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Chapter 1
COMPLEX VARIABLES

1.1 Imtroduction

A complex number is defined as a number z of the form z = a + ib,
wherei = v/ — 1 and @ and b are real numbers. a is called the real part of
z [written as Re (z)] and b the imaginary part of z [written as Im (z)]. Thus,
both Re (2) and Im (2) are real numbers. A complex number with the real
part equal to zero is called a pure imaginary number. Operations involving
complex numbers, zi = a1 + ibi and z2 = a2 + ib2can be defined as follows:

Addition and Subtraction: 21 + z2 = (a1 + a2) + i(bs + b2)

Multiplication: ziz2 = (a1 + ibi)(a2 &+ ib2)
= aia2 + imb2 + iazb1 + i*hib2
" since, i2 = —1,  we have 2122 = (maz — biba) -+ (aib2 + a2b1)

zr _ a+ibi _ (a1 + ibi)(a2 — ibo)

Division: 22 ax+ib2 (a2 + ib2)(az — ib2)
_aaz + bib +ia2bl — aib
az + b3 a3 + b3

Alternative definition
Complex numbers z can also be defined as ordered pairs of real numbers a
and b, z = (a, b), with the following rules for their addition and
multiplication:
Addition:
z1 = (a, b1), z2=(az b2)

: z1 + z2 = (a1, b1)'+ (a2, b2) = (a1 + az, by + b2)
Multiplication:

72122 = (a1, b)(az, b2) = (a1a2 — biba, a1b2 + axby)
a is called ‘the real part of the complex numbér z = (a, b) and bis called the
imaginary part. The complex number (a, 0) is to be identified with the real

number a. Complex numbers of the form (0, b) are called pure imaginary
numbers. z = (a, b) can be written as

z = (a, b) = (4, 0) + (0, b) = (a, 0) + (0, 1)(5, 0)
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If the pure imaginary number (0, 1) is denoted by i (note that (0, 1) (0, 1)
= (—1, 0) so that i>= —1), the ordered pair z = (a, b) can be written
z = a - ib.

A complex number is equal to zero if and only if its real and imaginary
parts are both zero, i.e.,z =a + ib=0 implies a = 0, b = 0. This leads
to the result that if two complex numbers are equal their real and imaginary
parts are separately equal. Thus, if z1 = 22, z1 — 22 = (a1 — a2) + i(b1 — b2)
= 0 and therefore a; = a2 and b = ba.

The complex number z* = g — ib is called the complex conjugate! of z.

Evidently (z*)* = z and zz* = (a + ib)(a — ib) = a®> + b is real.

| z| =4/a% + b* is called the modulous of z.

By putting @ = r cos @ and b = r sin 0, the complex number z can be
written as z = r(cos 8 -+ i sin ) = rei?, This is known asthe polar form of
z. r= 4/ a® + b?is the modulous of z. 0 is called argument of z (written

s | D
arg z) and can be determined from the relation tan 8 = e Since a <

v/ a® + B2, it follows that Re (2) < | z|. Similarly Im (z) < | z |.
The complex number z = a + ib can be represented by a point (g, d) in
Y the xy-plane, the x-coordinate repre-
senting the real and the y-coordinate
representing the imaginary part.
This plane is called the complex plane
or the z-plane (Fig. 1.1). |z | =
A/ a® + b? is then the distance of the
point from the origin and 0 =

1\
\ ) b tan~! -% +2mm (n=0, 1,2,...),

(] is the angle the radius vector to the

0 i : X point makes with the x-axis. Thus
the argument of z is not unique. It is
Fig. 1.t conventional to restrict 8 by the con-
dition — 7 < 6 < = and call it the
principal value of arg z. The following identities involving moduli and
arguments of complex numbers can be easily verified;

| ziz2 | = | z1 |- | 22| (1.1)
2 'I';’: 1 (1.2)

arg (2122) = arg (z1) + arg (22) (1.3)
arg (zi;:-) = arg (z1) — arg (z2) (1.4)

The easiest way to verify them is by writing the complex numbers z; and
z2 in the polar form. Thus, if

zZ1 = rie® and Zo = rael®s
then 2122 = rirze!(f1t o2

'Some anthors use Z instead of z* to denote the complex conjugate of =
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This immediately gives | ziz2 | = rir2= | z1| +| 22 | and arg (z1z2) = 6; +- 6,
= arg (z1) -+ arg (z2). The other identities follow in a similar manner.
The following inequalities are extremely useful:

lzi+zn|<|z|+|2] =SC1ES)
lzn+ 22| 2{lz1| — | 22| (1.6)
(1.5) is known as the triangular inequality. This can be proved as follows:
|zt 4 22 2 = (z1 + z2)(z1 + 2z2)*
=121+ |22+ (2122 + z122)
= |22+ | 222 + 2Re (2122)

But, Re(ziz3) € |zzs| = |zi|| 22| = |21 || z2 |

Therefore, [zt + 2P <|ziP+|2P+ 2]zl ]2]
S(zi]+ |22

or, ]z:+z;|$lzll+lzg[

To prove (1.6), we use the triangular inequality. If | z1 | = | 2 |,
lzi]| =|(z +22)+(~“zz)|é]-Zr—i-zzl-!-|—zz!=|z:+zz|+lzz|
or, lzi| = |z2| € |21 + 22| (1.7)
On the other hand, if |zi| < |z |

lz2| =+ 22) + (—21) | < | = + 22| 4| z1]
or ]zzl—[nléhn%—zz] (1.8)

(1.7).and (1.8) together are equivalent to (1.6).

The result of measurement of a physical quantity is always a real number.
One may then wonder what is the need for introducing complex rumbers in
physics. The reason is that the theory of functions of complex variables
provide us with many powerful tools for calculation. These tools can be used
to advantage if one introduces variables which are complex. A physical
quantity will ultimately be related to either the real or imaginary part or the
modulous-square of a complex variable. :

1.2 Functions of a complex variable

For a set of values of z, the function f(z) isa prescription for assigning
for each z a value for f(z). The set of values of z for which the function is
defined is called the domain of z.

As for example let us consider the functions, (1) f(z) = 22, (2) @)= 2P
and, (3) f(z) = In z, where z = x + jy.
(1) f2) = 22 = (x + iy = (x2 — »?) + 2ixy, _
Denoting the real and imaginary parts of the function by utx, y) and #(x, y)
respectively, we have f(z) = u(x, y) + io(x, y) where u — x2 — ¥ and
o= 2xy
D) = |z = x4 »2
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In this case' = x2 + y2and » = 0. Unlike the function in the first
example which is complex, this function isreal valued. The function of a
complex variable can be complex, real or pure imaginary.

In the first two examples the domain of z is the set — o0 < x < + o
and — @ < y < + o, i.e., the domain is the entire z-plane.

(3) In the third example, if we write z = re’®, f(z) = Inz = Inr + i9. But
z can also be written as z = re!@™"+0_ where in is an integer. Then f(z) =
In r + iQ2#n + 6). The peculiarity of this function is that it is not uniquely
defined unless n is specified. Another way of stating the same thing is to say
that the function is multiple valued. However, we would like to have, corres-
ponding to every z, a unique assignment-of value to f(z). It is possible to 3
have this for the function In z by restricting the domain of z such thatn = 0
and — 7 < g < 7. The function defined with this restriction is known as
the principal value of In z.

Similar difficulties arise with the function f(z) = 2¢, where c is complex.

z° = exp (¢ In z) and because In z is multiple valued z¢ is not uniquely
defined. The same ambiguity of definition is there, if ¢ is real but not equal
to an integer. If, however, ¢ = m = a real integer, then

z™ = exp (mIn z) = exp (m In r + im(27n +6))
= r" exp [i27mn + mg)]
= r™ exp (im 6) '
and z™ is uniquely defined. The ambiguities inthe definition of z¢ can be
removed by restricting the domain of arg (z). _

As in the case of functions of a real variable, we can define limit, conti-

nuity and derivative of a function of a complex variable.

Definition

wo is said to be the limit of f(z) as z approaches zo, if for each positive
number e there is a positive number 8 such that | /(2) — wo | < e, whenever
|z—2z0] < é.

Intuitively this means that f(z) can be brought arbitrarily close to wo by
bringing z close to zo, closeness between two complex numbers being
measured by the modulous of their difference. This definition of the limit of
f(2) as z — z¢ does not make any reference to the function at z — Zo0

Definition

The function f(z) is said to be continuous at zo if,
lim f(z) = f(z0)

Definition
The derivative f(zo) of a function f(z) at zo is defined as
f(z0) = lim Sz + Af’)z_ fz))

dz-»0

(L.9)
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Obviously, zo must be inside the domain of definition of f(z).

If f'(zo) exists, the function f(2) is said to be differentiable at zo. The condi-
tion for the existence of f'(z0) implies that if the point zo in the z-plane is
approached from any direction, the limit will be the same. In case of real
variables, a point xo can be approached from only two directions, either from
the left or from the right of xo. The condition for the existence of derivatives
of functions of complex variables is thus more stringent. This makes a lot of
functions non-differentiable in complex variable theory.

Example 1. Consider the simple function f(z) = z*. If we evaluate the limit
S ) o *

lim {70 - jz Eat T lim A_z_, approaching zo parallel to the real axis,

dz=0 4 4z—>0 AZ

4z = dx, the result is 1. If, on the other hand, zo is approached parallel to

the imaginary axis, 4z = idy and the limit is —1. Thus the limit does not

exist and the function is not differentiable at any point.

Example 2. For the function f(z) = | z %,
lim fzo + Aj) ol lim (z0 + dz)(zaj Az*) — zoz0
dz+0 Z Az90 z
: B az*
= 4z* £z
leTu (Zo + dz* + 2o Az)

Again, if we approach zo parallel to the real axis the limit is (z0 + zo), while
approaching zo parallel to the imaginary axis one gets (% — z0). Therefore,
the limit does not exist and the function is not differentiable at zo. An
exception, however, occurs in the case zo = 0. Then the above limit reduces
to lim 4z* = 0. The function f(z) = | z |? is differentiable only at the point

Az0
zo0=10.

Definition
A function is said to be agnalytic at a point zo, if it i> differentiable at zo and
is also differentiable at every point in some neighbourhood of zo. '
The condition for analyticity is therefore very severe. f(z) = 22, ¢%, sin z
are some examples of analytic functions, The function f(z) = 1/z is analytic
everywhere except at z = 0. On the other hand, the function f{z) =.| z [* is
not analytic at any point—not even at the point zo = 0, although it is diffe-
rentiable there. If a function is analytic everywhere in the entire z-plane, it
is called an entire function. An analytic function is sometimes referred to as
a holomorphic function.

1.3 Cauchy-Riemann conditions 2

Ifthe derivative of a function exists at a point, the real and imaginary parts
of the function must satisfy certain conditions. Let f(z) = u(x, ¥) + iv(x,y).
If the derivative /*(z0) at zo = xo -+ iyo exists, then
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du du

5= = o 1.1
axlxu.y- ay X, Yo ( Oa) z
du dy ’

S = e o \l

3}' *0,Y0 ax X0, Yo (l Ob)

Equations (1.10a) and (1.10b) are known as Cauchy-Riemann conditions.
Proof: Let us calculate the derivative approaching zo parallel to the real axis.
Then 4z = 4dx and

(o) — i 120 + 42) — f(zo)
f(z0) = ljﬂo —JT—9~

Ax->0 Ax
7 N ] :
< ax;(n..vn : :3x X0, Vo ('ll)

If, on the other hand, zo is approached parallel to the imaginary axis,
4z = jdy, and
"(20) = lim [“%0s Yo + 4y) — u(xo, yo)] + ilv(xo, yo + dy) — (xo, yo)]
f(z0) = lim 7 . ek
dy=+0 ay
fi{ dv

. 13}’ X0.Y0 E 5; ¥0,Y0

Since the derivative exists, the right hand sides of (1.11) and (1.12) must
be equal.

(1.12)

oul fif_l :&-‘l;{ L b 21
axl""” 3 ‘3._1: e Ia X6, %0 k 3y Xo.Ve (1'13)

- Equating the real and imaginary parts from both sides of (1.13) one gets the
set of equations given in (1.10).
For convenience of writing, from now.on, we shall omit the subscripts

-. e Y dv
Xo, yo in the derivatives E™

F g 5},,,_,,0 etc. Differentiating (1.10a) w.r.t, x,

keeping y fixed one gets;

G%u %

F 2o m (1.14)-
Sinilarly, from (1.10b) we obtain

o2y 2 ;

3}-2 = — m (1.15)
In (1.14).and (1.15), it has been assumed that the second partial derivatives

" : i s SRS dD gD : %
exist. If, in addition, the derivatives 7 3 are. continuous, m} = m

and hence

a2 2
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Similarly, differentiating (1.10a) w.r.t y holding ¥ fixed and (1.10b) w.r.t x
keeping y fixed, one obtains

%

T e

Equations (1.16) and (1.17) are Laplace’s equation (Chapter 2) in two dimen-

sions. A real function of x and y having continuous first and second partial

derivatives and satisfying two dimensional Laplace’s equation is known as

a harmonic function. The real and imaginary parts of an analytic function

are harmonic.
The Cauchy-Riemann conditions help us determine whether a function is
differentiable at a point or not. Let us consider the functions discussed in

Examples | and 2. For

=0 (1.17)

f(z) = z* F-x—iy,u=x,v=—y-.
du
Thus, 7o =l =ﬁ 3y

showing that the Cauchy-Riemann conditions are not satisfied at any point.
For the function f(z) = |zP=x2+ 2, u= x2+ »2 and v = 0, Thus

du 12 du dv

T = JIx, ay =0, 3y = 2y, % = 0 and Cauchy-Riemann conditions
can be satisfied at the point x = 0, y = 0, but cannot be satisfied at any
other point.

If the Cauchy-Riemann conditions are not satisfied at a point, the deriva-
tive does not exist and the function is not analytic at that point. Thus
f(z) = z* is not analytic anywhere in the z-plane. But the satisfaction of the
Cauchy-Riemann conditions does not necessarily imply the existence of the
derivative as is illustrated in the following example.

Example 3. Consider the function,

Ty e (z)

for z#0
=0 for z=0
For z#0

_ =P =iy} X —3xp2, .38 — 3x%
f(z)_x'+:'y X242 ch-}-y:*+ X2 + y2

Therefore,
X3 - 3y )
u(x, y) = TR *950’3’9”)} (1.18)
=0, x=y=0
and ox, y) = Loy X#0,y#0
) x2+y2 ’ 2 (119)
—_ 0 s g J' =l 0 .
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From (1.18) and (1.19), it is easy to obtain fi_: ©0,0=1, g—; 0,0 =0,

g—i_ (0,0) = 0 and ;—: (0, 0) = 1 so that the Cauchy-Riemann conditions

are satisfied at z = 0.

(4z* )2
3 4z JUeg= 442’")2
s I e T

If the point z = 0 is approached along the line y = mx
4z = dx + idy = (1 + im)dx, and

Ii "L*)z__ (1 — imAxP (1 — imp
a0\ dz ) = A5 U F imi@xp — 0 + imy?

The limit ohviously depends on the line along which the point z = 0 is
approached and therefore does not exist. The function is not differentiable
atz = Q. '

It can be shown that if the Cauchy-Riemann conditions are satisfied and
in addition, the partial derivatives of  and » are continuous at a point then
the function is differentiable at that point. One can verify that these condi-
tions are not satisfied in Example 3.

For the function f(z) = | z |2, the Cauchy-Riemann conditionsare satisfied
at x = 0, y = 0 and also, the partial derivatives of # and » are continuous
at the point. Therefore, the function is differentiable at x = 0, » = 0. But
this being the only point at which it is differentiable, the function is not
analytic at z = (.

1.4 Cauchy integral theorem

Integrals involving complex functions can be introduced as follows. A curve
y = y(x) in the complex plane will be called piecewise smooth, if (1) y(x) is

continuous, and (2) % is continuous except at a certain finite set of points

where it changes discontinuously. Let C be a piecewise smooth curve in the
z-plane. Then

J.Cf(z) dz =fc (u + io)(dx + i dy) =J-C(u dx —vdy)+ ijc (vdx + udy)
: (1.20)

dz in (1.20) has to be along curve C. The direction in which the curve is
traversed has to be specified. If the curve C is closed it is called a contour

and the integral is denoted by é f(z) dz.
C:

The integral fc f(z) dz thus can be expressed as a sum of line integrals

involving real variables. Green’s theorem in connection with this will be
useful later.
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Green’s Theorem

If the real function P(x, y) and O(x, y) and their first partial derivatives are
continuous inside a simply connected region and C is a piecewise smooth
simple curve inside the region, then

L(de +od)= L(%—%) ds (1.21)

where,.S is the area enclosed by C.

A curve is said to be simple if it does not intersect itself. A simple closed
curve is a simple curve joined end to end.

A simply connected domain is a
domain such that every simple closed
curve init encloses only points inside
the domain. The annular region
between two circles in Fig. 1.2 is not
simply connected because the simple
closed curve C encloses the shaded
region which is outside the domain.

We now state a very important
theorem involving integrals of analy-
tic functions.

Theorem

If f(2) is analytic.at all points within a simply connected region, and C is a
piecewise smooth simple curve in it, then

95 f2)dz =0 (1.22)
C
This theorem is known as the Cauchy integral theorem.

Poof: The line integral 56 3 f(z) dz can be written as

as Sgcf(z) dz = Sgc (udx —vdy) + i . (vdx + udy) (1.20)

Since f(z) is analytic, its real and imaginary parts # and v and their first
partial derivatives are continuous inside the simply connected region. There-
fore, Green’s theorem can be applied to both the integrals on the right hand

side of (1.20) 5
Sﬁc(udx — o dy) =J‘s (T f;’ g;) ds (1.23)
and § (wdx + udy) —f ( )ds (1.24)

Since f(z) is analytic, # and v satisfy Cauchy-Riemann conditions (1.10a)
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and (1.10b) by virtue of which the right hand sides of both (1.23) and (1.24)

are zero. Hence §c f(z)dz = 0.

Analyticity of f(z) leads to the result §c f(z) dz = 0. On the other hand,

if it is given that the integral is zero, can we conclude that the function is
analytic under certain conditions ? Yes, we can.

Theorem
If a function is continuous in a simply connected domain and if, for each

simple closed curve C inside the domain §c f(z) dz = 0, then, f(z) is analy-

tic in the domain. )
This theorem is known as Morera’s Theorem. In a certain sense, it is the

converse of the Cauchy Integral Theorem.

Cauchy Integral Theorem for Multiply Connected Regions: Consider the
multiply connected domain D enclosed between closed curves C; and C’

(Fig. 1.3).

Fig. 1.3

Caiichy integral theorem cannot be applied to the function f(z) which is
analytic in D if the contour of integration encloses C’. Let us make a narrow
cut by joining points H and F on C’ to points J* and E’ respectively on Ci
by straight lines. The gap between the lines is supposed to be narrow and
will vanish in the limit. With the cut, if the set of points between the lines
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is excluded, the domain D becomes simply connected. Consider the closed
curve C = AJHGFEA in the domain. By Cauchy integral theorem,

§c f(z)dz =0
or, Jsu f@)dz + LH (@) dz + J-HGF f(z)dz —}-J.m f@dz =0 (1.25)

In the limit, if the width of the strip between the straight lines is made zero,
then

[, r@d+ [ reyaso

Also the curves E4J and HGF become closed contours C and C’, where C is
traversed in the anticlockwise direction but C’ is traversed in the clockwise
direction. Thus (1.25) reduces to,

ﬁ fz) dz + & f@dz =0 (1.26)
c . 4

Reversing the direction of the second contour C’, we get

f(z) dz — k’ f(2)dz =0 (1.27)
C

This is the modified Cauchy integral theorem for a multiply connected region.
Obviously, if the multiply connected domain is the region enclosed by
closed curves Ciand Ci,Cj, . . ., Ch (Fig. 1.4), and if the contour of inte-
gration is inside C; and encloses all
the other curves, the contributions
corresponding to each of the closed
curves C{. C3, , ..., Cx inside C have
to be taken into abcqunt. Then

‘% f(z) dz — &: f(z) dz

C €

= ﬁ, f(2)dz ﬁ f2) dz
Ca . C{;L

=0 (1.28) Fig. 1.4

1.5 Cauchy Integral Formula

The positive sense of a closed contour is defined as the direction such that
the area enclosed always remains to the left of the contour.
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Theorem

If f(2) is analytic in a domain D, C asimple closed contour in the domain,
and zo a point interior to C, then

Y = ‘—.95 s, (1.29)

2miYc z — 20

where the contour C is taken in the positive sense.
This theorem goes by the name Cauchy integral formula.

Proof. The function

z. =23 is ana-
lytic everywhere on C and inside C
except at the point zo. Let us draw
a circle C’ of radius r around
2o such that it lies inside C.
The region between C and C' is
multiply connected and the function

= is analytic everywhere inside
it and also on C. Applying the modi-
fied Cauchy integral theorem to the

function, we get

. § &dz_yg €/
Fig. 1.5 C 2= 20 (o A= T

=0 (1.30)

where both the contours are in the positive sense. But on C’ z — zp = rei
and dz = jre'® 46,

Therefore,
f(z) o dz z) — flzo)
éc’ Z —iZ0 dz f(ZO)ﬁc’ e == 20 _I- c’ TZO_ dz
=f(z")9g "’9"43_1_ " f2) — fizo) u
¢ rei! ¢ z— 20
= 2mif(z0) + R (1.31)
where, R= M dz (1.32)

c’ Z =2y

We shall now show that R can be made arbitrarily small by making the

radius r of the circle C' approach zero, From the continuity of f(z), for every
positive small quantity e, there exists a & such that

| f(z) — f(z0) | < ¢, whenever |z —2] <38 (1.33)
From (1.30) and (1.31), we have
=¢ JD 4 it (1.34)
felin i Zo

Since the right hand side does not depend on r, R isalso independent of the
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radius of the circle around zo. Let us choose r such that |z —— zo | < don
the circle. From the continuity of f(2) at zo, | f(z) — f(20) | < €, whenever
z is on the circle C’. Therefore, from (1.32)!

IRI gﬁc'i}-{z) f(z(’)l |d21

|z — 20 ]
| dz | .
< o - :
eﬁc e = 2 (1.35)
and can be made arbitrarily small. Therefore, | R| = 0

A direct consequence of~Cauchy integral formula (1.29) is that for an
analytic function, the derivative of f(z) at zo exists and is given by

f2) ,
f(ZU) = §C '(z—_—zo)—zdz (1.36)
Since, f'(z0) = E’lm Lo + Aj; fz0) from (1.29), we obtain
: Ll _NM2)dz) fz)dz
/1) = ‘]:]zTn 2mi Az[§ z—z0—4dz Jc z—2
= Tint 00X (1.37)

420 2mi J ¢ (z — 20 — A2)(z — z0)

From the continuity of f(z) on C, one can show that the above limit

1 f(2)dz

= 27 ez — 20

the integrand ?z—{Lz);)—z in (1.36) exists at every point on C. The result can be

thus leading to (1.36). The derivative f”(zo) exists because

easily generalized. s
Thus,
e ["(z0 + 42) — ['(z0)
J""(z0) lim s

420

it _1[§ fD)dz = _ § fz) dz
2250 27 Az| Jo (z — zo — 4z)? c(z — z0)?

=i_-2-§ & __ 4 (1.38)

2mi clz — 20"

Since, f"(zo) exists at every point zo inside C, f'(zo) is analytic inside: the
contour.
The 't derivative is given by

W) =l e
S®(z0) = 5—=+n! §c Gzt dz

Thus we arrive at the following remarkable theorem:

(1.39)

1We use the result | J‘C (fz) d(z) \ < fc | f(z) | | dz |, which is a consequence of the

triangular inequality (1.5).
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Theorem

If a function f{(z) is analytic at the point zo, its derivatives of all orders exist
at the peint and are given by

f(")(zD) = %ﬂ.n! § —{-{El_«-_— dz

c(z — zg)"*1

The derivatives are also analytic at the point.
Another celebrated theorem which is a consequence of Cauchy mtegra]
formula is Liouville’s theorem which is as follows:

Theorem

If a function is analytic everywhere in the complex plane and is boundéd, it
is a constant function.

Proof: Consider a circle C of radius r around an arbitrary point zo. From
(1.36), one gets

| feo) ] < - § @I 4 (1.40)

clz—z|?

Since /(2) is bounded | f(z) | < M, a given positive quantity. Then from
(1.40), we obtain

; ¥ . | dz |
7)< gug L

2”M 2" _ (1.41)

The function f(z) being analytic everywhere in the complex plane, r. can be
made arbitrarily large without running into difficulty with the conclusion
(1.41). Therefore | f'(zo) | = 0. br f(z0) = 0. But zo is an arbitrary point.
Therefore, the derivative of f(z) is zero at all points of the complex plane
and the function is a constant function.

1.6 Taylor and Laurent Series

Certain preliminary notions about the convergence of an infinite series of
complex numbers will be needed before we can introduce the Taylor series
of a function.

Definition
An infinite series of complex numbers of the form 'z + oo Y RO - S

is said to converge to a sum S if the sequence, Snv = E Zn N = 1,02 ... .,

converges to S.
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Definition

The sequence Sy of complex numbers is said to converge to S if, for any
given positive number e there exists a positive integer N such that

| S—Sv| <e whenever N > No.

In other words, for a converging sequence, the numbers Sy come arbitrarily
close to § as N becomes very large, where | S — Sy | is the measure of
closeness. If a series does not converge, it is said to diverge.

An infinite series of the form,

ao + ai(z — z0) + axz — 20)2 + . .. + anlz — zo0)" +

. = L ]
where, 20, ao, a1, . . . , an, . . . are given complex numbers and z is a vari-
able, is known as a power series.

Theorem

If f(2) is analyticeverywhere inside a circle Co centered at zo, then for every
point z inside Co, the power series

1@ + e~ 20 + 5 —ap 4 LDy

converges to f(z).
The series can thus be represented as

f (@) = f(z0) + f'(20)(z — 20)
+f"("°) (2= 2P .0 f(':fz")(z o) A1) (1.42)

for | z — zo | < r, where r is the radius of Co.

Proof: Around zo we draw another circle C’ of radius ' < r. Let 2/
denote any point on C’ and let the
point z be inside C'.

Since f(z) is analytic on and inside
C’, by Cauchy integral formula, we
have

f(z')

1@ =56 L2 4 143)
Now
W (1 1
Z—2z (2'—20) — (z— z0)

I 1 Fig. 1.6
=z'—-—zo- 1—= (1.44)
where,
L Eiel,

’
7 =28
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(1.43) can thus be rewritten in the form:

l 1 dzJ

L N 29
f(Z) = 2wy fol} z' — 20 1 — Z1 (1'45)
From the equality,
l+zatzi+... . +2m = = 4
I —z
we get,
| = 2 n—1 zl
I_z[“1+2l+21+...+2| +‘l—.__'?l (146)

Subs:titution of (1.46) in (1.45) gives
1@ = zmﬂq 1) ’—.§ Az)_ B o

ct 2 — 20 2ni Jer 2 — 7o (z' — za)

Eil fE)  (z — zo)! _
i 2mi §Cc 2 —z (28— Zo)"1 + Ru(2) (1.47)
where,
= — L) 2= 20)" fz — 20)
n(Z) 2 §f:" = Zo (2' — zo)" (Z = Z) dz'
_ (z= 20 Az) :
= ST, ey (1.4

Using Eqn. (1.39) for the derivatives of f(z) one gets from fl 47),
@ = 1) + @ — 200 + CS 2P oy .

(z_»_._._ Zol (n—1) :
T a0 + Ra) (1.49)
We now show that R, = 0 as n — oo 3
lz—ZoI"fF | f ()] - |dz |
| R s — N I e o L ¢
| Ru(2) | o o T2 — 2Pz — 3] (1.50)
But, |2 =z | = |@& —2)0+(z0—2)| = ||z — 2| — | zo0—1z]|.
Therefore,
Zﬂi | f(Z) || dz’ |
]R(Z)I §C'|z_zui”'HZF“Z'Dl“'iZU—ZH
(1.51)
Writing, z’ — zo = r'¢” , one obtains |z’ — zo| =r"and | dz' | = v @b
Thus,
| lz=z0l" f'; /)| 7 db’
< . :
| .Rn(Z)l = Y . (ISZ)

‘(.’")”H ’ | __|z—r’zg[ i
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If M is the largest value of | £(z) | on C’, we have

[z —2z|" M
| R(2) | < — P
27 (r’)"(l e : z| ) ¢
r
Lufbaciasiye M
- (= = (1.53)

!

r

Since, z is interior to C', | z — zo0 | < 7’ and R, > 0 as n - oo,

Thus, if f(2) is analytic at a point it can be expressed as a Taylor series
around the point. The series is guaranteed to converge within a circle in
which f(z) is analytic. If f(z) is expressed as a Taylor series around zo and
z1 is the nearest point from zo at which f(z) is not analytic, the series is
convergent at all points within a circle of radius | zo — zi |. This radius is
called the radius of convergence,

Familiar examples of Taylor’s series are

I g i z
(1 G e e N (1.54)
This is a series around zo = 0. The series converges for | z | < 0.

: z3 z5
(2) sinz =z = - 5 (1.55)
The series converges for |z | < o
3) ]-_‘—; =1+4z+2+4... (1.56)
The radius of convergence in this case is | z | =1.

The Taylor series was developed for a function which is analytic at every
point inside a circle Co. If, however, the function fails to be analytic at
certain points, can we developit in an infinite series? The answer is given in
the following theorem.

Theorem

Let Coand Co be two concentric circles around zo. If the function fz) is
analytic on Co, Co and at every point inside the annular region between
Co and C4, then it can be expressed by the infinite series

bn

/(@ = 2 az — z0) -i—"f't(?j_z—o),,— (1.57).

o 4 T @Y i o
Where, : an = St Co (Z' = zo)”“ _d— y M= 0, I: 2;\- .. (1.58)
e T s L2 %, (1.59)

2mi J cb(z' — zo)H

Series (1.57) is valid at each point in the annular regionand is known as the
Laurent series.
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Both the contours Co and C§ are to be taken in the positive sense. Note

: ™) (z0) e
that a» in (1.58) cannot be equated to T because it is not known

whether f{(z) is analytic everywhere inside Co. If f(z) happens to be analytic

everywhere inside Co, a, = G (z") . Also then the function f(2’)/(z'—zo)~"*,

=1,2,..., is analytic everywhere on and inside C§ and

b,,—-l— § —-—‘@———dz'=0.

2w co (' — ZO)"'H

Therefore, in this case the Laurent series reduces to the Taylor series.
Proof: Let z be any point inside the annular region between Co and Co
(Fig. 1.7). Draw a circle C around z
such that it lies entirely. in the
annular region. By Cauchy integral
theorem applied to the multiply
connected region, we have,

1) .- 1@ ,

G 2 —2z cbz — z —~z
-EF SO o o)
cZ —2Z

where, all the contours are taken in
Fig. 1.7 the positive sense. But by Cauchy
integral formula

8 zf(”z dz = 2mif (z) (1.61)
e T Y G I 9
Therefore, fz) = e P dz >mi §c ploasr dz (1.62)
In the firét integral on the r.h.s., writing
1 ey: 1
z —z (2 —20) — (z — z0)
1 (z—2z) |, (z — zo)¥!
Hz'*zo+ (z’—zu)zT"'+(z zn)N+
(z— z) [cf. Eqn, (1.46)]
(2 — zo)N“'(l = {__z_"_)
z’ — 2z
we get,
' N—1
l-_ § -&)— dz’ = Z auz — z0)" + Rn(2) (1.63)
2mi J e, (2' — z20) n=0

=l TR . e
where, a4 = 5 §Co @ — zoH dz
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iz = zo)” J f(Z) dz’
and, Ry = 7 §c° @ — 2V = 2 (1.64)

As in the proof of Taylor series, we can show that Ry — 0 as N =00,
In the secand integral on the r.h.s. of (1. 62), writing

= I ™ 1
z' —z z — z0) — (z' — zo)
1 (z' — zo0) (z' — zg)V-1
T z—z2 ' (z — 20 T ol (z — zo)V
4 (z' — ZO)N,
(z — 20)N+1(1 S 20)
zZ— 20

one obtains,

1 )dz' _ X by
“omifh 7 — 2 ;f, @= zp T 2N (1.65)

where, by = s §co & —ﬂzzo))"' 4zt
; . — =N
and, On(z) = 2I—ﬁ§c6 i :r & ),‘SZN G 20) - (1.66)

Following an argument similar to that for Rn(2) in case of Taylor’s ser ies,
we can show that sz(z) — 0as N = o0, Thus

—r N
1@ | < o é;mlf(z)llzlf_z‘ f"f' laz | (1.67)
Iz—"']——l(z—Zo)+(zo—’)l Zllz—z2|—|z2—2z]]
Therefore
1 G |- 2 =¥
‘QN(Z)|g2fr-|z—--zolN §c6 llz—=z] =12 =27 ldz'|
(1.68)
Writing, z' — zo = r'e* on C§, we obtain
’ r;N 4
lov@) | < 2w|z~—zn i i:o LD 0 e (1.69)
' ( IZ—Zn)

If M is the maximum value of | f(z') | on G4, it follows from (1.69) that

r N+1 1 .
| ov)| < M- (1725) = (1.70)
Iz — 2]

Since the point z is exterior to C§, | z — zo | > 7, the radius of Cj.
Therefore, | On(z) | - 0 as N — o, and

= 2 bn
1(2) Z‘ an(z — zo) +..£ B= o
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where the coefficients 4, and ba are given by (1.58) and (1.59) respectively.
Laurent series can be obtained without evaluating the integrals (1.58) and
(1.59), by using Taylor series for part of the function f{(z).

Example 4. As an illustration, consider the Laurent series of the function
f2) = 1/22(1 — z) which is analytic everywhere except at z = 1 and = — 0.

; 1 ; y
For | z | < 1, the function 7T can be expanded in a Taylor series:

1
[h==tiz

= ] -+ 7z 4 22 -+ . (]7”

Therefore,  f(z) = ;li -+ -;— Sl A (L71)
The result (1.71) is a Laurent series for the given function with b = 1|,
br=1,bs=0b.,, =0, 4 =a1=...=gy=...=1, The Laurent
series representation (1.71) is valid for iz|<1,z#0.

If we want the Laurent series for the same functionfor | z | > 1, /(z) has
to be rewritten as

RIS e
23(1 -—i)
z
1

For|z|>1, l %' < 1, and the expression

, J@) = —

can be expanded in a
z
Taylor series, as

— el Ly
I___
Z

N =
=

which converges for | z | > 1. Therefore, the desired Laurent series for the
given function is given by

fl2) = -___—13 = ;-14
Thus, by = b = O, by = by = .. = L =gy = . — :

The series representation (1.71) is valid inside a circle of radius unity
about the origin (except at z = 0). On the other hand, (1.72) is valid outside
the circle. It can be said that (1.72) is the analyiic continuation of (1.71)
outside the unit circle around the origin,

(1.72)

N, | —

Example 5. Let us find the Laurent series representation of the function
f@&) = et — 1
J(2) fails to be analytic,

2=0,andz= % 27in,n=1,2,. . .are points at which

5 1 ey I
f(z)-——-————-r—-+£,+z_,+ A e AT (1.73)
R R vy i 3T 4
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The denominator of l 3 is not zero for | z| < 2. Therefore,

z 2.
l -4 7 + gt
the Taylor series for it about z = 0 will converge within the circle| z| < 2,
1 T Z z
Z. ml (Es’3z+4t)

z 1 . w
l+§!-+§i‘fza+

-2 232 -2 ZJJ
+(3+5+3) ~(—§~+"—,+—) e

Thus f(z) = —;- s piery Al UEE (1.74)

The representation is valid for 0 < | z | < 2m.
1.7 Singularities and their Classification

Definition

If f(2) is not analytic at zo but is analytic at some point in every neighbour-
hood of zo, then zo is called a singularity of the function ). .

In Example 4, the function f(z) = ;2(—1—17-2-)- is analytic at every point
except at z = 0 and z = 1. Therefore, they are the singularitiqs of f(z2).

As another example, consider the function flz) = . This function

l
sinh z
is analytic everywhere except at the points where sinh z = 0. This happens
when e* — ¢z = Oor, e* = | = e mi=0, +2, . ... Thus the
singularities of the function are z = 0, £im, £2im, . ... -

A singularity zo will be called Isolated Singularity if we can find a
neighbourhood of zo in which it is singular only at zo but is analytic at every
other point. All the singularities considered above are examples of isolated

singularities. In contrast consider the singularities of fz) = __IT " -
sin (-——)

z= ’;i—r, n==x142 ..., and z =0 are the singular points. Every
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neighbourhood of z = 0 will include other singularities of f(z) correspond-
ingtoz = ;;l_rr with a very large value of | n |. Thus, the singularity at z = Q-

is not isolated, but all the other singularities are.

Definition

If a function f(z) is not analytic at z but there exists a positive integer m
such that lim (z — z0)™ f(z) = ¢(z0) exists and #(z0) # 0, then z = zo is
z$zp

said to be a Pole of Order m of f(z).
A pole of order one is called a simple pole. In Example 4, z = 0 is a pole

of order two of the function f(z2) = zz(-——]—l——-__ﬂ and z = 1 is a simple pole.

, lim (z — inm) = (—1)", where n

1
sinh Z z-»inm sinh o
is an integer. Therefore z = inm is a simple pole of the function.
If zo is an isolated singularity of f(2), we can represent f(z) by a Laurent
series

For the function f(z) =

1) =n§ an(z — zo)" + b (1.75)

n=1(z — zo)"

which is valid in some neighbourhood around zo: 0 < |z — 20| < r. The

part of the series containing only negative powers of (z — zo) is called' the

Principal Part. 1t is clear that if the summation over 7 in the principal part

runsupto o, there will exist no positive integer m such that lim (z - z0)"/(2)
=2y

will be finite. In such a case zo is called an Essential Singular Point of f(z).
On the other hand, the limit will be finite and not equal to zero, if the
principal part of the function is of the form,

bl b! bm
zZ— 20 = (zﬁzo)2+"' {_(z~zoj”"

Thus, we can give the following alternative definition of a pole of order m:

If the principal part of f(z) around zo contains a finjte number of terms
and m is the highest negative power of (z — 20), then zo is called a pole of
order m of f(z).

It is sometimes possible that a function fails to be analytic at z == zo, but

the principal part of the function at zo is zero, i.e., by = by = , ., =0,

Ji(z)= SIZ'Z is an example of such a function. Using the Taylor series of
; 22 e -

sin z, we get f(z) = 1 — 3 + % + . .. The expansion is valid for |z] <o

except at z = 0 which is a singular point. Such a singularity is known as
removable singularity. The function can be made analytic at z=0 by defining

J0) = 1.
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Definition

The coefficient of in the principal part of the Laurent series expan-

(z — Zo)
sion of a function f(z) around and isolated singular point zo is called the
Residue of the function at zo.

In (1.75), b1 is the residue of f(z) at zo. From (1.59), &1 is given by

b= zl—m % D& (1.76)

This gives us a method of evaluating the integral §c6 f(2)dz if the residue

by is known. Before proceeding further to the residue theorem and the
evaluation of integrals using it, we discuss a different type of singularity
associated with multi-valued functions.

Branch cut and branch point

Consider again the function f(z) = logez =loger + i, —w < 6 < 4.

The two points z1 = rel™=9 and z; = pe-im+ic Jjo very close to the negative

x-axis (Fig. 1.8) and as € — 0 they approach the same point. But lim fz1)
)

=log. r+ im and Iin'é Sf(z2) = loge r — in. As we approach the negative real
LE F

axis from above and from below, the function approaches different limits.
The function is not continuous on the negative x-axis and is, therefore, not
differentiable at any of these points. Also, f(z) is not defined for z = 0.
Thus all the points on the negative real axis including z = 0 are singular
points of the function. The line & = —= on which the function fails to be
analytic is called a branch cut. The function loge z = logere+ i0, — 7 <
6 < = is analytic in the given domain and is known as the principal
branch of log. z.

Y

o
2 s 1 s

Fig. 1.8
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If we define the function in a different way, i.e., loge z = log. r + i6,
—(@2m — @) < 0 < «, the function will be discontinuous at all points on
the line & = «. This line will then be the branch cut. For a multiple-valued
function, there is thus a branch cut which is in general, a curve of singular
points. The position of the cut in the z-plane is somewhat arbitrary depend-
ing on the definition of the branch of the multiple-valued function. However,
there will be a point which is common to all the cuts. For the function.
loge z, z =0 is such a point. This particular singular point is called a
Branch Point. Incidentally, this is not an isolated singularity. For logez
= loge r + i, —7 < 6 < =, every neighbourhood of z = 0 will contain
points on the negative x-axis which are also singular points of the function.

The function f(2) = z!/2 = rl2%i%2 js another example of branch point
singularity. If the domaln of definition of 6 is —7 < 8 < =,"then the nega-
tive real axis is the-branch cut. The cut can, however, be chosen along the
positive real axis by defining the function for 0 < 6 < 27, z = 0 is the
branch point.

~ To avoid the ambiguities associated with the definition of multiple valued
functions, Riemann thought of an ingenious device. The technique is best
illustrated with the help of examples. Consider the principal branch of the
function log z = loge r + i, —m < @ < m. Other branches are given by
7 < 60 < 37, 37 < 8 < 5m, etc. If we consider only a particular branch,
the function is analytic. Following Riemann, we now consider each branch
of the function to constitute a layer of the z - plane. The layers are stacked
one above the other such that the top layer is the principal branch and
the subsequent layers are in the order of increasing 6. Each of the branches
has a cut along the negative real axis. The upper edge of the cut in the first
layer is connected to the lower edge of the cut in the second layer. The
upper edge of the cut in the second layer is connected to the lower edge of
the cut in the third layer, and so on. For the function log. z, an infinite
number of such layers are to be connected in the above way. By this device
the function is made single valued. The different layers are called Riemann
sheets.

For the function z!/2, the situation is a little more complicated. Again, the
branch cut can be chosen along the negative real axis. After considering the
branches —7 < 8 < 7 and 7 < 8 < 3w, as one crosses 37 one gets back the
values corresponding to the first branch, since ri/2¢i/2 (37+9) —. y1/2o02751/2-+4)
= pli2pi/2~-m+$) :

It is sufficient to have only two Riemann sheets for this function. The
upper edge of the cut of the first sheet should be connected to the lower
edge of the cut of the second sheet as before but at the same time the upper
edge of the cut of the lower sheet should be connected to the lower edge of
the cut of the first sheet. In practice this is not possible because the two
connections interpenetrate and the whole process has to be considered as a
mathematical exercise. The Riemann sheets for the function z!", where 7 is
an integer, can be constructed in a similar manner. For this function n
Riemann sheets are required.
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1.8 The Residue Theorem

Theorem
Let a simple closed curve C enclose a finite number of isolated singular
points zi, z2,..., z, of a function f(2), which is analytic on C and at all

other points interior to C. Then the integral §c f(2) dz taken in the positive

sense, is given by
ﬁsf(z) dz = 2mi(Ry + Rz + . .. 4 Ry) (1.77)

where, R; is the residue of f(z) at the singularity z;.

Proof: Let us draw circles C1, C, . . . » Cnaround the singular points Z;,
23, . . ., Zyrespectively. The radii of
the circles are so small that, (1) they
lie entirely within the curve C, and
(2) they do not overlap. Cauchy
integral theorcm applied to the
multiply connected region gives

§c 1) de— §’c1 f) dz

‘—5662 f.(z}dz = ik

-$_r@d=0  am

where all the integrals are taken in
the positive sense. Fig. 1.9
But from (1.76),

f f(2)dz = 2niRy, 96. M(2)dz = 2miR,, . . 95 f(2)dz = 2niR,
Cy Cy Cn
(1.79) -

Substitution from (1.79) in (1.78) gives (1.77).

The residue theorem gives us a powerful method of evaluating integrals.
To get the integral around a closed contour all we have to do is to note the
singularities of the integrand enclosed by the contour and find the residues
at the singularities. However, we cannot use Eqn. (1.76) to calculate the
residues because this will bring us back to the problem of evaluation of the
integral. Fortunately, the residues can be calculated by other methods,
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CALCULATION OF RESIDUES

1. For a Simple Pole

If zo is a simple pole of f(z), the Laurent expansion of f(z) around zo valid
for0<|z—z| < r is of the form,

by
zZ— 2o

1) 2..‘2 anz — zo)" + (1.80)

Then, ]n:zn (z — 20) f(z) = b1 = the residue of f(z) at z.

2. For a Pole of Order m

If z0 is a pole of order m of‘f(z), the Laurent expansion of f(z) around zo
valid for 0 < | z — zo | < r is given by

= - o0 v - o _ﬁ'_- L bnl
.f(z)"_nfoaﬂ(" ZD) +Z_20+ (Z“ZD)2+'-.+(Z—ZO)M

(1.81)

Multiplying both sides by (z — zo)™ and differentiating w.r.t. z, (m — 1)
times, one gets

;MT:[(Z — zo)"f(2)] =’§; anim +nm +n—1)...n + 2)(z — zoy**!
+b1+(m — 1)! (1.82)
Therefore, b = s T — 20 e (1.83)

3. If 2o is an essential singularity the above method will not work. But the
Laurent expansion can be used directly in this case to get the residue. Thus

for the function f(z) = exp (—;-), z =0 is an essential singularity. The
Laurent expansion around z = 0,

1 1 11
exp(—z~) ='-=1+;'+ 2—|; o e s A
immediately gives b = 1.

'-::(—(-‘:)5, where ¢(z) and.

(z) are analytic functions in some domain. If $(z0) = 0, then zois a singu-
lar point of f(z). If in addition ¢(z0) # 0and $'(z0) # 0, then zo is a simple
pole of f(z). S

To see this we expand both #(z) and ¥(z) around zo in Taylor series:

#(z) = ¢(z0) + (z — z0)p"(z0) + . . . - (1.84)

4. Sometimes the function £(z) is of the form f(z) =

Wz) = (z — zo)¢'(z0) + gz—.;!@-lzk&”(m) + ... (1.85)
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Then

Jim (2 ~ 20)/() = lim — &= 2008 + & = 2)'ey) + ..
> P (z — z20)| ¥ (20) + Lz‘%‘,“?ﬂ'ﬂ""(mﬁ) = ]

— $(z0)
P20
is finite. Therefore, by definition zo is a simple pole of £(z) and the residue is
given by
$(z0)

by = m- (1.86)

1.9 Evaluation of Integrals Using Residue Theorem

We now show how the residue theorem can be used to evaluate various
types of integrals.

Example 6. Let us evaluate the integral 'dz , where C is- the
¢ sinh 2z
circle | z | = 2, the contour being taken in the positive sense.

First we have to find the singularities enclosed by the contour C. The
singularities of the integrand are given by i

sinh 2z = O or, ¥ — ¢722 =, or, ¢ — | = e p =0, +1, £2,....

imn
or z= ——.

2
All the singularities lie along the imaginary axis. The circle |z | = 2

encloses only the singularities at z — 0, &+ I:; According to the residue
theorem,
dz . : 3 in : e
fc P P Zm(Remdue at 0 + Residue at + 3 -+ Residue at > )
(1.87)

-

Fig. 1.10
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BV L2 s 1 :
z=—5isa simple pole of Sinh 25 A can be seen by evaluating

-+ -

imf2

lim (z—-‘f)—l——z ]im( h"—”) ’
svim(2 2 / sinh 2z z»im|2 2 (Z o %’l’)z cosh 2z

1
~ 2 cosh (im)

where, sinh 2z in the denominator has been expanded in a Taylor series

= Ak u {
around z = 1211 Since the limit is finite and not equal to zero, z = !? is a
; ! . 1 | (R RLEY
simple pole and the residue at the point = . Similarly,

2cosh (im) 2
i

zannd’=—2

are also simple poles and the residues at these points

are —;— and — % respectively, From (1.87),

dz 1 1 72 Pl ot
fﬁcsinhzz“z"‘(?”'z‘_ i) Ks28)

The residue theorem can also be used to evaluate certain definite
integrals involving trigonometric functions. If the integral is of the form

27
L F(sin 0, cos 68) df it can be transformed by writing z = ¢/* to the

integral §c f(z) dz, where C is the unit circle | z | = 1.

2w ‘08 3@
Example 7. Evaluate the integral I = J- cos'3 df.

o 5—4cosl
Let us put z = ¢?. Then

: | : 1 1 1 |
e = il ety 1 4 [ =) == L —_— — 3 o

dz == ie'" 0, cos0 5 (i -}- ¢-i9) 2(2 Fz),c0539 2(z+23)

The integral is now transformed to
Bl
1= 3r5) .
C5 2( z+ 1—) .
z

where the contour C is the unit circle around the origin taken in the positive
sense.

e e SR _f_§ e B 4.
2Jc22—5z2+2" 2Jc(@3 =52+ D)

(h + R) (1.89)

o~
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.5 dz

3
To evaluate I; = & 2 , we note that the singularities of the
c @z -1z -2

integrand are z = % and z = 2 of which only z = } is inside C

1 ( i _1...) z? czquele
=ip\- 2) B =N =2 24
Thus z = } is a simple pole at which the residue is — 1/24, and
1 i
s 2"‘( 24) 3
In I the singularities of the integrand arez = 0,z = } and z = 2.
z=0andz = }areinside C. z =} isa simple pole, but z = 0is a pole
of order 3.
Residue at z = L is lim (z —- -l—) ek SUERS and residue
A e 202z — Nz — 2) 3
d? 1 21

up, 20l lﬁ?dz-2z2—57+z '8_

Thus I = 2mj (— & -+ 2‘) and from (1.89)
R s LW
I= 3 (h -+ R) B

b oo
Certain real integrals of the formI Sf(x) dx can also be evaluated by -

the residue theorem. The method is best explained by an example.

Example 8. Let us evaluate the integral I = J C{;sia;\;’ a > 0. Since the

integrand is an even function x, 7 Y
can be written as

COoSs x
2 —w® x2 + a? dx,

We first evaluate the relaled com-

B eiz ><{Cl r
plex integral I = § 21 2 dz,
where Cis the contour shown in : > X
Fig. 1.11. The integrand has singu- =R +R
larities at z = 4= ja. If R, the radius .
of the semi-circle is greater than a, X-1a

then by the residue theorem

§ eiz d

= dz
2+ g Fig. 1.11
= 2#i. Residue at z = + ig,
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i elz me™ 8
T2 [z e ia]z-.m B (1:90)

The 1.h.s. can be written as
elz +R eix e!:
§cz’+a3dz"__[_g x2+a2dx+,[r;2_—-i~_afdz (1.91)
The second integral is the contribution from the semicircular arc I, Now,
el e ] -] dz|
AP EEL < s ol s et
fr IR dz | < I (1.92)

r |22 4 a?|
| ei* | =e™. Since I' is in the upper half plane'y > 0. Thus, | e | < 1,
and .

) | dz | .

<= A L
J.r22+azdz|‘“jr | 22+ a? | (1.93)
On T, z = Re', dz = iRe'? db, | dz | =R db.
Also, |24+a2 |2 |zP—a2=R — g2
Therefore, one obtains from (1.93),

elz R & 7R
—dz | < = = ——— 3
|ozSze|< etalio=g2s s

If we now make the radius R of the semi-circle arbitrarily large, R — o,
eiz |
and Ur Fn =4z | > 0.
Then from (1.90) and (1.91),

+ o el‘x 7r
f e e

Equating the real part from both sides, one obtains the desired integral

T2 cos % S AN o B
f_wxz—_}_a—zdx—-‘?jo x2+a2d$-— € ~ (1.96)

The above example shows that a crucial step involved in the method is
to show that the contribution from the semi-circular arc I' vanishes as the
radius R of the semi-circle becomes infinite. In many integrals involving
trigonometric functions, the integrand is of the form efe: f(z), where a is
realand | f(z) | >0as | z| - 0. For such integrands, the contribution
from I' always vanishes as R — 0. This result is known as Jordon’s lemma.
Proof of Jordon’s lemma

U.refa'f(z) dzl < L | e | - 1f2) | - | dz |
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On, I' (Fig. 1.11), z = Rei® = Rcos 0 + iR sin 6, dz = iRe'? db
Thus,

Jr el f(z) dz

Since, | f(z) | >0as | z| > o, we can choose R large enough so that
| f(Re'®) | < e, a preassigned positive quantity. Then,

Ur ele: f(z) dz

< J "e-aRsin | f(Rel) | R df (1.97)

< eR [: ¢-aRsin s gf (1.98)

/2 m f
Using the result thatJ. e @Rsin 04 = J ue“" sin @
(1] m
we can rewrite (1.98) as

Ur e'ez f(z) dz

From the plot of y = sin @ and y = 28/ (Fig. 1.12), itis clear that in
the range 0 < 0 < /2, sin 6 > 26/m. Therefore,

w2
< 2¢R J e~ aRsin 6 Jf (1.99)
0

w2 28
I e f(z) dz | < 2¢R J‘ ok — 40
r 0 ™
= zeR-%R-[l —e—=R] (1.100)
AsR—> w0, e >0, lim J.P el f(z) dz| — 0.
R+»m
y A
1-0F
i
|
I
: y:sm e
|
|
|
|
I
I
I
0} /2 T a8

Fig.1.12
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Example 9. Jordon’s lemma can be used in the evaluation of the integral

0
— o0 to -+ o, thus:

0 el +® o
J sin x dx _Hij sin x £
] 2 -0

(- - T E
J. smxx dx. As before, we first convert the integral to an integral from

x x
and evaluate the related complex integral

ffdz.
Cc Z
In choosing the contour C in this case, we have to be careful because the
singularity, z = 0 of the integrand falls on the real axis. If the contour is
allowed to pass through this point the residue theorem will not hold. To
avoid this difficulty, the contour near z = 0 is bent inthe form of a semi-
circle I of radius ¢ as shown in Fig. 1.13. Then, '

§-e:dz=0
cz
—¢ pix R ix iz Iz
or, J’ ~e—dx~l-I e—dx-f—f 'e—dz‘]'Je— z=0  (L10D)
R X +e X rz =&
y
r\
[}
Sc N o X
-R —-€| +€ +R
Fig. 1.13

iz
By Jordon’s lemma, J gz- dz — 0 as R — o, Also,
r

elz Jl] ¢ sin §+je cos §
z = —_——
rz

”
3 'fﬂ."" dﬂ = — e~ *sin #+iecos @ d‘ﬂ
T €¢e 0

Since, the integrand e~*sind+iccoss 5 3 continuous function of e,

" e!z A ™ x
lim —dz = — ilim| e ¢sinétiecoss g = — g (1.102)
o0 Jr Z e=>0J0
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Thus, with R — o0 and € — 0, we obtain from (1.101)

+ o e.‘x
[ Eix =i (1.103)
Equating the imaginary part from both sides, one gets
4w
I S"”’dx_zj 5“‘—xdx—« (1.104)

In the above example, the semi-circle _I' " was drawn in the upper half
plane so that the singularity at the origin was outside the contour. Alter-
natively I'" could also be drawn in the lower half plane taking the singul-
arity inside, The value of the integral obtained would of course be the
same. This can be easily verified and is left as an exercise.

In all the examples of evaluation of real integrals, the contour has been
chosen in the form of a semicircle. But this need not be the case. In some
problems the choice of a semi-circle with its base on the real axis as the
contour is unsuitable as is illustrated in the next example.

+® xZex

Ry dx, we calculate the related

Example 10. To evaluate I = I

i
complex integral 1 = §c -;g—e—_i-_‘-l dz, where the contour C is yet to be speci-

fied. The singularities of the integrand are given by ¢ .= — | = Fin+nm
m=0,1,2,...,0rz =7+, The singularities all lic along
the imaginary axis and they are mﬁnlte in number. If a semi-circular
contour of radius R with the base of the semi-circle along the real axis is
chosen, as R — o more and more singularities will be crossing into the
contour. Such a contour is obviously unsuitable for this particular problem,
Instead, we choose a contour in the form of a rectangle x = + R,
y = + R’ (Fig. 1.14). R’ will remain fixed and R will be made infinitely
large. Then,

y
~R+iR’ R+iR’
- -
| \
-R G +R X
Fig.1.14
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O [TR O x2ex R+IR! 2,z —R+IR" 2,2
= .[—xez"+l dx _[ e o 1 dz _F‘jn-_p.m' e 4+ ] &
—R z%e*
+J—R+a‘£‘ E—_-]_-—] dz (1.105)
|J'R+HZ" zzez ’ J'R-H'R"ZIJ lez | |d‘zI J‘R+5R'lz2l.Iez“dzl
e +1 R e + 1] “'IR e ] —1
(1.106)

On the line R> R+ iR,z=R + iy, dz = idy and y varies from 0 to
R'. Also |z | =v/R% + »2 From (1.106), we get

..J‘RHR' 7202 d' R' R2+!E)exd
2 ekl i* R — 1

£ R? (Rz a5 R'z),ef'
=il ek — ]

_ (R 4 R?) e®-R

AR (1.107)
Therefore,
. R+IR! zze; J =
}!l-lllm .’R ;ﬁ——ﬁ dz‘ =0 (1.108)
Similarly, on the line — R + iR" > — R, z= — R+ iy, dz = i'a'y

y varies from R’ to zero. Hence,

, J d ’ J' (R + )3 e"n (R? + R?)e R R
n+mre2= + 1

wzx T i ] —'e2R
(1.109)
- -R z2p7 I -
: Thus, };_Izlw J.-x+mn p dz | =0 (1.110)

Finally, on the line R + iR > — R+ iR, z =x + iR, dz = dx, x
varies from R to — R and we get

—=R+iR! —R (x + !R.r)z ex+lnf .
J‘RHR‘ e+ 1 +l e~ J TEGFIRY 1 dx .11

Substituting from (1.108), (1.110) and (1.111) in (1.105), one obtains

+ 0 (x+iRr)2éx.HRr
'“J._wek+1 J’_wmdx (1.112)
If we now let, R' = =
2§ xeX 4o ox
- 2
I ZI e’*+1dx+2mJ'..,,e2x+1 “I_me2x+1-dx

(1.113)
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In the second integral on the r.h.s., the integrand —~—x-—_;‘ is an odd func-

e* + e
tion of x. Therefore the integral vanishes.
R ek W midic _ m
S, e a= om*i
Thus 2" i 4
us, L = I 2‘+ 1 ? (1.11 )

On the other hand, I; =

z2ez . . BN W
& T dz = 2mi (Resndue ati) ' being
the only singularity enclosed by the contour. The integrand is of the form
$(z) t#(g—) # 0, ¢(%r) = 0 and l,l«’(%) # 0. Therefore the residue

¥(2)°
$im/2) _ _ wY4i _ =

T YR T =1 8§

2 ! 3
Thus, I = 2111'(%- i) = — % - (1.115)
+w xzex & w3
From (1.114) and (1.115), we get jﬂmm dx =3 (1.116)

The next example involves, integration around a branch point.
-] x—ﬂ
Example 11. I=L mdx, 0<ea<l.
We evaluate the related complex integral,

=

L2
L1

Fig. 1.15
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With 0 < « < I, the integrand of /i has a branch point singularity at
z =0,

77% = g-tlogy-uil o ,-alog ¥—aie —— | z|-*emeie

If the domain of argument 8 is restricted as 0 < 8 < 27, the branch cut is
along the positive real axis. It is not possible, therefore, to choose a contour
along the real axis. The integrand has also a simple pole at z = — 1.

A contour C as shown in Fig. 1.15 can be chosen in this case. This con-
sists of two lines L1 and L, running parallel to the branch cut, part of a
circle I'" of radius P, and part of a circle I" of radius R > 1. In the limit
the straight lines will approach the real axis from above and below, P will
tend to zero and R will be made arbitrarily large.

-, Bl " i
§C1 1 dz = 2mi. (Residue atz = — 1)

= 2mj‘eg~ime (1.117)

e z:" == e

or, i +zdz+.[ﬂl-—-—+zdz +J.h T _!_zdz—I—J.r i +zdz

= 2mj-g~Ime (1.118)

Along Ly in the limit when the line approaches the real axis.

7 5 o | z|"“e""2’ BEn S e X '
IL1|+Zdz —-J.w e dz= — ¢ L l--I-xdx (1.119)
: : z'—{l " -] x—ﬂ

- Similarly, L.l e dz = S (1.120)

_ iy 4 2y
Also, ”r]_}_zdzlsfr —-——-——|1+2I ]dzl@[—l—z—l—_—lldzl,

On I,z =Re"  dz= Rel* db. Therefore,

5 z i SR R=t -
- ——
LII&,J.]"I zdzl«..}i_’n;R___lRZTr—)-O (1.121)
; z 2 | : p
and le Jlﬂ i3 dz l:_lgp 1 (P)(— 27) >0 (1.122)

Substituting from (1.119), (1.120), (1.121) and (1.122) in (1.118), we
obtain -

(] = e—:‘zfm) X dx = dmj.e~ima
o 1+ x il

S o s
o ,[o 1 +xdx " sinwa (1.123)

1.10 Conformal Mapping

A real valued function fXx) of the real variable X can be plotted in the
y-direction. For a complex function f(z), such a plot is not possible. The
z-plane is needed to indicate the domain of values of z. The function f(z)
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== W = u -~ iv can however be plotted in a separate plane, the so called
“w-plane” in which » and v are plotted along two perpendicular axes. One
can consider this a transformation in which a set of points in the z-plane is
mapped into a set of points in the w-plane.

As an example consider the mapping w = -]z— We have u + iv

e X o e s = s e
Srn S o _.’_yzh-rmso thatm-—x2 ' and v = ——x—2+—y2
These equations can also be inverted to write x and y in terms of # and v.
The easiest way to do this is to note that z — 1/w. Thus,

u v
xzm and yz-—‘;z_}__—uz‘ (1.124)

From the above equations we can easily draw the following conclusions:
(1) A horizontal line y = ¢ in the z-plane will be transformed into the

= 2 A 2 = fy (__]__)2 3 .
curve, 7 e c1 or, u? + (v Se 7 ) 3¢;) in the w-plane.
This is a circle of radius 1/2c;-and centre at (0, — 1/2¢1).

(2) A vertical line x = ¢z in the z-plane will be transformed into the
c']__".__ o ( __l_)z_|_;,2-_(l_)z.
et 2 = AN (¥ 2c2  \2c

Y X=C3z

g

Fig. 1.16

(3) A circle x2 4 32 = 12 in the z-plane will be transformed into another

72 1"
s =rlor,u + ? = = i the w-plane.

: w2
circle G2+ 2P -+ 2
For a point in the interior of the circle in the z-plane, x2 + 32 < r2, This
gives,
u!

v
s R v
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I 2 2 2 1
or, z;2—4_?<r or u-‘r-v>r2

Thus the interior of the circle in the z-plane is mapped into the exterior

of the circle in the w-plane. Similarly, the exterior of the circle in the
z-plane is mapped into the interior of the circle in the w-plane.

Definition -

A mapping is said to be conformal at a point if the angle between two
curves passing through the point is preserved in magnitude and sense by
the mapping.

Suppose by a mapping w = f{(z), the curves Ciand C: in the z-plane are
mapped into the curves I't and I, in the w-plane. The point of intersection
2o of C1 and C: is mapped into the point of intersection wo of I'y and I,

; . dw
f(ZO) i3 1;:30 Z |z,
- mfin, %)
arg f'(z) = arg(ygo 221,
v
Y
G
C1 Wo
B
Zo Cz
0, ¢’1
X
Fig, 1.17
If the limit exists, then
arg f'(z0) = jimo(arg dw — arg 4z)
W 0
= lim arg Awl — lim arg Azl (1.125)
dz=>0 Wwo Az»0 g
If both zo and zo + 4z lie on Ci, then limo arg dz[ = 0y, the angle the
Az 'Zo

tangent to Ciat zo makes with the x-axis and lim arg Aw[ = &1 the angle
dw=0 wo

of inclination of the tangent to I't at wo with the y-axis. Thus, if £'(zo)
exists, then

¢ — 0 = arg f*(zo) (1.126)
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Similarly, approaching z along C,
$2 02 = arg f"(z0) (1.127)

Where, 6; = the angle the tangent at zo to C> makes with the x-axis, and
$2 = the angle the tangent at wo to I"; makes with the u-axis.
From (1.126) and (1.127), we get

b2 — 0 = ¢ — ¢, (1.128)

But (6 — 6)) is the angle between the curves C; and C; at zo and
(32 — &) is the angle between the curves I't and I at wy. Therefore, by
the above mapping the angle between the curves C; and (2 is preserved in
magnitude and sense. The mapping by definition, is conformall,

In arriving at the above result, we have assumed that f'(zo) exists, Also,
if /'(zo0) exists but is equal to zero its argument is undefined 'and the above
reasoning will not go through. Therefore the necessary conditions for a
mapping, w = f(z) to be conformal at 2o are, (1) f'(z0) must exist and, (2)
f'(z0) # 0. If the mapping is to be conformal over a domain, f"(z) must
exist at all points of the domain and condition (1) is equivalent to f(z)
being analytic in the domain,

Conformal mapping finds application in a wide variety of physical prob-
lems. These ‘are problems, (1) which are either two dimensional or effecti-
vely two dimensional, and (2) in which the variable in question satisfies
the two dimensional Laplace’s equation, i.e., the variable is a harmonic
function.

Thus, one may be required to find the steady state temperature at any
point of a thin, uniform, insulated plate. The temperature T is a harmonic

2 ar T ;
function T -+ s 0. Or the task may be to find the electrostatic

potential inside an infinite half cylinder when the surfaces are maintained
at given potentials. The later is a three dimensional problem but because
the cylinder is infinite the potential is a function of only two variables
(x and y, say). The electrostatic potential #(x, y) satisfies Laplace’s equation
%’i =4 g—}ﬁ = 0. Such problems are solved by conformal mapping by the
following procedure:

First the configuration in the z-plane is mapped into another in the
w-plane by a conformal mapping. The mapping is so chosen that the result-
ing problem is a simple one whose solution can be obtained easily. By the
inverse mapping, one then transforms back the solution in the w-plane to
obtain the solution of the original problem. The prescription just given is
based on rigorous mathematical reasoning. We state without proof the
following theorems.

Theorem

If the mapping f(z) —= u(x, y) + iv(x, y) is conformal over a domain in the
z-plane, and H(u, v) is a harmonic function in the w-plane, then the function
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#(x, y) = H(u(x, ), v(x, y)) obtained by transforming H(u, ) to the z-plane
is-also a harmonic function in the given domain.
I2H 9% 0'255
If, 2 + a 2 = (), then the transformed function sausﬁcsa i 6y
= (. Thus if we have found a solution of Laplace’s equation in the
w-plane, then by transforming back by a conformal mapping, we obtain a
solution of Laplace’s equation in the z-plane.

Theorem

Let the curve C in the z-plane be mapped into the curve I'in the w-plane by
the conformal mapping f(z) = u(x, y) + iv(x, y). If H(u, v) is a harmonic
function in the w-plane satisfying either of the boundary conditions H(u, 7)
= ¢ on I' or dH/dn = 0 on I (d/dn is the derivative normal to I'), then
function ¢(x, y) = H(u(x, y), v(x, y) also satisfies the same boundary con-
ditions on C.

Thus, if a solution of Laplace’s equation satisfying boundary conditions
as given above, is found in the w-plane, then by transforming back by a
conformal mapping one obtains a solution of Laplace’s equation in the
z-plane satisfying corresponding boundary conditions.

In the following, we solve several problems using conformal mapping.

Example 12. Two co-axial infinite cylinders of radii p1 and p2 (P1 < P2)
are maintained at potentials V1 and V2 respectively. We are to find the elec-
trostatic potential at any point between the two cylinders.

If the axis of the cylinders is in the z-direction, the potential disa
function of x and y only. ¢ = V1 on the surface x*+y ="Pand¢ =12
on x* + y* = P2, By the conformal mapping w = log.z, (z # 0) thecircles
in the z-plane are mapped into two infinite parallel lines in the w-plane.

: v Vi V2

N Rl ;
VL

<

uzlnA

u:ln,t:'1

Fig. 1.18
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Thus,
z = ¥ = putiv
or k X + iy = e“cos v + je“ sin v
Thus, X = e* cos v, and Y = e“sinv (1.129)

x2 4 2 = (e¥)?
The circle x2 -+ 32 =' P?is mapped into the line u = loge P1 and x2 + 2
= P} is mapped into ¥ = log, P2. The problem in the w-plane now is to
find the harmonic function (the potential), H(u, v) between the infinite
parallel lines such that H = ¥, for u = loge P1, and H = V: for u = log, Pa.
The solution is given by,

Vo — 1
loge P2 — log. Py
The solution to the original problem is obtained by transforming back to
the z-plane by putting u = logeV/ x2 + ¥? = loge r. After simplification,
one gets

H(u, v) = (z — loge p1) + Vi (1.130)

P(x, y) = Vz?%;j—; + ¥ ;O—g—% (1.131)
g\, 0ge | 5,

Example 13. The same mapping can be used to find the potential on the
upper half of the z-plane if the positive half of the x-axis is maintained at
potential Vo and the negative half at — Vo w = log. z = log. r + i6,
—r<O0<mu=Ilogr v=>20,

v

Y

—VQ v=

u
V==Y, 0 V=Vo V=0

Fig. 1,19

The positive half of the x-axis which corresponds to & = 0, is mapped
into the line # = 0, and the negative half of the x-axis (approaching from
above) is mapped into the line » = =. In the w-plane the potential between
the lines is given by,

s
Hw V)= Vo — 222, (1.132)

2,
Thus $(x, ») = Vo — ==° tan™! % (1.133)
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Example 14. A solid in the form of an infinite cylindrical wedge has its
surfaces at @ = 0 and § = 6y maintained at temperatures 0° and T, and the
curved surface r = ro is insulated (Fig. 1.20). To find the temperature at

y v

V=90

600

0 8=0 v=0

Fig. 1.20
any point inside, we can again use the mapping w = log. z The surfaces
0 = 0 and 6 = o are mapped into lines, » = 0 and » = 6. The solution
of the problem in the w-plane is given by H(u, ) = % v and the required
temperature, therefore is,
T4 y

— sl
T A tan =

Example 15. Now consider the problem of two infinite half cylinders of
unit radius with the upper half maintained at potential - Vo and the lower
half maintained at constant potential — V. We are to find the potential at
any inside point.

Y v

T i
k _/-Vo =% o

Fig. 1.21

y s . : S .
By the transformation z = :_-l'-_l-wv » the interior of the unit circle is mapp-

ed into the upper half of the w-plane. Inverting the relation, we obtain
ol (I — X)—

7t 1+z (I—rx)~}—ry
; 1—\’---vy2 hor 2y
RO R e g

=y
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L ]

3 2y ol —x2— 32
U = m and v = mz (1.139)
If, x4+ 2 < . v = 0.

Thus, the interior of the circle is mapped into the upper half of the
w-plane. If X2 + 32 = 1, and y > 0,2 = 0and u > 0. The upper half of
the circle is therefore mapped into the positive u-axis. Similarly, the lower
half of the circle is mapped into the negative u-axis. The problem in the
w-plane is thus to find a harmonic function H(u, v) in the upper half of the
w-plane, which has the value + Vo on the positive u-axis and the value
— Vo on the negative u-axis. This has already been solved (but in the
z-plane) in Example 13. From (1.133), H(u, ») = Vy — Z;V—o tan™! ?U

Therefore the required potential #(x, ») inside the cylinder is given by
oo SHo a el l—xzr—yz)
#(x,y) = W -, tan (———iy—— (1.135)

Finally, we show in the next example how the principle of superposition
combined with conformal mapping can be used to solve certain problems.

Example 16. An infinite hollow cylinder of unit radius and axis along the
z-axis is cut into four equal parts by the planes x = 0, y = 0. The segments
in the first and third quadrant are maintained at potential + V, and — Vo
respectively, and the segments in the second and fourth quadrant are
maintained at zero potential. To find the potential at an inside point, we
use the principle of superposition in electrostatics:

If ¢1 and 4 are potentials due to configurations (1) and (2), then the
potential due to the combined configuration is just ¢; + ;. Using this
principle, the problem at hand can be considered as a superposition of two
potentials due to configurations (1) and (2) (Fig. 1.22). The potential due
to configuration (1) has already been calculated in the previous example, as

Lol o) <o 5 1 —x%—y
hilx, y) = - — 22 fan- (_ 5 ) (1.136)

To obtain ¢2, we note that the configuration (2) is obtained from (1) by

y y y

FAN s TN e, S P
Ny s LR AR g

(2)

-~
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its rotation by 7/2 about the z-azis in the clockwise direction. As a result
of this transformation y - xand x - — »,

e S
%-tan" ! A ded =g ) (1.137)
And the potential ¢(x, ») at any inside point is given by

1 yiaspo —1(1_“"2_“3"2)
$(x,y) = Vo — — tan 5

; LT e i ]
g (____1 it ) (1.138)

Gl )

2x

Conformal mapping is a convenient method of solving certain problems
But its usefulness is limited by the following:facts:

(1) Only the solution of two dimenional Laplace’s equation can be
obtained by conformal mapping. The problem must either be two dimen-
sional or effectively two dimensional.

(2) Knowledge of a lot of mappings is required to find a suitable mapping
for a given problem.

EXERCISE-I
1. Prove that if ziz2 = 0 than at least one of the factors is.zero.
2. Provethat||z1| — ||| <|zn—z2| < |z | + | 2]
3. In Example 2, it,was shown that the function f(z) = | z |2 is diffe-

rentiable only at the point z = 0. Examine the continuity of the
function in the z-plane,

4. Determine whether the runctions, (@) f(z2) = u(x, ¥), (b) flz) =
iu(x, y) are differentiable anywhere in the z-plane, where u and v are
real functions.

5. Obtain the Cauchy-Riemann conditions in polar co-ordinates.

6. Determine whether the function

i i
satisfies Cauchy-Riemann conditions.
7. (a) Obtain the analytic function whose real part is u(x, y) =
e* cos y.”
(b) Obtain the analytic function whose imagnary part 1s v(x, y) =
— icos x cosh y.
(Hint : Use the Cauchy-Riemann conditions)

8. If a function f(z) is not analytic in a domain §C f(2) dz is not zero in

b
general. Show that § f(2) dz depends on the path.
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b
9. Show that if f(z) is analytic in some domain then the integral§ fz)dz

is path independent.
10. Choosing suitable paths evaluate the integrals:
147

(a) I: erdz (b) J-r :

z2dz  (c) J ::ﬂ [ + xp) + 02 + xp)] dz

11. Show that §c dz =0, 1fn#-—1

= 2mi, ifT n=—1

where, 7 is an integer and C is a circlearound z = 0

12. Prove that if f(z) is analytic and not constant in the interior of a
region, then | f(z) | has no maximum value in that interior.

13. Prove the fundamental theorem of algebra: any polynomial of degree
n =1 has at least one zero. Hence prove that for n = 1, a polynomial
of degree n has no more than n distinct zeros. (Hint: apply Liouville’s
Theorem to the inverse of the polynomial).

14. Use Cauchy integral formula to evaluate the following integrals:

® § 55 ® §, zé?s—: 5
© {?’C% & (d) § ( o Z
e

where, C is the circle | z | = 2.
15. Expand the following functions in Taylor series:

1

(@ flz) = i around z = 0
(b) flz) = ]—1_-—2 around z =i
© fi2) = 2= d around.z = 1

(d) f(z) = sinh z around z = im
(e) f(z) = loge (1 +z) aroundz =0

In each case give the region of validity. In (e), state clearly which branch
is being used.
16. Obtain the Laurent series expansion of the following functions:

(@) flz) =

aroundz:{] for-. |zl I

(b) f(z) =

Lo

= for |z—i|>4/72

() flz) = m around z = 0
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(d)f(z)*— 5+6 for 2<2z<3,
17. Evaluate the following integrals" using the residue theorem:
(a) § tanh z 4z, Cis the circle |z | = 2
(b) § G J-:-3) " C is the contour | z =2
(© §C—02:—}:—g— dz, C is the square whose sides

18,

19,

are x = =+ 2, y= 42
2

z 2
= zm—-_l-_(_l_—f_-_:‘m dz, where Cis the curve x* -+ V=4

(Hint: use polar form of the curve to determine whether the
singularities are within the contour.)

(d)

Show that
(a)f 1+acoss 1/121‘;2’ la|l <1
®) 0 a+gacosﬂ .\/azzzbz » lal>]5]
& fu WZ%

Cn)! =

T
s = A ST
(d) L sin?"@ df P n 1s a positive integer.

Evaluating the following integrals prove that

™

(a) J’m.__dx_._ — =
o xt4 g4 2¢/2a
o0 xz L8 E

(b)j mdx— 6

5 f FIE g5 U+ a) e, 4b>0,

cos x b -
(d) J'_w (x2 + a?)(x2 4 bz) (a2 bz)( St T),(a >hb> 0)

(e) J' % sinax dx = = ¢=a sin g, (a > 0)

14 2
Sainde - oW
() [ X gy 7

+w a%* ik T
(® J slqton B sman’  (I2[< D)

()J.ncﬂsh'ﬂ'x secz— (—r<a<n)




20.

21.

22.

23.

24,

25.

26.

27.

28.

COMPLEX VARIABLES 47

(i) I l-’f:—tc?- %cnscc, _a_; 0<a<?)
0 [[ 7 pa= 2 Aal<n
off 2 -2

In Example 4, the Laurent series expansion of f(z) = ETII'—_zj'for

| z| > 1 was obtained (Eqn 1.72) and it was found that by, the co-
efficient of 1/z, was equal to zero. f(z) has a simple pole at z = 1.
Calculate the residue of f(z) at z = 1 and explain why this is not
equal to b.

1

The function f(z) = D has the Laurent series expansion,
LA e deaele
ﬂz) = ) z‘ PR (Eqn 1-72)

for | z| > 1. Explain why this does not imply that f(z) has an essen-
tial singularity at z = 0. (Note that f(z) has a pole at z = 0).
Show that the mapping, w = sin z transforms the rectangle bounded

by x = :I:%-,y=0,y=ktoancllipse.

Show that the transformation, w = transforms part of the z-

el |
z4 1
plane to the right of the y-axis to the interior of a circle.
If f(z) = u(x, y) + iv(x, y) is analytic, prove that

&
VuVas=0.

=
The relation Vu- V 2 = 0 in the preceding problem shows that if the
set of curves, u = constant, represents equipotentials then the curves,
v = constant, represent the lines of force (or vice-versa).

An infinite plane is maintained at zero potential and the surface of
an infinite cylinder whose axis is parallel to the plane, is maintain-
ed at constant potential, Fo. Using the mapping, z = ia tan w/2, (a is
real), find the equations for the equipotentials and the lines of force.
In Example 15, find the potential to the exterior of the two half
cylinders.

Use the transformation, w = . + 10 find the electrostatic potential

at any point when a conducting cyhndcr of unit radius is placed in a
uniform electric field with the axis of the cylinder peérpendicular to
the original direction of the field.

Conformal mapping has also applications in hydrodynamics. Again,
the motion has to be effectively two-dimensional. Assume that the
motion is the same in all planes parallel to the xy— plane and the
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velocity is parallel to the plane. For an incompressible fluid having'

- -
no viscosity, the velocity ¥ can be written as ¥ = — grad ¢. The
function ¢, called the velocity potential, satisfies:

2 | 2
Tt =0 _
Suppose ¥(x, y) is a real function such that ¢(x, y) + n(x, y) is analytic
> >
in some domain. Then ¥(x, y) is also harmonic. Also, Vé-Vy = 0. Thus

- -
the velocity ¥ is normal to V¢ and therefore the tangent to ¥(x, y) = con-
stant at any point gives the direction of velocity. ¢ is called the stream
function.

An infinite cylinder of unit radius is placed in a fluid in uniform motion
such that the axis of the cylinder is perpendicular to the original direction

of flow. Using the mapping W = z + -lz—, find the stream-lines, equipoten-

tials and velocity at any point. Compare with the previous problem.
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