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Neural networks

Hidden
Input » Machine learning
Output » Pattern recognition
» Handwriting
> Speech recognition
» Input pattern
» Qutput pattern
» Adaptive wights

» Approximating non-linear
functions
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Neural networks

» Input vector /
Output vector O(/)
Transition matrix Wj; € [—1,1]
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Learning using a cost function
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Test goodness
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Neural networks: Learning

> Supervised learning
» Data training:

» Superwised learning
» Fitness function, energy:

E = T(I)- O()),

where T (/) is the target vector for input /
» Minimize E for available set of {/,/(0O)} pairs
» Deep learning: many layers of neurons in the neural network

» Test goodness:

» Use only part of {/,/(O)} pairs for learning, the rest is for
testing.

» Used for: pattern recognition, classification, etc.
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Neural networks: Learning

» Reinforcement learning
» Cost function is a long time performance on an agent making
decisions based on the neural network.

» Test goodness:
» Compare with other agents which can be algorithmical or
based on neural networks

» Used for: control problems, Al, complex optimization

o} e

Hidden ns
‘yll
OO

uuuuuuuu




Neural networks: Learning

» Unsupervised learning, weight is increased for neurons that fire
together

» Supervised learning: cost function
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Deep learning

» Literature: Introduction to deep learning: https://wuw.cs.
princeton.edu/courses/archive/springl6/cos495/
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https://www.cs.princeton.edu/courses/archive/spring16/cos495/
https://www.cs.princeton.edu/courses/archive/spring16/cos495/

Deep learning: how to

Classification

v

v

Perception

v

Support Vector Machine

Train the machine
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Regularization
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Deep learning: Feed forward
Features
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Deep learning: Feed forward

Motivation: representation learning

* Why don’t we also learn ¢p(x)?
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Deep learning: Feed forward

Feedforward networks

* View each dimension of ¢(x) as something to be learned
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Deep learning: Feed forward

Feedforward networks

* Linear functions ¢; (x) = 6] x don’t work: need some nonlinearity
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Deep learning: Feed forward

Feedforward networks

» Typically, set ¢;(x) = (8] x) where r(-) is some nonlinear function
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Deep learning: Feed forward

Feedforward deep networks

* What if we go deeper?
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Deep learning: Feed forward

Motivation: abstract neuron model

* Neuron activated when the correlation
between the input and a pattern &
exceeds some threshold b

* y = threshold(87x — b) Xz
ory =1(0"x —b)

* 7(+) called activation function

Xa
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Deep learning: Backpropagation

* Gradient of the loss is simple
c B8, 1(fo,x,3) = (f() —y)?/2
2 a
= (fo) -~ )L
* Key part: gradient of the hypothesis

Weights on the edges
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Function: f = x; — xp = x; — (W3X3 + WyX,)
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Deep learning: Backpropagation

* Forward to compute [

* Backward to compute the gradients
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Deep learning: Features example

Deep neural
networks learn
hierarchical feature
representations
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Deep learning: Convolutional Neural Network

pooled Fully-connected 1

feature maps pooled  featuremaps feature maps

feature maps

Outputs
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