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Appendix C
The Lorenz Model

C.1 Introduction

In this appendix we show how the Lorenz model equations introduced
in Chapter 1 are developed (derived is too strong a word) from the
Navier-Stokes equation for fluid flow and the equation describing
thermal energy diffusion. This development provides a prototype for
the common process of finding approximate, but useful, model equa-
tions when we cannot solve the fundamental equations describing some
physical situation.

The Lorenz model has become almost totemistic in the field of
nonlinear dynamics. Unfortunately, most derivations of the Lorenz
model equations leave so much to the reader that they are essentially
useless for all but specialists in fluid dynamics. In this appendix, we
hope to give a sufficiently complete account that readers of this text
come away with a good understanding of both the physics content and
the mathematical approximations that go into this widely cited model.

The Lorenz model describes the motion of a fluid under conditions
of Rayleigh—Bénard flow: an incompressible fluid is contained in a
cell which has a higher temperature T,, at the bottom and a lower
temperature 7', at the top. The temperature difference 87 =T, - T, is
taken to be the control parameter for the system. The geometry is shown
in Fig. C.1.

Before launching into the formal treatment of Rayleigh—Bénard
flow, we should develop some intuition about the conditions that cause
convective flow to begin. In rough terms, when the temperature gra-

- dient between the top and bottom plates becomes sufficiently large, a

small packet of fluid that happens to move up a bit will experience a
net upward buoyant force because it has moved into a region of lower
temperature and hence higher density: It is now less dense than its
surroundings. If the upward force is sufficiently strong, the packet will
move upward more quickly than its temperature can drop. (Since the
packet is initially warmer than its surroundings, it will tend to loose
thermal energy to its environment.) Then convective currents will
begin to flow. On the other hand if the buoyant force isrelatively weak,
the temperature of the packet will drop before it can move a significant
distance, and it remains stable in position.
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Section C.1
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Fig. C.1. A diagram of the geometry for the Lorenz model. The system is infinite

in extent in the horizontal direction and in the direction in and out of the page. z = 0
at the botiom plate,

We can be slightly more quantitative about this behavior by using
our knowledge (gained in Chapter 11) about thermal energy diffusion
and viscous forces in fluids. Imagine that the fluid is originally at rest.
We want 1o see if this condition is stable. We begin by considering a
small packet of fluid that finds itself displaced upward by a small

amount Az, The temperature in this new region is lower by the amount -
AT =(8T/h)Az. According to the thermal cnergy diffusion equation
(Chapter 11), the rate of change of temperature is equal to the thermal
diffusion coefficient D, multiplied by the Laplacian of the temperature

function. For this small displacement, we may approximate the
Laplacian by '

VT ~—.22 (C.1-1)
We then define a thermal relaxation time 8ty such that
azrg = AT =8t.D,V'T (C.1-2)

where the second equality follows from the thermal diffusion equation.
Using our approximation for the Laplacian, we find that

(C.1-3)
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Let us now consider the effect of the buoyant force on the packet
of fluid. This bouyant force is proportional to the difference in density
between the packet and its surroundings. This difference itself is
proportional to the thermal expansion coefficient o (which gives the
relative change in density per unit temperature change) and the tem-
perature difference AT'. Thus, we find for the bouyant force

F=op,gAT =0p,g i—TAz (C.1-4)

where p, is the original density of the fluid and g is the acceleration
due to gravity.

We assume that this bouyant force just balances the fluid viscous
force; therefore, the packet moves with a constant velocity v,. It then
takes a time T, =Az/v, for the packet to be displaced through the dis-
tance Az, As we learned in Chapter 11, the viscous force is equal to

the viscosity of the fluid multiplied by the Laplacian of the velocity.
Thus, we approximate the viscous force as

vZ
F,=uV%, = i (C.1-5)
where the right-most equality states our approximation for the Lapla-

cian of v,
If we now require that the bouyant force be equal in magnitude to
the viscous force, we find that v, can be expressed as

op,gho6T
y, = P8R0
u
The displacement time is then given by

(C.1-6)

_ .M i
K op,g hdT (€1-7)

The original nonconvecting state is stable if the thermal diffusion
time is less than the corresponding displacement time. If the thermal
diffusion time is longer, then the fluid packet will continue to feel an
upward force, and convection will continue. The important ratio is the
ratio of the thermal diffusion time to the displacement time. This ratio
is called the Rayleigh number R and takes the form

op,gh’eT
R Pod
Dea

(C.1-8)




As we shall see, the Rayleigh number is indeed the critical
parameter for Rayleigh—Bénard convection, but we need a more
detailed calculation to tell us the actual value of the Rayleigh number
at which convection begins.

C.2 The Navier—Stokes Equations

Because of the geometry assumed, the fluid flow can be taken to be
two dimensional. Thus, we need consider only the x (horizontal) and
z (vertical) components of the fluid velocity. The Navier—Stokes
equations (see Chapter 11) for the x and z components of the fluid
velocity are

avz — ap 2
p—a—;+pv - gradv, =—pg ~a—z+uV v,

oy,

__op
P -

+pv e gradv, = » +uVy, (C2-1)

In Eq. (C.2-1), p is the mass density of the fluid; g is the acceleration

due to gravity; p is the fluid pressure,'and [ is the fluid viscosity. Note
that the acceleration due to gravity only affects the z component
equation. :

The temperature T of the fluid is described by the thermal diffusion
equation (see Chapter 11), which takes the form

a—f+§' « gradT =D, VT

where, as before, D, is the thermal diffusion coefficient.
In the steady nonconvecting state (when the fluid is motionless)
the temperature varies linearly from bottom to top:

(C.2-2)

T(x,z,8)=T, —%EST (C.2-3)

For the purposes of our calculation, we will focus our attention on a
function T(x, z, 1) that tells us how the temperature deviates from this
linear behavior:

W(x,2,1) =T(x,z,r)—ﬂ,+£~8T (C.2-4)

If we use Eq. (C.2-4) in Eq. (C.2-2), we find that 7 satisfics
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I +V e gradt—v, or_ D,V (C.2-5)
ot h

We now need to take into account the variation of the fluid density
with temperature. (It is this decrease of density with temperature that
leads to a bouyant force, which initiates fluid convection.) We do this
by writing the fluid density in terms of a power series expansion:

p) = po+§%(T—Tw)+ Ce (C.2-6)

where p, is the fluid density evaluated at T,,
Introducing the thermal expansion coefficient o, which is defined
as -
1%

o= (C2-7)

and using T-T,, from Eq. (C.2-4), we may write the density temperature
variation as

pT)=p,— apo[—%fﬂ“ +1(x, 2z, t)] (C.2-8)

The fluid density p appears in several terms in the Navier—Stokes
equations. The Boussinesq approximation, widely used in fluid
dynamics, says that we may ignore the density variation in all the terms
except the one that involves the force due to gravity. This approxi-
mation reduces the v, equation in Eq. (C.2-1) to

av, z op
pé“—é—t—_l-pov gradvz =—pP.8 '—Otpnza —az

+ 0 p,T(x,2, 1)+ UV, (C2-9)

We then recognize that when the fluid is not convecting, the first
three terms on the right-hand side of the previous equation must add
to 0. Hence, we introduce an effective pressure gradient, which has
the property of being equal to 0 when no fluid motion is present:
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, 22 8T
p=p +pogz+ap05?
ap’ ap z
=2£ 28T 2.
5 = 3z +p,.8 +05p0h6 (C2-10)

Finally, we use this effective pressufc gradient in the Navier—Stokes
equations and divide through by p, to obtain

W, . 1ap’ 2,
, §t~+v gradvz—v—g 5 +atg + vV,
o, 1 dp’ 2
4y e = VYV 2-
5 +v o gradv, 0. o +VvV, (C.2-11)

where v = l/p, is the so-called kinematic viscosity.

C.3 Dimensionless Variables

Our next step in the development of the Lorenz model is to express the
Navier—Stokes equations Eq. (C.2-11) in terms of dimensionless
variables. By using dimensionless variables, we can sce which
combinations of parameters are important in determining the behavior
of the system. In addition, we generally remove the dependence on
specific numerical values of the height 4 and temperature difference
8T, and so on, thereby simplifying the eventual numerical solution of
the equations.
First, we introduce a dimensionless time variable t

= (C.3-1)

[You should recall from Eq. (C.1-3) (and from Chapter 11) that A%Ds
s a typical time for thermal diffusion over the distance #.] In a similar
fashion, we introduce dimensionless distance variables and a dimen-

~ sionless temperature variable:
=t p2E oyl (C3-2)

h h ~§T

We can also define a dimensionless velocity using the dimen-
sionless distance and dimensionless time variables. For example, the
x component of the dimensionless velocity is
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v,/ = _ P—Tv
*dt R *
Finally, the Laplacian operator can also be expressed in terms of the
new variables with the replacement
V*=p'V’ (C3-9)

If we use these new variables in the Navier—Stokes equations
(C.2-11) and multipy through by #%(vDy), we arrive at

(C3-3)

Qz[awz.k—v ad’ 'J— W ap’
v gr TV T seayL = vDp, 0z
adl'gh® ,
+———T+ V" C3-5
DT[BV’ - J B oop
— =T3P vol=— + V™’ 3-6
vl +v' e grad’y’, VDup, o7 v, (C.3-6)

We recognize that certain dimensionless ratios of parameters
appear in the equations. First, the Prandil number o gives the ratio of
kinematic viscosity (o the thermal diffusion coefficient:

vV

o "—"ITT (C.3-7)

The Prandtl number measures the relative importance of viscosity
(dissipation of mechanical energy due to the shearing of the fluid flow)
compared to thermal diffusion, the dissipation of energy by thermal
energy (heat) flow. The Prandtl number is about equal to 7 for water
at room temperature.

The Rayleigh number R tells us the balance between the tendency
for a packet of fluid to rise due to the buoyant force associated with
thermal expansion relative to the dissipation of energy due to viscosity
and thermal diffusion, R is defined as the combination -

_ogh’

R vD,

o7 (C.3-8)

The Rayleigh number is a dimensionless measure of the temperature
difference between the bottom and top of the cell. In most
Rayleigh—Bénard experiments, the Rayleigh number is the conirol
parameter, which we adjust by changing that temperature difference.
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Finally, we introduce a dimensionless pressure variable I1 defined
as
p 7 h 2
= 3-
VPUD T (C 3 9)

We now use all these di
¢ and the thermal diffusion equation in the
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C.4 The Streamfunction

As we discussed in Chapter 11, fo

may infroduce a streamfunction ¥
flow. The actual fluid velocity components are
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obtained by taking partial derivat

1 - oIl 2
[St—+v o gmdvz} = . +RT+ V',
z[é‘zﬁ
o Y

+7 - gradt—v,=V'1

Section C4

mensionless quantities to write the

e remember that all the variables are

oIl
o grad vx] =t Vv,

(C.3-10)

troducing the dimensionless variables
have notchanged the physicscontent
y mathematic al approxi-

r two dimensional fluid flows, we
(x,z,t), which carries all the infor-

jves of the streamfunction:

vIz_a‘P(x,z,t) vzza‘l‘(x,z,t) (CA-1)
0z ox

(We are free to place the minus sign on
sents. The sign choice made here gives us

the Lorenz model equations
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v _owon v 3 o
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in which we have expanded the grad term explicitly in terms of com-
ponents. (Mathematically experienced readers may recognize the
middle two terms on the left-hand side of the previous equation as the
Jacobian determinant of the functions Y and 1 with respect to the
variables x and z.)

The fluid flow equations can also be written in terms of the
streamfunction. Unfortunately, the equations become algebraically
messy before some order emerges. The v, equation becomes

1[ Y IYPY 9w aﬁw} Al o

Z — - = — Condial -
ol 2x o o dean|” oz TRV, (€4-3)

The v, equation becomes

1{_a2qf+§_\g Y ¥ az\y} _ O 0¥
OL otdz 0z dxdz Ox dzdx

%% Y o (C.4-4)

Tf we now take 9/0x of Eq. (C.4-3) and subtract from it 8/9z of Eq.
(C.4-4), the pressure terms drop out, and we have

2 2 2 2
1[+3 Vzly)_g{agaw_gga_w} B{B‘PB‘P aqlalPH

ot oz |0z dxdz ox 9z*) ox |9z 9x? dx dzdx
0T a4
=R—+V%¥ (C.4-5)
ox

Eq. (C.4-2) and the rather formidable looking Eq. (C.4-5) contain all
the information on the fluid flow.

C.5 Fourier Expansion, Galerkin Truncation, and Beundary
Conditions

Obviously, we face a very difficult task in trying to solve the partial

differential equations that describe our model system. For partial -

differential equations, the usual practice is to look for solutions that
can be written as products of functions, each of which depends on only
one of the independent variables x, z, #. Since we have a rectangular
geometry, we expect to be able to find a solution of the form

P(x,z,t)= % e ™" {A,cosA,z +B,sind,z}
m,n

x{C,cosA,x +D, sin}, x} (C.5-1)
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where the A s are the wavelengths of the various Fourier spatial modes
and ®,, , are the cotresponding frequencies. We would, of course, have

a similar equation for T , the temperature variable. (Appendix A
contains a concise introduction to Fourier analysis.) '

As we saw in Chapter 11, the standard procedure consists of using
this sine and cosine expansion in the original partial differentiai
equations to develop a corresponding sct of (coupled) ordinary dif-
ferential equations. This procedure will lead to an infinite set of
ordinary differential equations. To make progress, we must somehow
reduce this infinite set to a finite set of equations. This truncation
process is known as the Galerkin procedure.

For the Lorenz model, we look at the boundary conditions that
must be satisfied by streamfunction and the temperature deviation
function and choose a very limited set of sine and cosine terms that
will satisfy these boundary conditions. It is hard to justify this trun-
cation a priori, but numerical solutions of a larger set of equations scem
to indicate (SAL62) that the truncated form captures most of the
dynamics over at least a limited range of parameter values.

The boundary conditions for the temperature deviation function
are simple. Since T represents the deviation from the linear temperature
gradient and since the temperatures at the upper and lower surfaces are
fixed, we must have :

t=0atz=0,1 (C.5-2)

For the streamfunction, we look first at the boundary conditions
on the velocity components. We assume that at the top and bottom
surfaces the vertical component of the velocity v, must be 0. We also
assume that we can neglect the shear forces at the top and bottom
surfaces. As we sawin Chapter 11, these forces are proportional to the
gradient of the tangential velocity component; therefore, this condition
translates into having ov,/0z =0 at z = 0 and z = 1. For the Lorenz
model, these conditions are satisfied by the following ansatz for the
streamfunction and temperature deviation function:

W(x,z,t) = y(f) sin(nz) sin{ax)
(x,z,1) = T,(¢) sin(zz) cos(ax) — T,(¢) sin(2mz) (C.5-3)

where the parameter « is to be determined. As we shall see, this choice
of functions not only satisfies the boundary conditions, but it also
greatly simplifics the resulting equations.
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The particular form of the spatial part of the streaifunction ¥
models the convective rolls observed when the fluid begins to convect.
Youmay easily check this by calculating the velocity components from
Eq. (C4-1). The form for the temperature deviation function has two
parts. The first, T,, gives the temperature difference between the
upward and downward moving parts of a convective cell. The second,
T,, gives the deviation from the linear temperature variation in the
center of a convective cell as a function of vertical position z, (The
minu$ sign in front of the T, term is chosen so that T, is positive: The
temperature in the fluid must lie between T,andT,)

C.6 Final Form of the Lorenz Equations

We now substitute the assumed forms for the streamfunction and the
temperature deviation function into Egs. (C.4-2) and (C4-5). As we
do 5o, we find that most terms simplify. For example, we have

VY =~ (@”+ )P

VY = 4 (@2 1) (C.6-1)

The netresultis that some of the complicated expressions that arise

-

fromv - gradv terms disappear, and we are left with

ay()

= (@’ +7)sin Tz singx =

—ORT(t) sin iz sinax

+0(@” + 7% w(t) sinniz sinax

(C.6-2)

The only way the previous €quation can hold for all values of x and z
is for the coefficients of the sine terms to satisfy

dy(t) . oR ,
jlg—?(t—)-:nﬁf[_?ﬂ(r)—c(n%a o) (C.6-3)

The temperature deviation equation is a bit more complicated. It
takes the form
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T, sin 7z cos ax — T, sin2mz + ((°+ a*)T, sinnz cos ax

—45°T, 5in 2Rz — @ sin Tz cos ax
=— [my cos =z sin a;vc] [aT, sinnz sinax]
—[awysinmz cos ai] [7T, cos mz cos ax]
+ [y sin 7tz cos ax] [2rT, cos 2nz] » (C.6-4)

We first collect all those terms which involve sin%z cosax . We
note that the last of these terms in Eq. (C.6-4)
is2amyT,sin7z cosax cos2nz, Using standard trigonometric identi-
ties, this term can be written as the following combination of sines and
cosines: (—%Sin Tz +%sin 3752) cosax. The sin3nz term has a spatial
dependence more rapid than allowed by our ansatz; s0, we drop that
term. We may then equate the coefficients of the terms in Eq. (C.6-4)
involving sin7tz cosax to obtain

T, =ay— @ +a")T,~nayT, - (C.6-5)

All the other terms in the temperature deviation equation are
multiphied by sin 2nz factors, Again, equating the coefficients, we find

T,= %‘?—WTI ~ 47T, (C.6-6)

To arrive at the standard form of the Lorenz equations, we now
make a few straightforward change of variables. First, we once again

change the time variable by introducing a new variable t” = (R* +a”)t'.
We then make the following substitutions:

an
XO=zp i

Y(t)= %Ti(n
Z(t) = 'L, () (C.6-T)

where r is the so-called reduced Rayleigh number:
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a2

F=—— (C.6-8)
(@ +7%’
We also introduce a new parameter b defined as
2
. L (C.6-9)
a“+n

With all these substitutions and with the replacement of & with p
for the Prandtl number, we finally arrive at the standard form of the
Lorenz equations:

X =p¥-X)
Y =X =Xz -¥
Z =XY -bZ (C.6-10)

At this point we should pause to note one important aspect of the
relationship between the Lorenz model and the reality of fluid flow.
The truncation of the sine—cosine expansion means that the Lorenz
model allows for only one spatial mode in the x direction with
“wavelength” 2n/a. If the actual fluid motion takes on more complex
spatial structure, as it will if the temperature difference between top
and bottom plates becomes too large, then the Lorenz equations no
longer provide a useful model of the dynamics.

Letus also take note of where noulinearity enters the Lorenz model.
We see from Eq. (C.6-10) that the product terms XZ and XY are the
only nonlinear terms. These express a coupling between the fluid
motion (represented by X, proportional to the streamfunction) and the
temperature deviation (represented by ¥ and Z, proportional to T, and

Ty, respectively. The Lorenz model does not include, because of the

choice of spatial mode functions, the usual v « grad v nonlinearity from
the Navier--Stokes equation.

C.7 Stability Analysis of the Nonconvective State

The parameter a is determined by examining the conditions on the
stability of the nonconvective state. The nonconvective state has y =0
and T=0 and hence corresponds to X,¥,Z =0 . If we let x, ¥, and z
represent the values of X, ¥, and Z near this fixed point, and drop all

nonlinear terms from the Lorenz equations, the dynamics near the fixed
point is modeled by the followin g linear differential equations:
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£ =px-y)
Yy =rx-—y
z =—bz (C7-1)

Note that z(z) is exponentially damped since the parameter b is positive.
Thus, we need consider only the x and y equations. Using our now
familiar results from Section 3.11, we see that the nonconvective fixed
point becomes unstable when » > 1. Returning to the original Rayleigh
number, we see that the condition is

(@ +a?)’
.ag

Rz (C.7-2)

We choose the parameter a to be the value that gives the lowest Ray-
leigh number for the beginning of convection. In a sense, the system
selects the wavelength 2m/a by setting up a convection pattern with the
wavelength 21/a at the lowest possible Rayleigh number. This con-

dition yields a =7/A2. Hence, the Rayleigh number at which con-

vection begins is R =271"/4. The parameter b is then equal to 8/3, the
value used in most analyses of the Lorenz model.
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