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In quantum mechanics a localized attractive potential typically supports a (possibly infinite) set of
bound states, characterized by a discrete spectrum of allowed energies, together with a continuum
of scattering states, characterized (in one dimension) by an energy-dependent phase shift. The 1/x’
potential on 0<<x<<% confounds all of our intuitions and expectations. Resolving its paradoxes

requires sophisticated theoretical ~machinery:

regularization,

renormalization, anomalous

symmetry-breaking, and self-adjoint extensions. Our goal is to introduce the essential ideas at a
level accessible to advanced undergraduates. © 2006 American Association of Physics Teachers.
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I. INTRODUCTION

Ordinarily, an attractive potential admits discrete bound
states, together (perhaps) with a continuum of scattering
states. In a first course on quantum mechanics, students en-
counter the infinite square well, the harmonic oscillator, the
Dirac delta function, the finite square well, and (in three
dimensions) the spherical well and the Coulomb potential, all
of which fit this paradigm (though the first two lack scatter-
ing states). We do not study the 1/x” potential, and for good
reason: It violates every rule in the book, and discredits all
the intuition we are trying to instill in our students In splte
of this (or rather, precisely because of it) the 172 potential is
a fascinating system, and analyzing its paradoxes provides an
illuminating introduction to some of the more subtle tech-
niques in contemporary theoretical physics: regularization
and renormalization, anomalous symmetry-breaking, and
self-adjoint extensions. In this paper we tell the story from a
pedagogical perspective, starting out innocent and naive, and
letting the unfolding saga force us to become wiser and more
sophisticated.

In Sec. II we introduce the problem in its simplest (one-
dimensional) form, and approach it as we would any other
quantum system. We quickly encounter a series of puzzles
and surprises. In Sec. III we identify the source of the diffi-
culties and modify the potential so as to avoid the trouble.
This leads naturally to renormalization and anomalies. In
Sec. IV we notice that the Hamiltonian is not Hermitian, and
modify the space of permissible functions to make it so; this
introduces the method of self-adjoint extensions. In Sec. V
we draw lessons from our experience and point to some real-
world applications.

II. PECULIARITIES OF THE 1/x* POTENTIAL

Cons1der a particle of mass m in the one-dimensional
potem]al

e =0
V(X}_{—ai’xz (x> 0) W

shown in Fig. 1. Here a is a constant with the (MKS) units
Jm?% In truth, the alarm should already be sounding, for
there is no way to construct a quantity with the dimensions
of energy from the parameters at hand (%, m, and a), and
hence no possible formula for the eigenvalues of the
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Hamiltonian.” But let’s pretend for a moment that we did not
notice this problem. We look for bound states—normalizable
negative-energy solutions of the Schridinger equation:

W dy a
—ﬂy—?u’m&b (x>0, (2)

or, multiplying through by —2m/#?,

d_lffaax Wi, (3)

where a=2malh? and k=-2mE/f, subject to the bound-
ary conditions
—0asx— 0and x — . “4)

The first boundary condition is necessary to make # continu-
ous at the origin (=0, of course, for x<<0); the second is
required for normalization:

J-x|t,b{x)|2dx= L. (5)
0

Suppose we could find just one bound state (x), with
energy E. Scaling x by a factor 3, we can immediately con-
struct a new solution, i;‘;#(x}E A Bx), with energy B’E:

d* d* d*
d—;ﬁ + x%ﬂff,ﬂ: 2B + %q!f(ﬁx) = ﬁ’f@w{u)
+ B ) = B() = (B,
(6)
where u= fx. But 8 can be any real number.® So if there

exist any bound states, then there is a bound state for every
negative energy! In particular, the 1/x* potential has no
ground state. This is disturbing, for a system without a lower
limit on its allowed energies would be wildly unstable, cas-
cading down with the release of an unlimited amount of
energy. A reasonable inference would be that there are no
negative energy states, which is indeed the case for a
< 1/4 (trivially so, for a<<0, because the potential is then
repulsive).
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V(x)

Fig. 1. The 1/x* potential.

One particularly nice way to show that there are no bound
states for 0<a<1/4 is to factor the Hamiltonian.* Let a
=v(1—v) define the new constant »,

H W d* a h? ( v)(d v) o
=——— == —+ = || —=—].
dmdx? X 2m\dx x/\dx «x

For an arbitrary test function f(x) we have

(Le2)( & o= (£e2)(L-%) o

2
AL g vl 2l v (8b)
dx x=  xdx xdx x°
_df v(l-v) _(d_2 E)
_dx2+ ¥2 f= dx2+x2 f- (8c)

Now, the Hermitian conjugate of (d/dx+wv/x) is (—d/dx
+v"/x):

<f’ (i+ l*:)g> ) er(j_i s (%)
:_J’:(g)*gdx+ﬁx(%f)*gdx (9b)
.f‘g>’ (9c)

provided that f(x) and g(x) go to zero at 0 and sc. Thus

= () = (Ul =~ <w’ (; *‘)(% - ;)w)

(10a)
ey
“2m\\dx «x dx x

If v is real, then,
P (d—‘ﬁ—f ) e 0, (11)
2m dx x

s0 negative energy states cannot occur if » is real. But (1
—-v)=a, S0

—— (12)

and hence if a<<1/4, then v is real, and there can be no
bound states.
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Fig. 2. The bound state wave function, ¥ (x).

But when > 1/4 there certainly do exist negative energy
solutions. The Schriodinger equation can be solved by the
method of Frobenius: We write ¢(x) as a power series,

N=x'Zap (a#0), (13)
J=0

and substitute this into Eq. (3):

oo

2&;[(}'+5)U+s— l)+a]xj_2::<22 ajx-". (14)
J=0 j=0

We equate like powers and find that the x~2 term yields s(s
- +a=0, so

s=v=(1/2) = \(1/4) - o (15)

the x™! term forces a,=0, and the remaining coefficients are
determined by the recursion relation
KE
=T ——a; =2,3,4,...). 16
4= iy U ) (16)
There are two solutions—one for each sign in Eq. (15). Near
the origin they go like apx®; for a>1/4 this means

\';eﬂ.fs In l (17)

where g=va-1/4.
The general solution is a linear combination, but it turns
out that only one combination is normalizable:

Y(x) = AVXK (i), (18)

where K, is the modified Bessel function of order igs W is
real, as long as g is real (which is to say, for a>1/4), and
finite at the 0r1§m (so i, —0 as x—0); i, itsell is
square-integrable:

L
K, dx = 19
J- |\x (Kx)| ' 242 smh(ﬂ'g (19)

so the normalization constant is

Az oq | 25inb(me) (20)
Ly

A plot of the wave function is shown in Fig. 2. Notice the
oscillations as x — 0, which result from the sinusoidal depen-
dence on glnx in Eq. (17). We are accustomed to the idea
that the ground state has no zero crossings, the first excited
state has one, the second two, and so on. But the 1/x% po-
tential has no ground state, and every (negative energy) so-
lution has an infinite number of zero crossings. If the number
of nodes counts the number of lower energy states, then no
matter what the energy, there are always infinitely many
states even lower.
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What about positive energy (scattering) states? For E=>0
the general solution to Schridinger’s equation [Eq. (2)] is

d(x) = \{[AH? (kx) + BH{) (kx)], (21)
where k=+2mE/#, and H" and H"® are Hankel functions.
For large x,

2 .
H{_]}(k . _= ilkv—wi4) frga"Z’ (22:
is x) ~ 4/ ﬂkxe e a)
H—(Q}(kx) ~ 1 ie—f'”(x—wMJe—?rgﬂ (22'3}
8 rkx ’

S0

-:ff:\-(x)mA\/_ -2 fm‘{ -m—fgewem]. 23)

The first term (¢~™*) represents a wave incident from the
right; the second (¢'™) is the reflected wave. Ordinarily, set-
ting 4(0)=0 in Eq. (21) would determine B;’A and the
asymptotic expression Eq. (23) would reduce to’

ﬂffk{x) m [e—rk_t _ er[2§+k1}:|, {24}

indicating that the reflected wave is equal in amplitude to the
incident wave (as required by conservation of probability)
and shifted in phase by an amount (k). But in this case
Un(0) is automatically zero (according to Eq. (17), |/~ Vx).
There is no constraint on B, no formula for §(k), and (most
alarming) no enforcement of conservation of probability; the
outgoing wave can have any amplitude!

Conclusion: The 1/x* potential has no ground state, and
the allowed energies are not quantized. As long as a>1/4,
the Schrédinger equation can be solved (and the boundary
conditions satisfied) for every negative energy; the solutions
are real and normalizable, and each of them has an infinite
number of zero crossings. Scattering states occur for every
positive energy, but the boundary condition at x=0 imposes
no constraint on the reflection coefficient, and does not de-
termine the phase shift. It would be difficult to imagine a
situation more at odds with our expectations.

III. REGULARIZATION, RENORMALIZATION, AND
ANOMALIES

Physically, the 1/x potemlal is Just too strong at the
origin—1/x is acceptal:u]e but 1/x? is not. One way to
avoid the problem is to move the “wall” over to the right a
distance €

Ve(x)

Fig. 3. The regularized potential.

111 Am. I. Phys., Vol. 74, No. 2, February 2006

\/ 5 10 15 20

Fig. 4. Ground state and first three excited states, as functions of xx, for V,
with e=1 and g=3 (not normalized).

gC 100

—al’ (x=e),

V.(x) = {m (< (25)

as shown in Fig. 3. This “regularized” potential suffers none
of the ills that afflict V(x); we propose to work with V_(x),
and take the limit € — 0 only at the very end. Of course, the
pathologies can be expected to reappear in this limit, but as
we shall see, some predictions survive, and these we take to
be the “true” physical content of the 1/x* system. This is the
strategy of “renormalization.”

Having introduced a parameter (e) with the units of
length, we are now able to construct an expression with the
dimensions of energy:

a
gf{ozk (26)

where f i1s a function of the dimensionless quantity a
=2malh*. The system is no longer scale invariant; it pos-
sesses both a ground state  and a discrete spectrum of bound
states. These have the same functional form as in Eq. (18),
but the boundary condition is now #,(e)=0, which implies
that

K (ke) =0, (27)

which is not automatically satisfied, and serves to quantize
the energy. Figure 4 shows the ground state and the first three
excited states for the case a=9.25 (g=3). F]gure 5 shows

the ground state energy (or rather, x,€) for g ranging up to 7.
If ke<1," we can Browde a relatively simple formula for
the allowed energies:

K@) ==\ ¢ Sinb(mg)
Xsin{g ]n(%)—arg[‘(l-ﬁ-i(g}} z<1), (28)
s Kiy(x€)=0 implies
g ln(%f) —arg (1 +ig) + nm=0, (29)

where n is an integer. The ground state is n=1," and the

excited states are n=2.3,..., with
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Fig. 5. The ground state x € as a function of g.

2 :
K, = ;e[alg l"{l+rg)—mr]fg, (30)
or
207 o rie
E" —_ méi eE[mg I'( I+rg]—mr]fg_ (31)

There are infinitely many discrete bound states, as one might
expect.'b

For positive energies (scattering) the wave function is still
given by Eq. (21), but now

Ui (e)=0, (32)
and hence AH,. (ke)+BH,} (ke)=0, so
12)
E - _ M ) (33)
A~ Hpke

Referrmlgl’ to Egs. (23) and (24), we find that the phase shift
satisfies
2l = iEem" - _ 'E’%@eﬂ? _ I[_HEM
H (ko

)
A Hi, (ke)
Notice that conservation of probability has been enforced by
Eq. (32). Thus

(34)

arg[Hm{ke )]- 1 (35)
This function is plotted in Fig. 6.
As the graphs suggest, arg[H{ (x)] is extremely steep near
the origin. Indeed, for |z] <1, 18

H(”( 7) = 8 Intz 2y 1+ coth mg it mey (1 +ig)

I'(1+ig) e
(36)
50]9
tan[arg H*L’ 7)] = coth(%)
Xtan[g In(z/2) —arg I'(1 +ig)], (37)
and hence
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Fig. 6. Graphs of & as a function of ke, for g=0.5 (top) and g=0 (bottom).
The graphs on the right show the behavior near the origin (the horizontal
scale is in powers of 10); they suggest that there is no limit when g=0.5,
whereas §— w/4 when g=0 (though that limit is only approached when
ke 10719,

tan &+ tanh(mg/2)

tan &= R (38)
tan & — tanh(wg/2)
where
E=gln(ke2) —arg I'(1 +ig). (39)

As ke—0, §——2=, and tan ¢ fluctuates wildly: Whenever &
hits an integer multiple of ar, tan £=0, so (unless g=0)
tan d=-1; whenever £ is a half-integer multiple of , tan £
— =+, so0 tan §=1. Clearly, & does not approach a limit. The
case g=0 is special, and it is best to treat it separately: For
lz] <1,

H(z) =1+ %[ln(zﬂ} +C]=1+ 2—; In(yz/2), (40)

where C=0.577215 is Euler’s constant and y=¢®
=1.78 10722 Thus tanfarg H (z)]=2In(yz/2)/ 7, and
hence

8 In(yke/2) + /2 @1
MO n(yke2) — 2
At this point we would like to send e—0, to recover the
pure 1/x* potential. Naively, Eq. (31) suggests that E; will
go to —=—precisely the trap we were hoping to avoid. But
closer inspection reveals that the boundary condition, Eq.
(27), only determines the product k€. Suppose we stipulate
that £, (and hence k) remain constant as e— 0. From Fig. 5
we see that this assumption forces g—0, leavingm

2
ky=—e ™ (e—0,g—0). (42)
ye
The excited states, Eq. (30), are squeezed out
2
Ky=—e "8 = e VT 0 (n=2,3.4,...), (43)
ye

but there remains a single bound state at finite (though inde-
terminate) energy.

We can use Eq. (42) to eliminate the cutoff € in favor of
k|, in the scattering problem:
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Fig. 7. The scattering phase shift o(k/«,), Eq. (47), for g< 1. The graph on
the right shows the behavior near the origin (the horizontal scale is in pow-
ers of 10).

k 2
ke=—=e 5. (44)

So for low energy scattering, Eq. (39) becomes

&= gln(k/x)) — m, (45)

tan & = tan[g In(k/x,)] = g In(k/x)). (46)
and Eq. (38) reads

a5~ In(k/'x) + /2 @7
MO (ki) — w2

Curiously, the phase shift i is independent of g (although we
have stipulated that g <€ 1).*! For extremely low-energy scat-

tering, k<€ iy, the phase shift is evidently 7/4 (see Fig. 7).
Conclusion: The regularized potential, Eq. (25), has a non-
problematic spectrum of discrete bound states, and a con-
tinuum of scattering states with well-defined phase shifts.
Naively, the limit e— 0 (which restores the pure 1/x* poten-
tial) reintroduces all of the pathological features of the origi-
nal. But closer examination reveals a loophole: If as we send
€—0 we simultaneously let g— 0, in such a way as to hold

«; constant (Fig. 8), then a single bound state with energy
Wk

2m

Ey=- (48)

survives, and the scattering phase shift is given by

0.2

1.2 g

Fig. 8. Graph of € as a function of g. Eq. (42), with #«;=0.1.

0.2 0.4 0.6 0.8 1
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[M] (49)

In(k/w)) — /2 '

This scheme does not determine «;, and it forces a— 1/4,
but the physical implications of the theory are perfectly sen-
sible.

The renormalization procedure we have just descrll:led
may sound artificial, but it is not altogether unreasonable.”
After all, in practice we would have no way of knowing
whether the potential is really 1/x* all the way down to x
=0; what we actually measure is the ground state energy and
the scattering phase shift. The former provides us with a
relation between € and g, Eq. (42), but it does not determine
either one separately, and the latter, Eq. (49), stands as a
testable prediction 1rrespect1ve of the actual (but unmeasur-
able) value of the cutoff. 2

What about the symmetry argument based on scale invari-
ance (or, if you prefer, dimensional analysis) that seemed to
prove conclusively that the 1/x?> potential can have no
ground state (if it has one negative allowed energy, then
every negative energy is an eigenvalue)? Well, we broke that
symmetry when we introduced the cutoff, and the break per-
sists even as we eliminate € from the theory in favor of «,
and (implicitly) send e— 0. This is an example of “anoma-
lous” symmetry breaking. There are three standard mecha-
nisms for breaking a symmetry in physics:

. External (or dynamical): An imposed force spoils the
symmetry (for example, at the surface of the earth gravity
breaks the three-dimensional isotropy of space).

2. Spontaneous: The ground state of a system is degenerate,
and historical accident selects a particular one (for ex-
ample, the magnetization of a small piece of iron, which
could have pointed in any direction, but in fact has to
point in some specific direction).

3. Anomalies: The process of renormalization breaks the
symmetry.

IV. SELF-ADJOINT EXTENSIONS

In Sec. II we examined the patient and diagnosed the ill-
ness. In Sec. Il we provided a partial cure. Now it is time to
identify the root cause of the disease and propose a more
comprehensive treatment. The fundamental problem with the
1/x? potential is that the Hamiltonian

ht d*  a W(d o
H=-——-m-5=-— ( _9) (50)
2mdx~  x 2m\dy®  x?

is not Hermitian (more precisely, it is not self-adjoint). In
quantum mechanics self-adjoint operators occupy a privi-
leged position, because they alone represent observable
quantities. Most of our experience and intuition is predicated
on the self-adjointness of the Hamiltonian, and when this
fails, the intelligibility of the theory goes with it.

An operator is defined not only by its action, A, but also
by its domain, D,, the space of functions {¢} on which it
acts. Physicists tend to forget the second part, because in
most cases the domain is not problematic. Of course, i and
Ay must lie in the Hilbert space of square-integrable func-
tions, L, (in our case, on the interval 0<<x < o), to ensure
that inner products are well-defined. In fact, to guarantee the
existence of the Hermitian conjugate (or “adjoint”) A",

(BlAg) =(AT¢|y), (51)
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the allowed functions must be dense in Lz.zs
will be other conditions on D4 as well.
If there exists a domain such that for all ¢ and ¢ in D,

(BlAY) =(AdY) (52)

(that is, the actions of A and A" are identical), then the op-
erator is Hermitian (mathematicians would say “symmetric”)
over that domain. However, it may happen that as long as
is in D, (the domain of the operator), ¢ can be in a larger
domain, Dy (the domain of the adjoint), % and yet Eq. (52)
still holds. In that case (D41 DD,4) we may be able to extend
the domain of the operator (which will automatically restrict
the domain of the adjoint) until the two domains coincide. In
this circumstance, with A=A" and D,:1=D,, the operator is
sald to be self-adjoint. For self-adjoint operators, in other
words, both the action and the domain of the adjoint are the
same as for the operator itself.

The process we have sketched is called “self-adjoint ex-
tension.” You start with a Hermitian operator on a specified
domain, and extend D, (thereby contracting D4s) until the
domains are identical. This process raises several questions,
which were first addressed by Weyl and later generahzed by
von Neumann and Stone:*’ How can you tell whether a given
operator admits a self-adjoint extension? Is the extension (if
it exists) unique? How do you construct the self-adjoint do-
main? The answers are buried in abstruse mathematical lit-
erature that is largely inaccessible to physicists,”® but two
recent articles growde a relatively straightforward guide for
the uninitiated.

We begin by asking whether H in Eq. (50) is Hermitian.
Suppose ¢(x) and ¢{x) are two functions in L,(0,%) such
that Hep and Hi are also in L,(0,%). Using integration by
parts (twice), we have

Typically there

GHY =, - f (—f %qfr)dx (53a)
[ a4 |-
_Zmld) dx | v dx |g
+J- (—qﬁ —qi: )z;‘ld ] (53b)
a2
=(H ﬁ_z ( "’d_l‘!/ d_(ﬁr) : (5;
= ¢|¢>_2m ¢ dx_zﬁdx 0 3c)

Evidently H is Hermitian,

(B|HY) = (H|v). (54)

if the boundary term in Eq. (53c) is zero (for all  and ¢).
There is no problem at infinity, where the funcnons and their
derivatives can safely be taken to vanish:*' the trouble arises
at the lower limit. If we want H to be Hermitian, we shall
have to restrict its domain. Earlier, we stipulated (for reasons
of continuity) that wave functions go to zero at the origin,
but in spite of appearances this condition does not suffice to
kill the boundary term, because the derivatives can (and in
the critical cases do) diverge. For example, we found in Eq.
(15) that solutions to the Schrodinger equation behave near
the origin like
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uL(x) = x', (55a)
with
51:%i i—“ (55b)
So, using ¥=u, and d=u_, we have™”
o du’ - o
(u_ﬁ - u+i) = x5 5 x5l gyl
’ 0
=(5, - si}x“‘f“i_] l=y1-4da.
(56)

Unless a=1/4 (a special case that keeps recurring and to
which we shall return) some other condition must be im-
posed.

What if we insist that allowed functions vanish in a finite
(but arbitrarily small) neighborhooda 3 of the origin? Then the
boundary term vanishes trivially, and H is Hermitian (on this
domain). But if ¢ is in this very restricted domain, ¢ could
be any square-integrable function, and the boundary term
will still vanish. So the domain of the adjoint is very much
larger than the domain of the operator, and hence H is not
self-adjoint. Question: Does H admit a self- adgomt extension,
and if so, what is the self- adjomt domain? In von Neu-
mann’s procedure the first step is o look for eigenfunctions
of H with imaginary eigenvalues:” =

He.= xing., (7
where 7 is real and positive.*® Thus
& a 5
PR LS p s (58)
where
o= ::m?? =e"™p, (59)

with =+ 2mn/h. The general solution is
() = \x[AH Y (ik0) + BH 2 (i), (60)

where (as always} g= Va—1/4, and A, and B. are arb1trary
constants. But H[ ](uqx) is not 1n L, (and hence not in D),
because at large x [Eq. (22b)7""

H}g](h‘(fﬂ — .2 e—f[fxi.r—ﬂ'MJe—wg."?
N mik.x

e—:lrgf?,exi.l', (6] )

=\ TKX

and because x=p(1 11');"\5, H:.? diverges exponentially.
Thus

bo(x) = A NxH D (i ). (62)

Let n, be the number of linearly independent solutions for
¢,. and n_ the corresponding number for ¢_: n; and n, are
called “deficiency indices,” and they play a major role in the
theory. Weyl and von Neumann showed that if n,=n_=n,
there exists an n’-parameter family of self-adjoint exten-
sions. (If n=0, the operator is already self-adjoint, and if
n, #n_, there is no self-adjoint extension.) In our case, n,
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=n_=1, and it remains only to characterize the one-
parameter family of self-adjoint domains. The prescription is
as follows: i is in the self-adjoint domain if

(P[HY) = (HP|y), (63)
where @ = ¢b, +Ach_ for some A, which is to say [Eq. (53¢)]

if
.d dd”
llm[(l) —lf'—qz/—} =0. (64)
x—0 dx dx

Evidently we need to know the behavior of ¢, for small x.
From Egq. (36),

e ey 1+ coth g
HU} . = i i) "5
Din) = e e
_e—r'g ln{;‘@n’Z}M (65)
wg )
provided that g # 0. But k.=exp(Fiw/4)p. so
In(irc.x/2)=In(Bx) — In 2 + il .7/, (66)
where £.=1 and {_=3. Thus
ea’g Infir, /2) _ e:’g In ,{ixe—ig In QE—fthM {67}
and hence
b, =~ A, \x[Deé In BY _ Feris In Br], (68a)
¢L — A_\-';[De—'rrgfzeig In gr _ Fe'.n'g.lrze—r'g In ,{:{I], (68]3}
where
D=gigh 29_“";’{ M] (69a)
I'(1+ig)
F=,thn 2871"3!4[M]_ (69b)
U
It follows that
P = \";[Gefg Infx_ Je-ign A (x < 1), (70)
where
G=D(A, +\_e™?), (71a)
J=F(A, +NA_e™"). (71b)
Therefore
dd (1N (1
il I iglnge _ | = _ - —ig In Bx
I \"x[(Z +¢g)Ge (2 tg).]e }
(72)

Using Egs. (70) and (72), the boundary condition [Eq.
(64), or more simply its complex conjugate] becomes

\.-;[ o218 Infxixg) _ ljd_"f’ _ L_ [ ( 1 i g) g In(xixg)
d.x \'I_x 2

—(%—ig)]w*—»O 73)
(as x—0), where
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_l E)r’ﬂg 4
Xg = ﬁ(.}’ (74)

. 18 .
is a free constant™—the anticipated parameter that charac-
terizes the particular self-adjoint extension. For example, if

a=0 (so g=i/2), Eq. (73) reduces to
1 d
?[xa—*ﬂ‘ + ¢;] o, (75)
vxl dx

which is_the self-adjoint extension for the free particle on 0
=x<x

In the critical case g=0 (a=1/4) Eq. (65) is replaced by

B (i) ~ 1 - 2 4 2 tn(ygui2) (76)
2
[see Eq. (40)], and
b, =~ At\';[il e In(yBx/2 )] : (77)
2w
50
® = \x[G + J In(yBx/2)], (78)
with
=1A,-N)), (79a)
2i
J="(A,+N\A), (79b)
o
and
dd 1
— =~ —[G+2J+J In(yBx/2)]. (80)
dx  2yx

According to Eq. (64), then, a function ¢ is in the self-
adjoint domain if
VX ln(xfxa)d—q& - ;[1 + ! ln{xfxo}} i — 0, (81)
dx VX 2
where in this case xo=(2/yB)e %" is the free garameter
characterizing the particular self-adjoint extension. 0
Where does all this leave us? If we want the 1/x?> Hamil-
tonian, Eq. (50), to be self-adjoint, we must tighten up the
naive boundary condition {0)=0, Eq. (4), in favor of a self-
adjoint extension [Eq. (73) if @«# 1/4 and Eq. (81) for the
critical case a=1/4].*' The choice of a particular extension
(which is to say, a particular value of x;) is arbitrary, and in
this sense there exists an entire one-parameter family of dis-
tinct physical theories described by the 1/x? potential. Ques-
tion: Do they admit reasonable bound state spectra? We
know that the normalized eigenstates of H are given by Eq.

(18):

- T - ,
Yilx) = ANKg (1) = A VxH g (ikx). (82)
where k= \-2mE/#. Which (if any) of these reside in the

self-adjoint domain of H?
In the critical case g=0, Eq. (40) yields (for small x)

i (x) = —Ax In(yxx/2), (83)

and
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di _
dx

At [1 +% 1n(ym2)]. (84)

Inserting these expressions into Eq. (81) yields the condition
A In(yrxp/2) — 0. This holds only if yxxy/2=1, which is to
say, if k=2/yxy. Evidently there is exactly one bound state
for a=1/4, just as we found (by a completely different
route) in Sec. III [Eq. (48)]. But we cannot calculate the
allowed energy, because it depends on the arbitrary param-
eter xp (just as, in the renormalization method, it depended
on the arbitrary cutoff €).

The case g #0 is a little more complicated. Equation (28)
gives (for small x)

t(x) = B\x sin 6, (85)
where B=-A \m and

O(x) =g In(kx/2) —arg I'(1 + ig). (86)
It follows that

d#‘lxﬁzB;[lsin 8+ g cos 9]. (87)

dx vxl 2

According to Eq. (73), then, ¢, is in the self-adjoint domain
if

gy
81n(_)+argr{l+ig):nﬂ' (n=0,x1,%£2, ...)
KXp

(88)

for g real (a=>1/4), or 2/ kxy=1 for ¢ imaginary (a<<1/4).
In the former case we obtain an infinite set of eigenvalues; in
the latter case just one.

Conclusion: To make the 1/x> Hamiltonian self-adjoint we
are obliged to impose more stringent boundary conditions
[Eq. (73) or (81)] than we naively supposed. This imposition
necessarily introduces a free parameter x, with the dimen-
sions of length, thereby breaking the scale invariance of the
theory. The result is a reasonable spectrum of allowed states,
whose energies, however, we are unable to predict, because
they depend on the value of the arbitrary parameter. 2

V. CONCLUSION

The 1/x* potential is clearly problematic. We can fix it
(sort of) by renormalization or by self-adjoint extension, but
a reasonable person would likely conclude that the problem
itself is artlﬁcml and unphysical—maybe there is no such
thing as a 1/x potentlal in nature. Perhaps some potentials
are just plain illegal in quantum mechanics. It seems odd,
though, that we never encounter such difficulties in classical
mechanics.

Well, in the first place there are classical precursors. #
Moreover, there do exist systems represented (at least, to
good approximation) by a 1/x? potential (at any rate by its
three-dimensional analog). The best example is the motion of
a charged particle in the field of a stationary electric dipole,
for instance, an electron in the v1c1mty of a polar molecule.
Here the potential is —ep cos 8/r, and (surprisingly) the ra-
dial Schrodinger equation is mathematically identical to Eq.
(2).” The critical parameter a=1/4 was noted in early stud-
ies of this system, ~ which has attracted renewed attention
recently.'j'ﬁ Like it or not, we have to take this problem seri-
ously.
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