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vector angle 6, 1s measured clockwise from the vertical. Figure 5.13(b)
shows the regions of this initial condition space for which the particle exits
through hole A (black) and for which it exits through hole B (blank). The
dimension of the boundary separating these two regions is numerically
found to be approximately 1.8. Blow-ups, however, reveal that there is the
same sort of fine-scaled interweaving of fractal (D, ~ 1.8) and nonfractal
(Do = 1) boundary regions as for the kicked double rotor example.

5.4 Chaotic scattering

In this section we consider the classical scattering problem for a
conservative dynamical system.* The simplest example of this problem
deals with the motion without friction of a point particle in a potential
V(x) for which V' (x)is zero, or else very small, outside of some finite region
of space which we call the scattering region. Thus, the particle moves
along a straight line (or an approximately straight line) sufficiently far
outside the scattering region. We envision that a particle moves toward
the scattering region from outside it, interacts with the scatterer, and then
leaves the scattering region. The question to be addressed is how does the
motion far from the scatterer after scattering depend on the motion far
from the scatterer before scattering? As an example, consider Figure 5.14
which shows a scattering problem in two dimensions. The incident
particle has a velocity parallel to the x-axis at a vertical displacement
y = b. After interacting with the scatterer, the particle moves off to infimty
with its velocity vector making an angle ¢ to the x-axis. We refer to the
quantities b and ¢ as the impact parameter and the scattering angle, and
we wish to investigate the character of the functional dependence of ¢ on
b.
As an example consider the potential (Bleher et al., 1990)

Vix,y) = x*y?exp[— (x> + y*)] (5.6)
shown in Figure 5.15. This potential consists of four potential ‘hills’ with
equal maxima at (x, y)-coordinate locations (1,1), (1, — 1), (—1, 1), and
(=1, —1). The maximum value of the potential is E_ = 1/e*. For large
distances r = (x? + y?)¥/2 from the origin, V(x,y) approaches zero
rapidly with increasing r. Figure 5.16(a) shows a plot of the scattering
function, ¢ versus b, for the case where the incident particle energy E 1s
larger than E . We observe for this case (E/E, = 1.626) that the
scattering function is a smooth curve. Furthermore, it is also found to bea
smooth curvefor all E > E_, . Figure 5.16 (b) shows the scattering function
for a case where E < E,. We observe that the numerically computed
dependence of ¢ on b is poorly resolved in the regions 0.6 > +b > 0.2. To
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Figure 5.14 Scattering
in two dimensions.

Figure 5.15 The
potential ¥V (x,y) =
cyexp[—(x? + y?)]
(Bleher et al., 1990).

understand why this might be so, we note that Figure 5.16 is constructed
by choosing aJarge number (~ 10*) of b-values evenly spaced along the
interval of the b-axis shown in the plot. We then integrate the equation of
motion for a particle of mass m, md2?x/dt*> = —VV(x), for incident
particles far from the potential for each b-value, and obtain the
corresponding scattering angles ¢. We then plot these angles to obtain the
figure. Thus, the speckling of individually discernible points seen in Figure
5.16(b) in the region 0.6 > +b > 0.2 might be taken to imply that the
curve ¢ versus b varies too rapidly to be resolved on the scale determined
by the spacing of b-values used to construct the figure. In this view one
might still hope that sufficient resolution would reveal a smooth curve as
in Figure 5.16(a). That this is not the case can be seen in Figures
5.17 (a)—(c) which show successive magnifications of unresolved regions.
Evidently magnification of a portion of unresolved region of Figure
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Figure 5.16 Scattering
functions ¢ versus b
for (a) EJE,, = 1.626

and (b) E/E,, = 0.260
(Bleher et al., 1990).

5.16(b) by a factor of order 10* (Figure 5.17(c)) does not reveal a smooth
curve. (This persists on still further magnification.) We call a value b = b,
a singularity of the scattering function, if, for an interval [b, ~ (Ab/2),
b, + (Ab/2)], a plot of the scattering function made as in Figures 5.16 and
5.17 always shows unresolved regions for any interval length Ab, and, in
particular, for arbitrarily small Ab. Another, more precise, way of defining
b, as a singularity of the scattering function is to say that, in any small
interval [b, — (Ab/2), b, + (Ab/2)], there is a pair of b-values which yields
scattering angles whose difference exceeds some value K > 0 which is
independent of Ab. (That is arbitrarily small differences in b yield ¢-values
which differ by order 1.) The interesting result concerning the scattering
function shown in Figure 5.16(b) is that the set of singular b-values is a
fractal. Bleher et al. (1990) calculate a fractal dimension of approximately
0.67 for the singular set. We call the phenomenon seen in Figure 5.16(b)
chaotic scattering as distinguished from the case of regular scattering
(Figure 5.16(a)). (The transition from regular to chaotic scattering as the
energy is lowered from the value in Figure 5.16(a) to the value in Figure
5.16(b) will be discussed in Chapter 8.)

The chaotic scattering phenomenology we have described above is a
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Figure 5.17 Successive
magnifications of the
scattering function
(a) for a small b
mterval in Figure
516(b), (b) for a small
b interval n Figure
517(a), and (c) for a
small b interval 1n
Figure 5 17(b) (Bleher
et al , 1990)

general feature of a large class of problems. Chaotic scattering has
appeared in numerous applications including celestial mechanics (Petit
and Hénon, 1986), the scattering of vortices in fluids (Eckhardt and Aref,
1988), scattering of microwaves (Doron et al., 1990), the conversion of
magnetic field energy to heat in solar plasmas (Lau and Finn, 1991).
chemical reactions (Noid et al., 1986), collisions between nucler (Rap-
isarda and Baldo, 1991), and conductance fluctuations in very tiny
two-dimensional conductor junctions (Jalabert et al., 1990). The latter
three examples are cases where it becomes important to consider the
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Figure 5.18 Time
delay versus impact
parameter for the b

intervals (a)
corresponding to that
in Figure 5.16(b), and

(b) corresponding to
that in Figure 5.17(a)
(E/E,, = 0.260) (Bleher
et al., 1990).

quantum mechanical treatment of a problem whose classical counterpart
exhibits chaotic scattering. For further material on the quantum aspects
of chaotic scattering see Bliimel (1991), Cvitanovi¢ and Eckhardt (1989),
Gaspard and Rice (1989a,b,c), and Bliimel and Smilansky (1988).

5.5 The dynamics of chaotic scattering

How does the dynamics of the scattering problem lead to the phenomena
we have observed in Figures 5.16(b) and 5.17? In order to gain some
insight into this question we plot in Figure 5.18 the ‘time delay’ (the
amount of time that a particle spends in the scattering region bouncing
between the hills) as a function of the impact parameter b for the potential
(5.6) with the same particle energy as for Figures 5.16(b) and 5.17. We see
that the regions of poor resolution of the scattering function (cf. Figures
5.16(b) and 5.17) coincide with b-values for which the time delay is long.
Indeed careful examination of magnifications suggests that the singular-
ities of the scattering function coincide with the values of b where the time
delay is infinite. Very near a value of b for which the time delay is infinite
the time delay will be very long, indicating that the incident particle
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Figure 5.19 Orbuts for
particles with shightly
different impact
parameters (differing
by 1078): (a) b =
—0.39013269, and

() b = — 0.39013268.
The four closed solid
curves are the
contours V (x,y) =

E =0260E,, (Bleher et
al., 1990).

experiences many bounces between potential hills before leaving the
scattering region. Say we choose a b-value yielding a long time delay for
which the particle experiences say 1000 bounces before exiting the
scattering region. Now change b very slightly so as to increase the delay
time by a small percentage yielding say 1001 bounces before the particle
exits the scattering region. The presence of this one extra bounce means
that the scattering angle for the two cases can be completely different.
Hence, we expect arbitrarily rapid variations of ¢ with b near a b-value
yielding an infinite time delay, and we may thus conclude that these values
coincide with the singularities of the scattering function. The effect is
illustrated in Figure 5.19 which shows two orbit trajectories whose b
values differ by 1078, The orbit in Figure 5.19(a) (b = —0.39013269)
experiences about 14 bounces (depending on how you define a bounce).
The orbit in Figure 5.19(b) (b = —0.39013268) is very close to that in
Figure 5.19 (a) for the first 13 or so bounces but subsequently experiences
about 4 more bounces than the orbit in Figure 5.19(a). The two orbits
have completely different scattering angles, one yielding scattering
upward (Figure 5.19(a)) and the other yielding scattering downward.
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The interpretation of these results is as follows. The equations of
motion are four-dimensional,

mdv/dt = —VV(x), (5.73)
dx/dt =, (5.79)

where x = (x,y) and v = (v,,v,), but because the particle energy,
=1mv? + V(x), (598)

is conserved, we may regard the phase space as being three-dimensional.
(For example, we can regard the phase space as consisting of the thre
variables, x, y, 6, where 0 is the angle the vector v makes with the positive
x-axis. These three variables uniquely determine the system state, x, y,
v,,0,, because (5.8) gives |v in terms of x and y, |v] = [2(E — V/(x))/m]"2)
The presence of infinite time delays on a fractal set of b-values is due to the
existence of a nonattracting chaotic invariant set that is in a bounded
region of phase space. Orbits on this invariant set bounce forever between
the hills never leaving the scattering region both for t - + oo and for
t - — co. This chaotic set is essentially the intersection of its stable and
unstable manifolds, each of which locally consists of a Cantor set of
approximately parallel two-dimensional surfaces in the three-dimen-
sional phase space. Thus, the stable and unstable manifolds are each
fractal sets of dimension between 2 and 3.

We have, in numerically obtaining our scattering function plots, taken
initial conditions at some large x-value x = x, and have chosen the initial
angle 6, between v and the positive x-axis to be 6, = # (i.e., v, =0 and
v, < 0; see Figure 5.14). This defines a line in the space (x, y, §) which we
regard as the phase space. This line of initial conditions generically
intersects the stable manifold of the nonattracting chaotic invariant setin
a Cantor set of dimension between zero and one? (cf. Eq. (3.46)). It is thss
intersection set that is the set of singular b-values of the scattering
function. Since these b-values correspond to initial conditions on the
stable manifold of the chaotic invariant set, the orbits they generate
approach the invariant set as t — +co; hence they never leave the
scattering region.

Figure 5.20(a) shows a numerical plot of the y = O cross section of the
stable manifold of the chaotic invariant set. This plot is created by takinga
grid of initial conditions in (x,, 6, ) and integrating them forward in time
Then only those initial conditions yielding long delay times are plotted
We observe that the stable manifold intersection appears as smooth (and
swirling) along one dimension with (poorly resolved) fine-scale (presum-
ably fractal) structure transverse to that direction. Figure 5.20(b) showsa
similar plot of the intersection of the unstable manifold with the y =10
plane obtained by integrating initial conditions on the grid backwards m
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time and again plotting those initial conditions whose orbits remain in the
scattering region for a long time. We see that the unstable manifold
picture is a mirror image (through the line x, = 0) of the stable manifold
picture. This is a result of the time reversal symmetry® of Egs. (5.7) (they
are invariant to the transformationv — —v,t - —t) and the symmetry of
the potential (5.6). In particular this means that the stable and unstable
manifolds have the same fractal dimension. Figure 5.20(c) shows the
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intersection of the chaotic invariant set with the plane y = 0. This picture
is consistent with the invariant set being the intersection of its computed
stable and unstable manifolds (i.e., the set shown in Figure 5.20(c) is the
intersection of the sets shown in Figures 5.20(a) and (b)). Apparently,
these intersections occur with angles bounded well away from zero.
Hence, there appear to be no tangencies between the stable and unstable
manifolds, thus supporting the idea that, in this case, the dynamics on the
invariant set is hyperbolic. (See Bleher et al. (1990) for a description of
how Figure 5.20(c) is numerically computed. This computation makes
use of a numerical technique for obtaining unstable chaotic sets which is
discussed and analyzed by Nusse and Yorke (1989); see also Hsu et al
(1988).)

The existence of a Cantor set of singular b-values for the scattering
function implies that it will often be very difficult to obtain accurate values
of the scattering angle if there are small random experimental errors in the
specification of b. This situation is similar to that which exists when there
are fractal basin boundaries.® Indeed we can employ a modification of the
uncertainty exponent technique of Section 5.2 to obtain the fractal
dimension of the singular set. We observe that, for our example (Eq. (5.6)
with E/E = 0.260), small perturbations about a singular b-value can lead
to either upward scattering (0 < ¢ < masin Figure 5.19(a)) or downward
scattering (— 7 < ¢ < Oas in Figure 5.19 (b)). Thus, we randomly choose
many values of b in an interval containing the Cantor set. We then perturb
each value by an amount ¢ and determine whether the scattering i
upward or downward for each of the three impact parameter values,
b—e¢ b and b+ ¢ If all three scatter upward or all three scatter
downward, we say that the b-value is ¢-certain, and, if not, we say it ss
e-uncertain. We do this for several e-values and plot on a log—log scale the
fraction of uncertain b-values f (). The result is shown in Figure 52!
which shows a good straight line fit to the data indicating a power law
dependence 7 (¢) ~ &% The exponent « is related to the dimension of the set
of singular b-values by

Dy=1-u« (59)

(i.e., Eq. (5.3b) with N =1 corresponding to the fact that the initial
conditions of the scattering function liec along a line in the three-
dimensional phase space). The straight line fit in Figure 5.21 yields a slope
of « = 0.33 corresponding to a fractal dimension of D, = 0.67 for the
scattering function of Figure 5.16 (b) and 5.17. The dimension of the stable
and unstable manifolds in the full three-dimensional phase space is
2 + D, and the dimension of their intersection (which is the dimension
D_, of the chaotic set) is (cf. Eq. (3.46))
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Figure 5.21 f(¢)
versus ¢ for the
scattering function in
the interval shown in
Figure 5.17(b). The
slope yields a fractal
dimension of
approximately 0.67
(E/E,, = 0.260) (Bleher
et al., 1990).

D =2D, + 1. (5.10)

The dimension of the intersection of the chaotic set with the y = 0 plane?
(i.e., the dimension of the set plotted in Figure 5.20(c)) is 2D,,.

In all of our discussion of chaotic scattering we have been concerned
with a particular illustrative example of scattering in two degrees of
freedom (i.c., the two spatial dimensions x and y). The phenomena we see
are typical for two-degree-of-freedom scattering. Other works on chaotic
scattering have also tended to be for examples with two degrees of
freedom. The possibility of new chaotic scattering phenomena in systems
with more than two degrees of freedom remains largely unexplored. An
exception is the paper of Chen et al. (1990b) who consider the question of
whether the presence of a chaotic invariant set in the phase space implies a
fractal set of singularities in a scattering function plot (i.e., a plot giving an
after-scattering variable as a function of a single before-scattering
variable). They find that, when the number ofdegrees of freedom is greater
than 2, the scattering function typically does not exhibit fractal behavior,
even when the invariant set is fractal and chaotic, unless the fractal
dimension of the invariant set is large enough,

D, >2M -3, (5.11)
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Figure 5.22 Scatterer
consisting of four
equal radii hard
spheres with centers
located on the vertices
of a regular
tetrahedron.

where M is the number of degrees of freedom.” Since D for M =2 is
greater than 1 in the fractal case, we see that Eq. (5.11) is always satisfied in
chaotic two-degree-of-freedom potential scattering problems. In the case
of three-degree-of-freedom systems, however, we require D, > 3. Chenet
al. illustrate this numerically for the simple three-dimensional scattering
system consisting of four hard reflecting spheres of equal radii with centers
located on the vertices of a regular tetrahedron, as illustrated in Figure
5.22. They show numerically that as the sphere radius increases, D,
increases from below 3 to above 3, and this is accompanied by the
appearance of fractal behavior in typical scattering functions.

5.6 The dimensions of nonattracting chaotic sets
and their stable and unstable manifolds

We have seen in Chapter 4 that there is an apparent relationship between
the Lyapunov exponents of a chaotic attractor and its information
dimension (Eqs. {4.36)—(4.38)). In this section we will show that the same
is true for nonattracting chaotic invariant sets of the type that arise in
chaotictransients, fractal basin boundaries, and chaoticscattering (Kantz
and Grassberger, 1985; Bohr and Rand, 1987; Hsu et al., 1988). In
particular, we treat the case of a smooth two-dimensional map M(x)
which has a nonattracting variant chaotic set A. In Figure 5.23 we
schematically picture the invariant set as being the intersection of stable
and unstable manifolds. Let B, also shown in the figure, be a compact set
containing the invariant set such that under the action of M almost all
points (with respect to Lebesgue measure) eventually leave B and never
return. The only initial conditions that generate forward orbits which
remain forever in B are those which lie on the invariant set and its stable
manifold. Thus, part of B must map out of B and the Lebesgue measure
(area) which remains in B is decaying.

Say, we randomly sprinkle N(0) points uniformly in B. After iterating
these points for t iterates, only N(t) < N(0) have not yet left. The average




