CHAPTER SIX

Quasiperiodicity

6.1 Frequency spectrum and attractors

In Chapter 1 we introduced three kinds of dynamical motions for
continuous time systems: steady states (as in Figure 1.10(a)), periodic
motion (as in Figure 1.10(b)), and chaotic motion (as in Figure 1.2).In
addition to these three, there is another type of dynamical motion that is
common; namely, quasiperiodic motion. Quasiperiodic motion is
especially important in Hamiltonian systems where it plays a central role
(see Chapter 7). Furthermore, in dissipative systems quasiperiodic
attracting motions frequently occur.

Let us contrast quasiperiodic motion with periodic motion. Say we
have a system of differential equations with a limit cycle attractor (Figure
1.10(b)). For orbits on the attractor, a dynamical variable, call it f'(¢), will
vary periodically with time. This means that there is some smallest time
T >0 (the period) such that f(t) =f(t + T). Correspondingly, the
Fourier transform of f(t),

flw)= J ) £ (t)exp(icot) dt, 6.1)

consists of delta function spikes of varying strength located at integer
multiples of the fundamental frequency Q = 2r/T,

fw)=2nY a,6(w — nQ). (62)

Basically, quasiperiodic motion can be thought of as a mixture of
periodic motions of several different fundamental frequencies. We speak
of N-frequency quasiperiodicity when the number of fundamental
frequencies that are ‘mixed’ is N. In the case of N-frequency quasiperiodic
motion a dynamical variable f(t) can be represented in terms of a function
of N independent variables, G{¢t,,1,,...,ty), such that G is periodic in
each of its N independent variables. That is,

Gltyty,.. st + Ty sty) = Gltgt,, 0ty ty)s (6.3)
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where, for each of the N variables, there is a period 7;. Furthermore, the N
frequencies Q; = 2/ T, are incommensurate. This means that no one of the
frequencies , can be expressed as a linear combination of the others using
coefficients that are rational numbers. In particular, a relation of the form

mQ +m,yQ, + -+ myQy=0 6.4)
does not hold for any set of integers, m;, m,, ..., my (negative integers are
allowed), except for the trivial solutionm, = m, = -+ = my = 0.In terms

of the function G, an N-frequency quasiperiodic dynamical variable f(¢)
can be represented as

f@t)=G(t,t,¢t,...,1). 6.5)
That is, f is obtained from G by setting all its N variables equal to t;
t, =t, = -+ = ty = t. Due to the periodicity of G, it can be represented as
an N-tuple Fourier series of the form
G= Y a, .expliln,Qf; +n, Q0+ + nyQyty)l.
n1,02,. AN
Thus setting t = ¢, = t, = *-* = t,, and taking the Fourier transform we
obtain,
J(w)=2n Z ap, AnN‘s(w — (1, Q +n,Q, + - + 1y Q) (6.6)
ny,nz,..., nN

Hence the Fourier transform of a dynamical variable f(w) consists of
delta functions at all integer linear combinations of the N fundamental
frequencies Q,...,Qy.

Figure 6.1 shows the magnitude squared of the Fourier transform (..,
the frequency power spectrum) of a dynamical variable for three
experimental situations: (a) a case with a limit cycle attractor, (b) a case
with a two frequency quasiperiodic attractor, and (c) a case with a chaotic
attractor. These results (Swinney and Gollub, 1978) were obtained for an
experiment on Couette—Taylor flow (see Figure 3.10(a)). The three
spectra shown correspond to three values of the rotation rate of the inner
cylinder in Figure 3.10(a), with (a) corresponding to the smallest rate and
(c) corresponding to the largest rate. Note that for the quasiperiodic case
the frequencies n,Q, + n,Q, are dense on the w-axis, but, since their
amplitudes decrease with increasing n, and n,, peaks at frequencies
corresponding to very large values of n, and n, are eventually below the
overall noise level of the experiment. In the chaotic case, Figure 6.1(c), we
see that peaks at the two basic frequencies Q, and Q, are present, but that
the spectrum has also developed a broad continuous component. (Note
that the broad continuous component in Figure 6.1(c) is far above the
noise level of ~10~* evident in Figure 6.1(a).) The situation in Figure
6.1(c) is in contrast to that in Figure 6.1(b), where the only apparent
frequency components are discrete (namely n,Q; + n,Q,). The presence
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Figure 6.1 Results for
frequency power
spectra for a Couette—
Taylor experiment
with increasing
rotation rate of the
inner cylinders
(Gollub and Swinney,
1975).
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Figure 6.2 Two
sinusoidal voltage
sources driving a
nonlinear resistor.

of a continuous component in a frequency power spectrum is a hallmark
of chaotic dynamics.

A simple way to envision the creation of a quasiperiodic signal with a
mixture of frequencies is illustrated in Figure 6.2, which shows two
sinusoidal voltage oscillators in series with a nonlinear resistive element
whose resistance R is a function of the voltage V acrossit, R = R(V'). Since
the voltage sources are in series, we have V =uv,sin(Q,t + 65") +
v,sin(Q,t + 62). The current through the resistor, I(t) = V/R(V), is a
nonlinear function of ¥ and hence will typically have all frequency
components n,Q, + n,Q,. Assuming that Q, and Q, are intercommensu-
rate, the current I(t) is two frequency quasiperiodic. The situation shown
in Figure 6.2 is, in a sense, too simple to give very interesting behavior. If,
for example, the value of the current I were to effect the dynamics of the
voltage source oscillators, then a much richer range of behaviors would be
possible, including frequency locking and chaos. Frequency locking refers
to a situation where the interaction of two nonlinear oscillators causes
them to self-synchronize in a coherent way so that their basic frequencies
become commensurate (as we shall see, this implies that the motion is
periodic) and remain locked in their commensurate relationship over a
range of parameters. This will be discussed further shortly.

Let us now specialize to the case of attracting two frequency
quasiperiodicity (N = 2) and ask, what is the geometrical shape of the
attractor in phase space in such a case? To answer this, assume that we
have a two frequency quasiperiodic solution of the dynamical system Eq.
(1.3). In this case every component x* of the vector x giving the system
state can be expressed as

x(i) (t) =GY (tls 1) )lrl =ry=t°
Since G is periodic in t, and t,, we only need specify the value of t, and ¢,

modulo T, and T, respectively. That is, we can regard the G as being
functions of two angle variables

0, =Q,t; modulo 27;j = 1,2. 6.7

j‘ 1)
vy sin (1 +6{Y)

/, R(V) V@

vy sin (Qpr + 032))
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Figure 6.3 A point on
a torus specifying the
two angles 8, and 8,.

Thus the system state is specified by specifying two angles,

x = G(0,/0,,0,/Q,), 638)
where G is periodic with period 2z in 8, and 8, . Specification of one angle
can be regarded geometrically as specifying a point on a circle. Specifica-
tion of two angles can be regarded geometrically as specifying a point ona
two-dimensional toroidal surface (cf. Figure 6.3). In the full phase space,
the attractor is given by Eq. (6.8), which must hence be topologically
equivalent to a two-dimensional torus (i.e., it is a distorted version of
Figure 6.3). A two frequency quastperiodic orbit on a toroidal surfaceina
three-dimensional x phase space is shown schematically in Figure 6.4. The
orbit continually winds around the torus in the short direction (makingan
average of Q,/2x rotations per unit time) and simultaneously continually
winds around the torus in the long direction (making an average of Q,/2n
rotations per unit time). Provided that Q, and Q, are incommensurate,
the orbit on the torus never closes on itself, and, as time goes to infinity the
orbit will eventually come arbitrarily close to every point on the toroidal
surface. If we consider the orbit originating from the initial condition x,
near (but not on) a toroidal attractor, as shown in Figure 6.4, then, as time
progresses, the orbit circulates around the torus in the long and short
directions and asymptotes to a two frequency quasiperiodic orbit on the
torus.

We define the rotation number in the short direction as the average
number of rotations executed by the orbit in the short direction for each
rotation it makes in the long direction,

R=0Q,/Q,. (6.9)
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Figure 6.4 Two
frequency
quastperiodic orbit on
a torus lying in a
three-dimensional
phase space

x = (x), x@) x3)),

Figure 6.5 An orbit
with a rotation
number of R = 3.

When R is irrational the orbit fills the torus, never closing on itself. When
Ris rational, R = p/gq with p and § integers that have no common factor,
the orbit closes on itself after p rotations the short way and g rotations the
long way. Such an orbit is periodic and has period p7T, = §T,. The case
R =3 is illustrated in Figure 6.5, where we see that the orbit closes on
itself after three rotations the short way around and one rotation the long
way around.

In Figures 6.2—-6.4 we have restricted our considerations to two
frequency quasiperiodicity. We emphasize, however, that the situation is
essentially the same for N-frequency quasiperiodicity. In that case the
orbit fills up an N-dimensional torus in the phase space. By an
N-dimensional torus we mean an N-dimensional surface on which it is
possible to specify uniquely any point by a smooth one to one relationship
with the values of N angle variables. We denote the N-dimensional torus
by the symbol T,

In some situations it is possible to rule out the possibility of
quasiperiodicity. As an example, consider the system of equations studied
by Lorenz, Egs. (2.30). It was shown in the paper by Lorenz (1963) that all
orbits eventually enter a spherical region, X2 + Y2 + Z? < (constant),
from which they never leave. Thus, X, Y and Z are bounded, and we may
regard the phase space as Cartesian with axes X, Y and Z. A two
frequency quasiperiodic orbit fills up a two-dimensional toroidal surface

x®

x® -
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in this space. Thus the toroidal surface is invariant under the flow. That is,
evolving every point on the surface forward in time by any fixed amount
maps the surface to itself. Furthermore, the volume inside the torus must
also be invariant by the continuity of the flow. However, we have seenin
Section 2.4.1 that following the points on a closed surface forward in time,
the Lorenz equations contract the enclosed phase space volumes ex-
ponentially in time. Thus two frequency quasiperiodic motion is imposs-
ible for this system of equations.

6.2 The circle map

The system illustrated in Figure 6.2 is particularly simple. Since Q, ¢ and
Q,t appear only as the argument in sinusoids, we regard them as angles
BM(t) = Q,t + 65 and 8P (t) = Q,t + 65 In these terms the dynamical
system reduces to
doMjdr = Q, and d8?/dt = Q,.

Now taking a surface of section at (6*) modulo 27) = (const.), we obtaina
one-dimensional map for 8, = 6)(¢,) modulo 2% (where t, denotes the
time at the nth piercing of the surface of section),

8,+, = (6, + w) modulo 2=, (6.10)

where w = 27Q, /Q, . Geometrically, the map Eq. (6.10) can be thought of
as a rigid rotation of the circle by the angle w. For incommensurate
frequencies, Q,/Q, is irrational, and for any initial condition, the orbit
obtained from the map (6.10) densely fills the circle, creating a uniform
invariant density of orbit points in the limit as time goes to infinity. On the
other hand, if Q,/Q, = p/g is rational, then the orbit is periodic with
period § (0,.; = (6, + gw) modulo 27 = 6,). Thus there is only a zero
Lebesgue measure set of w (namely, the rationals) for which periodic
motion (as opposed to two frequency quasiperiodic motion) applies. Let
us now ask, what would we expect to happen if the two voltage oscillators
in Figure 6.2 were allowed to couple nonlinearly? Would the
quasiperiodicity be destroyed and immediately be replaced by periodic
orbits? Since the rationals are dense, and coupling is known to induce
frequency locking, this question deserves some serious consideration. To
answer this Arnold (1965) considered a model that addresses the main
points. In particular, the effect of such coupling of the oscillator dynamics
is to add nonlinearity to Eq. (6.10). Thus Arnold introduced the map,

6,.1=1(6,+w+ ksin8,) modulo 27, (6.11)

where the term ksin 6 models the effect of the nonlinear oscillator
coupling. This mapis called the circle map. In what follows we take wto lie
in the range [0,2x].
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Although deceptively simple in appearance, the circle map (like the
logistic map) reveals a wealth of intricate behavior. It is of interest to
understand the behavior of this map as a function of both w and the
nonlinearity parameter k. A key role is played by the rotation number,
which for this case is given by

1 1"

R= 2— ; g (6.12)
where A8, = w + ksin6,. For k = 0, we have R = w/2x and the periodic
orbits (rational values of R) only occur for a set of w of Lebesgue measure
zero (i.e., rational values of w/2n). What are the characters of the sets of
w-values yielding rational and irrational R if k > 0?7 Arnold (1965)
considered this problem for small k. Specifically, we ask whether the
Lebesgue measure of w yielding irrational R (i.e., quasiperiodic motion)
immediately becomes zero when k is made nonzero. Arnold proved the
fundamental result that quasiperiodicity survives in the following sense.
For small k the Lebesgue measure of w/2zn yielding quasiperiodicity is
close to 1 and approaches 1 as k — 0. The set of w-values yielding
quasiperiodicity, however, is nontrivial because arbitrarily close to a
w-value yielding quasiperiodicity (irrational R) there are intervals of w
yielding attracting periodic motion (rational R). (The existence of
intervals where R is rational is what we mean by the term frequency
locking.) Thus, the periodic motions are dense in w. (This corresponds to
the fact that rational numbers are dense.) The set of w-values yielding
quasiperiodicity is a Cantor set of positive Lebesgue measure (in the
terminology of Section 3.9, it is a ‘fat fractal’). Arnold’s result was an
important advance and is closely related to the celebrated KAM theory
(for Kolmogorov, Arnold and Moser) for Hamiltonian systems (see
Chapter 7). Specifically, in dealing with the circle map, as well as the
problem which KAM theory addresses, one has to confront the difficulty
of the ‘problem of small denominators.” To indicate briefly the nature of
this problem, first note that Arnold was examining the case of small k. The
natural approach is to do a perturbation expansion around the case k = 0
(i.e., the pure rotation, Eq. (6.10)). One problem is that at every stage of
the expansion this results in infinite series terms of the form

A
z

1 — cxp(27timR)exP(lmH)'

For R any irrational, the number [ (mR) modulo 1] can be made as small
as we wish by a proper choice of the integer m (possibly very large). Hence,
the denominator, 1 — exp(2nimR), can become small, and thus there is
the concern that the series might not converge. To estimate this effect say
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exp(2nimR) is close to 1 so that the denominator is small. This occurs
when mR is close to an integer; call it n. In this case

1 — exp(2nimR) ~ —2xi(mR — n).
Thus, the magnitude of a term in the sum is approximately
14,
2nm |R — n/m|’

(Clearly, if R is rational, then R = n/m for some n and m, and this
expansion fails. But we are here interested in the case of quasiperiodic
motion for which R is irrational.) The convergence of the sum will depend
on the number R. In particular, R-values satisfying the inequality

K

n
R—Z|>——
m(2+s)

m

for some positive numbers K and ¢ and all values of the integers m andn
{m # 0) are said to be ‘badly approximated by rationals.” It is a basic fact
of number theory that the set of numbers (R in our case) that are not badly
approximated by rationals has Lebesgue measure zero. The coefficients
A, are obtained from Fourier expansion of an analytic function, and
hence the 4,, decay exponentially with m, i.e., for some positive numberss
and ¢, we have |4,,| < cexp(—o|m|). Thus,

1 14,

s e < ot exp (o)

The exponential decay exp(—a|m|) is much stronger than the power law
increase m**®, and convergence of the sum is therefore obtained for all
R-values that are badly approximated by rationals. This, however, is only
the beginning of the story since, at each stage of the perturbation
expansion, sums of this type appear. While these sums converge, it still
remains to show convergence of the perturbation expansion itself. Arnold
was able to prove convergence of his perturbation expansion. Thereby he
showed that the Lebesgue measure of w in [0,2n] for which there is
quasiperiodicity (i.e., irrational R) is not zero for small k and that this
measure approaches 2z in the limit k— 0. Thus, for small £,
quasiperiodicity survives and occupies most of the Lebesgue measure.

Let us now address the issue of frequency locking. As an example,
consider the rotation number R = 0. This corresponds to a fixed point of
the map. Hence we look for solutions of

0= (0 +w+ ksin§). 6.13)
The solution of this equation is demonstrated graphically in Figure 6.6(a)

for several values of w. Note that there are no solutions of the fixed point
equation, Eq. (6.13), for the value of wlabeled w < — w in the figure. Asw
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Figure 6.6(a) Fixed
point solutions of the
arcle map denoted by

dots. (b) Bifurcation
diagram for the R = 0

stable (solid curve)
and unstable (dashed
curve) orbits.

is increased from w < —w,, the graph of (§ + w + ksin§) becomes
tangent to the dashed 45° line at w = —w,. Thus two fixed point orbits,
one stable and one unstable, are born by a tangent bifurcation as w
increases through w = —w,. As wis increased further, the two solutions
continue to exist, until, as w increases through w,, they are destroyed in a
backward tangent bifurcation. Figure 6.6(b) shows the corresponding
bifurcation diagram. From Eq. (6.13) we have w, = k. Thus we see that,
for k > 0, the stable fixed point (R = 0) exists in an interval of w values,
k > w > —k, whereas at k = 0 we only have R = 0 at the single value
w = 0. This is what we mean by frequency locking. Similarly, one can
show that, for small k, an attracting period two orbit (corresponding to a
rotation number R = }) exists in a range w;,, < w < wy,, where

wip =7 £ k*/4 + O(K*). (6.14)
In general, for any rational rotation number R = p/j there is a frequency
locking range of w in which the corresponding attracting period g orbit
exists, and this range (w3, w;/q) has a width Aw,, = w;/q — Wpyz Which
scales as

Aw,,, = O(K?). (6.15)

p/a

0+w+ksind i

27

Tangent
Tangent bifurcation
bifurcation
T

-~ ——
(®) | ————— L
—Wo wo
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Figure 6 7 Arnold
tongues for the circle
map

Furthermore, as w increases through the value w;,, the attracting period
g orbit with rotation number p/j is born by a forward tangent bifurcation,
and as w increases through the value w;:/,.J the attracting period g diesbya
backward tangent bifurcation.

Note that, since the map function is monotonically increasing for
0 < k < 1, its derivative and that of its n times composition are positive,
dM"(6)/d8 > 0. Hence there can be no period doubling bifurcations of a
period norbit forany nin 0 < k < 1, since the stability coefficient (slope of
M™) must be —1 at a period doubling bifurcation point.

Consider the total length in w (Lebesgue measure) of all frequency
locked intervals in [0, 27],

> Aw,.
r=p/a

Arnold’s results show that this number 1s small for small k and decreases
to zero in the limit k — 0. Thus the set of w-values yielding quasiperiodic
motion has most of the Lebesgue measure of w for small k. This set 1s a
Cantor set of positive Lebesgue measure. (We have previously encoun-
tered such a set in Section 2.2 when we considered the set of r-values for
which the logistic map yields attracting chaotic motion.) The situation
can be illustrated schematically as in Figure 6.7 which shows regions of
the w—k plane (called Arnold tongues) in which the rotation numbers
R =0, 35, 1 and £ exist. We see that there are narrow frequency-locked
tongues of rational R which extend down to k = 0. For higher periods
(i.e., larger § in R = p/G) the frequency-locked intervals becomes ex-
tremely small for small k. (This qualitative type of frequency-locking
behavior occurring 1 tongues in parameter space has been found m
numerical solutions of ordinary different equations, as well as in physical
experiments. )

k
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Figure 6.8 Complete
devil’s staircase at
k=1 (Jensen et al.,
1984).

For k < 1 and a w-value yielding an irrational value of R, the orbit
points on the resulting quasiperiodic orbit generate a smooth invariant
density p(#). In this case, by a smooth change of variables ¢ = f(6) the
circle map can be transformed to the pure rotation

O,v1 =@, + 2nR(wW, k)
Since the pure rotation generates a uniform density 5(¢) = 1/2x, and the
circle map is invertible for k < 1, we see by p(¢)d¢ = p(8)d6 that the

change of variables is
[}

o=f(0)= ZnJ p(0')de’. (6.16)

(o]

As k approaches 1 from below, the widths Aw,, increase, and the sum
3 Aw,, approaches 2z, That is, at k = 1, the entire Lebesgue measure in w
is occupied by frequency-locked periodic orbits, and the quasiperiodic
orbits occupy zero Lebesgue measure in w. Figure 6.8 shows a numerical
plot of R versus wat k = 1. We see that R increases monotonically with w.
The set of w values on which R increases is the Cantor set of zero Lebesgue
measure on which R is irrational (i.e., the motion is quasiperiodic). The
function R versus w at k = 1 is called a complete devil’s staircase. At lower
k we again obtain a monotonic function which increases only on the
Cantor set of w-values where R is irrational, but now the Cantor set has
positive Lebesgue measure (it is a fat fractal (Section 3.9)). We conse-
quently say that R versus w is an incomplete devil’s staircase for 1 > k > 0.

The box-counting dimension of the set on which R increases for k = 1
(the complete devil’s staircase case) has been calculated by Jensen, Bak

06} - r
R I S 0241 .
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and Bohr (1983). They obtain a dimension value of Dy ~ 0.87. Further-
more, they claim that this value is universal in that it applies to a broad
class of systems, not just the circle map. This contention is supported by
the renormalization group theory of Cvitanovic et al. (1985).

For k > 1, the circle map is noninvertible (d6, , ,/df, changes signas f,
varies when k > 1). As a consequence of this, typical initial conditions can
yield chaotic orbits but do not yield quasiperiodic orbits for k > 1. To see
why quasiperiodic orbits do not result from typical initial conditions, we
note that we have previously seen that a smooth change of variables Eq.
(6.16) transforms the circle map to the pure rotation if there is a
quasiperiodic orbit with a smooth invariant density p(8). Since it is not
possible to transform a noninvertible map to an invertible one (i.e., the
pure rotation), we conclude that there can be no quasiperiodic orbits
generating smooth invariant densities! for k > 1.

As an example of circle map type dynamics appearing in an experiment,
we mention the paper of Brandstater and Swinney (1987) on
Couette—Taylor flow (see Section 3.7). Under particular conditions the
authors observe two frequency quasiperiodic motion on a two-dimen-
sional toroidal surface. Figure 6.9 (a) shows a delay coordinate plot of the
orbit V(t) versus V(t — 7) where V(t) is the radial velocity component
measured at a particular point in the flow. Taking a surface of section
along the dashed line in Figure 6.9(a) one obtains a closed curve
indicating that the orbit in Figure 6.9 (a) lies on a two-dimensional torus.
Figure 6.9 (b) shows such a surface of section plot (for slightly different
conditions from those in Figure 6.9(a)). Brandstater and Swinney then
parameterize the location of orbit points in the surface of section by an
angle 6 measured from a point inside the closed curve. In Figure 6.9(c)
they plot the value of 8 at the (n + 1)th piercing of the surface of section
versus its value at the nth piercing of the surface of section. We see that this
map is indeed of a similar form to the circle map of Arnold:? it is invertible
and is close to a pure rotation with an added nonlinear piece,
0,..=1[6,+w+ P(,)] modulo 2n, where P(6)is the periodic nonlinear
piece, P(8) = P(6 + 2n). (In the absence of P(f) the map would be two
parallel straight lines at 45° (pure rotation), which Figure 6.9 (c) would
resemble if the wiggles due to P(8) were absent.)

As an example of how circle map type phenomena can appear in a
differential equation consider the equation,

d6/dt + 6sinf = V + Wcos (), (6.17)

which may be viewed as a highly damped slowly forced pendulum such
that the inertia term d26/dt? is negligible.®> For small § one may expand
the solution as a power series in d retaining only the first two terms,
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Figure 6.9(a)
Projection of the orbit
onto the delay
coordinate plane V (t)
versus V (t — 1).

(b) The surface of
section given by the
dashed line in (a).

(¢) Experimental circle
map obtained from (b)
(Brandstater and
Swinney, 1987).

B(t) = 89 (t) + 60V(t) + 0(6?). (6.18)
The lowest order solution is obtained by setting d = 0 in (6.17),
0O(@) = 8(t) + V(t — ') + (W/Q)[sin(Qx) — sin ()], (6.19)
and the next order solution is
3
gV (1) = —f sin 8 (t)dt. (6.20)
v

Letting 6, = 6(t,) modulo 27, where t, = 27zn/Q, we obtain a map from
(6.18)—(6.20) by settingt =¢,,, and t' = t,,

0, =1{6,+w+ kf(w,u)sin[6, + ¢(w,u) + n]} modulo 27,

where (Problem 4)
2r
Sfw,u) = f exp [i <E + usin r)]dr
o 2n

w=2nV/Q, k= 6/Q, u=W/Q, and ¢(w,u) is the angle of the complex
quantity whose magnitude appears above. Equation (6.21) with u fixed is,
aside from the more complicated dependence on w, the same as the circle
map. (Note, however, that Eq. (6.21) is only valid for small §.) Thus
frequency locking and Arnold tongues also occur here although the

(6.21)

b
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Figure 6.10 Attraction
of initial conditions on
a two-dimensional
torus to a periodic
orbit.

picture, Figure 6.7, will be distorted by the different parameter depend-
ence of the map on w.

Equation (6.17) can be considered as a two-dimensional dynamical
system in the two variables 8" = § and 6 = Qt which are both angle
variables. Hence (6.17) describes a flow on a two-dimensional toroidal
surface. On this surface we can either have a quasiperiodic orbit, or an
attracting periodic orbit, the latter corresponding to a frequency-locked
situation. The attraction of orbits on the torus to a periodic orbit is
illustrated in Figure 6.10. As mentioned already, this behavior is
displayed by higher-dimensional systems. What happens in these higher-
dimensional systems is that there is an invariant two-dimensional torus
embedded in the phase space flow. On the torus, the flow can be either
quasiperiodic or else it can have an attracting periodic orbit (Figure 6.10).
‘When the flow is quasiperiodic, a surface of section yields a picture of the
attractor cross section which is either a closed curve, or several closed
curves, resulting from the intersection of the surface of section with the
attracting invariant torus. When the attractor is periodic, the surface of
section intersection with the attractor reveals a finite number of discrete
points (note, however, that there can still be an invariant torus on which
the attractor lies). We can think of the flow in the higher-dimensional
phase space as being attracted to a lower-dimensional (two-dimensional)
flow on the torus, on which, in turn, there can be quasiperiodic motion or
a periodic attractor.

A fairly common way that one sees chaos appearing as a system
parameter is varied is that first two frequency quasiperiodicity is seen,
then frequency locking to a periodic attractor, and then a chaotic
attractor. Since chaos is not possible for a two-dimensional flow, in order
for the chaos to appear, the orbit can no longer be on a two-dimensional
torus. Typically, as the parameter is increased toward the value yielding
chaos, the invariant two-dimensional torus is destroyed. When this
happens, it does so while in the parameter range in which the periodic

Periodic
orbit
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attractor exists. In terms of the circle map, we can think of the destruction
of the torus as analogous to the map becoming noninvertible as k
increases through 1 (quasiperiodic orbits do not occur for typical initial
conditions for k > 1). If we were to fix w and increase k, we might expect to
see quasiperiodicity and then frequency locking as k is increased toward
one, since the frequency locked regions have Lebesgue measure 27 in w at

= 1. The periodic solutions at k = 1 typically remain stable as k is
increased past 1 into the region where chaos becomes possible. These
periodic solutions can then become chaotic, for example, by going
through a period doubling cascade.

In our discussion above of the onset of chaos for the circle map, we
imagined a typically chosen variation along a path in parameter space;
specifically, we imagined choosing a typical w and then increasing k.
Another possibility is carefully to choose a path in parameter space such
that we maintain the rotation number to be constant and irrational. Thus,
as we increase k, we adjust w to keep R(k, w) the same. Such a path threads
between the frequency-locked Arnold tongues all the way uptok = 1. The
same can be done in an experiment on a higher-dimensional system, in
which case k = 1 corresponds to the point at which the torus is destroyed.
Studies of this type of variation have revealed that there is a universal
phenomonology in the behavior of systems approaching torus destruc-
tion along such a path in parameter space. The behavior depends on the
rotation number R chosen but is essentially system-independent. Exten-
sive work demonstrating this has been done for the case of the path on
which the rotation number is held constant at the value given by the
golden mean, R = (/5 — 1)/2 = R, (Shenker, 1982; Feigenbaum et al.,
1982; Ostlund et al., 1983; Umberger et al., 1986). This number is of
particular significance because of its number theoretic properties. Specifi-
cally, in some sense (see Section 7.3.2), R, is the most irrational of all
irrational numbers in that it is most difficult to approximate by rational
numbers of limited denominator size. These results for R = R are
obtained using the renormalization group technique, the same technique
used to analyze the universal properties of the period doubling cascade (cf.
Chapter 8). Perhaps the most striking of these results is that for the low
frequency power spectrum of a process which is quasiperiodic with
rotation number equal to the golden mean and parameters corresponding
to the critical point at which the torus is about to be destroyed (k = 1 for
the circle map). As illustrated in Figure 6.11, if one plots the frequency
power spectrum P(w) divided by w? versus the frequency o on a log—log
plot, then the result is predicted to be universal and periodic in log o for
small w. Furthermore, the periodicity length in log  is just the logarithm
of the golden mean.



