving a problem together as a team work is NOT
ALLOWED. Of course, also feel free to contact me and ask questions; I can help and give you further hints if you are
stuck.
Deadline: 18.06.2019. Delay penalty: 5points/day. (Days end at 4pm...)

Please scan the solutions and upload it to the moodle system: http://newton.phy.bme.hu/moodle/
Grading is as follows:

5: 71- points,
4: 56-70 points,
3: 41-55 points,
2: 31-40 points.

I. MEAN FIELD PROBLEMS

1.1 (20 p) Mean field theory of the 3-state Potts model.
In this problem, the mean field free energy of the 3-state Potts model is determined, and it is shown that the
ferromagnetic phase transition in this model is of first order. The N = 3-state Potts model is defined by the following
(dimensionful) Hamiltonian,

H = −J
∑
<r,r′>

δS(r),S(r′) .

Here the index r runs over lattice sites, and the “Potts spin” S(r) takes N different values, S(r) = 1, . . . , N . Neigh-
boring Potts spins interact by a ferromagnetic interaction, and prefer to be aligned in the same direction.

a. (10 p) First compute the free energy within the mean field approximation as follows: Assuming that, inde-
pendently of the other spins, every spin points with probability pi in direction S = i estimate the free energy
density, by computing E = 〈H〉 and using F = E − TS. Express this quantity in terms of the magnetizations,
mi ≡ pi − 1/3. Expanding the free energy density show that it is approximately given by

f ≈ C(T ) +

3∑
i=1

[(3

2
T − Jz/2

)
m2
i −

3T

2
m3
i +

9T

4
m4
i + . . .

]
,

with z the number of nearest neighbors.

b. (5 p) Introduce the variables, α = (m2 −m3)/
√

2, and β = (2m1 −m2 −m3)/
√

6, and express the above free
energy expression in terms of these variables. Evaluate this approximate free energy numerically as a function
of these two variables and show by producing contour plots that the free energy develops three symmetrical
minima in the ordered phase, T < TC , through a first order transition (5p).

c. (5 p) Determine numerically the mean field value of TC . (Hint: consider the mean field free energy obtained in
a. along the special direction, m1 = m, m3 = m2 = −m/2. Plot f(m,T ) and determine TC numerically, up to
four digits.)

d. (5 p) (Bonus!) Introduce the following two variables,

m± ≡ (m1 + e±i2π/3m2 + e∓i2π/3m3)/
√

3 .
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Using only symmetry arguments, construct the (Ginzburg-Landau) free energy as a function of these variables
up to fourth order, and show that it takes on the form:

f(T ) = a(T )m+m− + b(m3
+ +m3

−) + c (m+m−)2 + . . . .

Show that introducing the real variables, (m+ + m−)/
√

2 and (m+ −m−)/(i
√

2), this is precisely of the form
one gets by expanding the mean field free energy. (Notice that now no symmetry forbids the third order term.)

1.2 (20p) Exercise 2.4 from Cardy’s book: Mean field theory of antiferromagnetic Ising model.
Let us consider the following antiferromagnetic Ising Hamiltonian:

H =
1

2

∑
r,r′

J(r − r′) S(r)S(r′)−H
∑
r

S(r) ,

where r and r′ run over a d-dimensional cubic lattice, J(r − r′) = J > 0 for nearest neighbor sites, and it vanishes
otherwise. Notice that J and H have now dimension of temperature (energy). We shall construct the mean field
phase diagram of this model as a function of T and H/J .

a. (5 p) First construct the T = 0 part of the phase diagram by comparing the energy of the ferromagnetic and
antiferromagnetic states. What is the order of the phase transition found?

b. (5 p) To construct a more complete picture, divide the lattice onto two sub-lattices, A and B. Construct the
mean field effective Hamiltonian by assuming that fluctuations are small, and thus approximate the product
S(r)S(r′) ≈ S(r)〈S(r′)〉+ S(r′)〈S(r)〉 − 〈S(r)〉〈S(r′)〉, as usual. However, allow for two different values for the
magnetizations on the two sub-lattices, 〈S(r)〉 = mA,B . Then evaluate the partition function with this mean
field Hamiltonian and show that the dimensionless mean field free energy density (f = F/(T N)) is given by:

fMF = −1

2

(
J̃ mAmB + ln ch(hA − J̃mB) + ln ch(hB − J̃mA)

)
,

where we allowed for a field that is different on the two sub-lattices, hA,B = HA,B/T , and J̃ = zJ/T , with z
the coordination number. Derive the self-consistency equations for mA,B from this expression by differentiating

with respect to hA and hB . [Be careful: mA = − 1
NA

∂F
∂HA

= −2 ∂f
∂hA

.]

c. (5 p) Introduce the ferromagnetic and antiferromagnetic order parameters, m = (mA + mB)/2 and n =
(mA −mB)/2, and rewrite the self-consistency equations obtained in terms of these. Assume that in the high
temperature phase n = 0, and compute the value of m approximately as a function of h ≡ hA ≡ hB from the
self-consistency equations. Then show that the n = 0 solution gets unstable when:

1 = J̃(1−m2) ≈ J̃
(

1− h2

(1 + J̃)2

)
,

thus the magnetic field suppresses TC quadratically. What is the order of the phase transition in a small but
finite magnetic field?

d. (5 p) Finally, draw the phase diagram, and interpret it in terms of fixed points. Argue that there must be a
tricritical fixed point, where a first order phase transition line and a second order phase transition line meet.
(There are six fixed points for h ≥ 0: two of them are stable, one is a discontinuity fixed point, one is a regular
critical point, and the fifth one is the tricritical point described above, and for h = 0 there is a high temperature
fixed point, too. There are three more fixed points for h < 0.)

1.3 (20 p) Perform the Hubbard-Stratonovich transformation for the following d-dimensional O(3) Heisenberg model,

H = −J
2

∑
r,r′

nr · nr′ ,

and derive the corresponding continuum field theory. Here the n-s denote vector spins of unit length, |n| = 1, and
only nearest neighbor sites give a contribution.
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a. (5 p) Following the procedure at class, decompose the interaction term of the Hamiltonian by introducing the
new vector fields φai at each site (a = x, y, z) using the identity (prove it!)

exp{1

2

∑
r,r′,a

xarAr,r′x
a
r′} ∼

∫ ∏
r,a

dyar exp{−1

2

∑
r,r′,a

yar [A−1]r,r′y
a
r′ +

∑
r,a

yarx
a
r} .

b. (5 p) Next, carry out the integrals over the n’s in the terms ∼ exp{n · φ} . (Hint: One can use spherical
coordinates and align the z axis parallel to the field φ.) Show that the result depends only on |φ|. Re-
exponentiate and expand the result up to second order in φ2 to determine the coefficient of the φ2 and |φ|4
terms in the effective action.

c. (5 p) Treat the first term ∼ J−1 as at class, and then write the full effective action for the field φr. (Go over
to Fourier space, invert Jr,r′ there, expand it in q, and then go back to real space.) What is the temperature at
which the phase transition takes place (the coefficient of the φ2 term changes sign)?

d. ( 5 p) For T < Tc determine the ground state (of the quartic terms in the effective action (Hamiltonian) and
look for the Goldstone modes. Assume that φ is parallel to the z axis, and then expand the effective action
(Hamiltonian) up to second order in the small fluctuations:

φ = (δφx, δφy, φ0 + δφz) . (1)

Show that the energy of transverse fluctuations goes as q2 in Fourier space. Show also that the energy of
longitudinal fluctuations (Higgs modes) remains finite at q = 0.

II. LATTICE RG AND UNIVERSAL SCALING

2.1 (10 p) Exercise 3.2 from Cardy’s book. Scaling for the 1D Potts model.
Let us consider the classical one-dimensional Q-state Potts model:

H = −J
∑
i

δσi,σi+1
,

where the ’spins’ σi can take Q different values. Construct the renormalization transformation for b = 2.

a. (3 p) Rewrite exp{−H} as a product of terms using the identity:

Tσiσi+1
≡ eJδσiσi+1 = 1 + δσiσi+1

(eJ − 1) .

Then do the decimation by summing over every second spin.

b. (3 p) Give the renormalization group transformation for the free energy density. Use the variable x ≡ eJ − 1.
Show that in the large x limit the transformation simplifies to:

x′ ≈ x

2
− Q

4
.

c. (4 p) Determine the correlation length: Proceed as at class. Start from a very large value of J , and use an
approximate form of the relation x→ x̃ appropriate in this limit to determine the number of decimations after
which the effective coupling becomes of the order of unity, x̃ ∼ 1. Determine the correlation length from the
number of iterations needed. Keep also the subleading term in the approximate relation above, and take the
large Q limit. How can you interpret the expression you get? Explain the Q-dependence of it? (Hint:Think
about domain walls.)

2.2 (25 p) Construction of the RG transformation for the two-dimensional Ising model. Consider the two-dimensional
Ising model on a square lattice with nearest neighbor interaction:

H = −K1

∑
(i,j)

σiσj ,

Consider the plaquet shown in the figure. The contribution of this plaquet to the partition function is

Z =
∑

...,σ1,σ2,σ3,σ4,σ̃...

· · · × exp(K1(σ1 + · · ·+ σ4)σ̃)× . . .
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a. (8 p) Integrate out the spin σ̃ and show that the summation over σ̃ produces a factor

∼ cst.× exp
{
Aσ1σ2σ3σ4 +B

4∑
i,j=1

i<j

σiσj

}
,

where B = 1
8 ln[ch 4K1]. What is the value of the four-spin interaction A ?

b. (7 p) Now neglect all generated interaction beyond second nearest neighbor interaction. What is the RG
transformation K1 → K ′1, K2 → K ′2 like, if you assume that the spins that are integrated out are independent?
(I.e., you neglect the interaction K2 between these spins.) Show that the approximate transformation obtained
this way has a non-trivial fixed point determined by the equation:

K∗1 =
3

8
ln[ch(4K∗1 )] , K∗2 = K∗1/3 .

[Be careful: One new bond has two neighboring plaquets...]

c. (10 p) Linearize the transformation around this point and show that it becomes:

δK ′1 = th(4K∗1 ) δK1 + δK2 , (2)

δK ′2 =
1

2
th(4K∗1 ) δK1 . (3)

Determine the corresponding eigenvalues and the value of the exponent ν. [Compute numerically the value of
K∗1 .]

2.3 (15 p) Construction of the RG transformation for the two-dimensional bond percolation.
Consider a two-dimensional square lattice. Links are present with probability p. In percolation theory we call the
system percolating if there exists an infinite connected cluster. In the thermodynamic limit there is a critical point
pc above which there is an infinite cluster with probability 1 under which there is no infinite connected cluster.

a. (5 p) Perform the renormalization of the two-dimensional bond percolation. Consider a 2 × 2 system with its
8 bonds and do the renormalization with b = 2. Write down the renormalization group equation. Note that in
the renormalized system there are only two bonds, see figure.

b. (2 p) Solve the renormalization equation for pc.

c. (3 p) determine the exponent ν.

d. (5 p) Do the same exercise for the two dimensional site percolation. In this model the sites of the two-
dimensional square lattice is filled with probability p. Do the renormalization with b = 2. Consider the
configurations connecting only one opposing walls of the 2× 2 cluster with weight 1/2 for the RG equation.
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III. QUANTUM CRITICALITY

3.1 (20 p) Consider the 2-dimensional transverse field Ising model. Using simple scaling arguments determine the
scaling form of the susceptibility along the z-direction, close to the quantum phase transition. Use the finite size
scaling property

fs(Bz, Bx −B(c)
x , β) = b−(d+1) fs(b

yhBz, b
yt (Bx −B(c)

x ), β/b)

and show (5p) that

χz(T,B) = T−x Q±(T/|B −BC |y) ,

with Q a universal scaling function, and B the field in the x direction. What are the precise (numerical) values of
the exponents (5p)? (Use the corresponding table in Cardy’s book!) What are the asymptotical properties of the
function Q± (5p)? Sketch the behavior of χ(T,B) as a function of T while B crosses the critical value, B = BC
(5p). (Remember that in this system one has a gap away from the critical point and that for B > BC one has a
paramagnet, while for B < BC a ferromagnet is found.)

3.2 (15 +1 p) Diagonalization of the transverse field Ising model
Consider the transverse field Ising model,

H = −J
∑
j

σ̂zj σ̂
z
j+1 −B

∑
j

σ̂xj .

a. (5 p) First use a special form of the Jordan-Wigner transformation

σ̂xj = 2c†jcj − 1 , σ̂zj = i (−1)
∑
k<j(c

†
kck−1) (cj − c†j) ,

with the cj denoting spinless fermions. Show that these operators satisfy the relations (σ̂xj )2 = (σ̂zj )2 = 1 and
[σ̂xj , σ̂

x
k ] = [σ̂zj , σ̂

z
k] = 0 (3p). Show that, in this fermionic language, the Hamiltonian is quadratic (2p):

H =
∑
j

[
J(cj + c†j)(cj+1 − c†j+1)− 2B c†jcj

]
+ cst .

b. (5 p) Now introduce the Fourier transform of the operators cj and show that

H =
1

2

∑
j

(c†q, c−q)

(
ωq −2iJ sin(q)

2iJ sin(q) −ωq

)(
cq
c†−q

)
+ cst , (4)

with ωq = 2J cos(q)− 2B.

c. (5+1 p) Find the eigenvalues ±Ωq of the 2 × 2 matrix Hq in (4), and denote the corresponding eigenvectors
by uq,±. Plot the dispersion Ωq at and off the critical point (1p). Define the following annihilation operators,

aq ≡ (uq,+)+ ·
(

cq
c†−q

)
, bq ≡ (uq,−)+ ·

(
cq
c†−q

)
,

and show that the structure of the 2× 2 matrix Hq implies (2p)

a†q = b−q .

Using this property and the spectral representation Hq = Ωq(uq,+) (uq,+)+ − Ωq(uq,−) (uq,−)+, show that (2p)

H =
∑
q

Ωq a
†
qaq + cst.

Thus Ωq just gives the energy of (fermionic) quasiparticles, and the spectrum becomes gapless at the quantum
critical point, B = J . How does the gap scale with B − BC? What does that imply for the critical exponents
of the Ising model? (+1p)
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3.3 (20 p) Dynamical correlations of an Ising spin and mapping to the 1D classical Ising model. Consider
the following Hamiltonian describing a spin in a magnetic field:

ĤQ ≡ −B σ̂x ,

with σ̂x the Pauli Matrix.

a. (5 p) First, as a warm-up, repeat what we did at class: Compute the partition function:

Z ≡ Tr{e−β ĤQ} (5)

using the Trotter formula: divide β in the exponential into N pieces, ∆τ ≡ β/N , and insert a complete set |σ〉
at every time τi = i ·∆τ (i = 0, .., N − 1) using the identity 1 =

∑
σ |σ〉〈σ|, and

(eB∆τ )σσ′ = C(J)

(
eJ e−J

e−J eJ

)
. (6)

(Show that tanh(B∆τ) = e−2J . What is the expression for C(J)?) Show that the partition function of the
quantum system then reads,

Z = CN
∑
{σi}

exp{J
∑
i

σiσi+1} ,

i.e., it is just the classical partition function of the Ising model with an appropriate J = − 1
2 ln tanh(B∆τ).

b. (5 p) Now introduce the imaginary time Heisenberg operators,

σ̂z(t) = eiĤQtσ̂ze
−iĤQt → σ̂z(τ) = eĤQτ σ̂ze

−ĤQτ

and their correlation functions

C(τ1 − τ2) ≡ 〈σ̂z(τ1)σ̂z(τ2)〉ĤQ ≡ Tr{e−β ĤQ σ̂z(τ1)σ̂z(τ2)}/Z ,

with τ1 > τ2. Show that this correlation function depends indeed only on the difference τ1− τ2. Now repeat the
previous procedure, by choosing τ1 = i×∆τ and τ2 = j×∆τ , and using the identity σ̂z

∑
σ |σ〉〈σ| =

∑
σ |σ〉σ〈σ|.

Show that

C(τ1 − τ2) = 〈σiσj〉H =

∑
{σk} σiσj exp{J

∑
k σkσk+1}∑

{σk} exp{J
∑
k σkσk+1}

,

where the average is taken with the classical Hamiltonian:

H = −J
∑
k

σkσk+1.

This means that the imaginary time correlation function of a quantum spin in a transverse magnetic field is
identical to the spatial correlation function of a one-dimensional Ising chain.

c. (5 p) Now compute the correlation function III by simply diagonalizing ĤQ. (Hint: Construct the eigenvectors

|±〉 of ĤQ and the corresponding eigenvalues, and use these to evaluate the trace. You will have to compute
the matrix elements of σ̂z between them to evaluate the correlation function.) Show that the correlation length
in time direction is simply given by:

ξτ =
1

∆
, (7)

with ∆ = 2B the “gap”, i.e., the energy difference between the ground state and the excited state. Express
also this correlation length in terms of J and ∆τ in the limit ∆τ → 0 using the connection found above, and
show that this corresponds indeed to the result we obtained at class for the 1D classical Ising model in the limit
J � 1.

d. (5 p) To think: Can you generalize c. to a quantum system in higher dimensions with a gap in the excitation
spectrum, and show that the relation ξτ = 1

∆ holds in general for ANY system with a gap?
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IV. SURFACE ROUGHENING

4.1 (10 p) Calculate the scaling of the width of the surface in the Edwards-Wilkinson model
Start from the solution of the Edwards-Wilkinson model in the Fourier space:

h(q, t) = h(q, 0)e−νq
2t +

∫ t

0

e−νq
2(t−t′)η(q, t′)dt′ (8)

a. (4 p) Derive the width

W 2(L, t) = 〈h2(x, t)− h(x, t)
2
〉 (9)

using the correlator:

〈η(x, t)η(x′, t′)〉 = Γδ(x− x′)δ(t− t′) (10)

b. (3 p) Using the change of variable s = Lq, determine the scaling function w(u)

W (L, t) ∝ Lαw
(
t

Lz

)
(11)

c. (3 p) determine the exponents α, β, z.

4.2 (15 p) Show that the Edwards-Wilkinson and the KPZ equations have the same long time characteristics (same
exponent α) in one dimension
Let N be either the EW or the KPZ operator and P (h, t) the probability of a certain height profile h at time t. The
Fokker-Planck equation reads as:

∂P

∂t
=

∫
δ

δh

[
−NP +

Γ

2

δP

δh

]
dx (12)

a. (5 p) Derive formally the stationary solution PEWs for the EW probability distribution.

b. (8 p) Show that in one dimensions the difference between the EW and KPZ operators does not contribute to
the stationary solution of Ps, namely ∫

δ

δh

[
(∇h)2PEWs

]
dx = 0 (13)

c. (2 p) Show that Eq. (13) does not hold for two dimensions.

4.3 (15 p) Write a code which simulates surface roughening in one dimension:

a. (5 p) Write a code which simulates the Random deposition with relaxation (RDR) model.

A discrete one dimensional periodic surface is characterized by its height hi ∈ N, i ∈ [0, 1, . . . L−1]. New particles
arrive at random position i. If hi ≤ min(hi+1, hi−1) the particle stays where it landed. If hi ≥ max(hi+1, hi−1)
then the particle moves randomly to one of its neighboring sites. If only one neighbor is lower than hi the
particle moves there.

b. (5 p) Write a code which simulates the ballistic deposition (BD) model. A discrete one dimensional periodic
surface is characterized by its height hi ∈ N, i ∈ [0, 1, . . . L− 1]. New particles arrive at random position i. The
new value of hi is

hi → max(hi+1, hi + 1, hi−1) (14)

c. (5 p) Measure W (L, t) for different L ∈ {10, 20, 40} and t and verify the Family-Vicsek (dynamic) scaling and
determine the exponents. Compare them to the Edwards-Wilkinson and to the Kadar-Parisi-Zhang model.


