CHAPTER FIVE

Nonattracting
chaotic sets

We have already encountered situations where chaotic motion was
nonattracting. For example, the map Eq. (3.3) had an invariant Cantor
set in [0, 1], but all initial conditions except for a set of Lebesgue measure
zero eventually leave the interval [0,1] and then approach x = +c0.
Similarly, the horseshoe map has an invariant set in the square S (cf.
Figure 4.1), but again ali initial conditions except for a set of Lebesgue
measure zero eventually leave the square.! The invariant sets for these two
cases are examples of nonattracting chaotic sets. While it is clear that
chaotic attractors have practically important observable consequences, it
may not at this point be clear that nonattracting chaotic sets also have
practically important observable consequences. Perhaps the three most
prominent consequences of nonattracting chaotic sets are the phenomena
of chaotic transients, fractal basin boundaries, and chaotic scattering.

The term chaotic transient refers to the fact that an orbit can spend a
long time in the vicinity of a nonattracting chaotic set before it ieaves,
possibly moving off to some nonchaotic attractor which governs its
motion ever after. During the initial phase, when the orbit is in the vicinity
of the nonattracting chaotic set, its motion can appear to be very irregular
and is, for most purposes, indistinguishable from motion on a chaotic
attractor.

Say we sprinkle a large number of initial conditions with a uniform
distribution in some phase space region W containing the nonattracting
chaotic set. Then the length of the chaotic transient that a given one of
these orbits experiences depends on its initial condition. The number N(t)
of orbits stiil in the chaotic transient phase of their orbit after a time ¢
typically decays exponentially with 7, N(t) ~ exp — (t/{t)), for large t.
Thus, the fraction of orbits P(r)dt with chaotic transient lengths between
rand T + dt is

P(1) = dN(z)/dt ~ exp — (7/<1)), (5.1)
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Figure 5.1{(a) Poten-
tial ¥ (x) for a point
particle moving in one
dimension. (b) The
basins of attraction for
the attractors at

X = X, (crosshatched)
and at x = — X,
(uncrosshatched).

where we call (1) the average lifetime of a chaotic transient. We can also
interpret P(t) as the probability distribution of 7, given that we choose an
initial condition randomiy in the region W containing the nonattracting
chaotic set. We have already seen examples of the exponential decay law
(5.1) for the case of the map Eq. (3.3) and the horseshoe map (cf. Figure
4.1). In particular, referring to Eq. (3.5), we see that, for this example,
(1) =[ln(1 -A)""T"",
Hence, the average transient lifetime can be long if A is smail. In such a
case observations of an orbit for some appreciabie time duration of the
order of (1) or less may not be sufficient to distinguish a chaotic transient
from a chaotic attractor.

We shall be discussing chaotic transients in greater detail in Chapter §
In this chapter we will concentrate on fractal basin boundaries and
chaotic scattering. We will also present general results relating the
Lyapunov exponents and the average decay time (t) to the fractal
dimensions of nonattracting chaotic sets. (A useful review dealing with
some of this material has been written by Tél (1991).)

5.1 Fractal basin boundaries

Dynamical systems can have mulitiple attractors, and which of these is
approached depends on the initial condition of the particular orbit. The
closure of the set of initial conditions which approach a given attractor is
the basin of attraction for that attractor. From this definition it is clear
that the orbit through an initial condition inside a given basin must
remain inside that basin. Thus, basins of attraction are invariant sets.

As an example, consider the case of a particle moving in one dimension
under the action of friction and the two-well potential V(x) illustrated in
Figure 5.1(a). Almost every initial condition comes to rest at one of the
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5.1 Fractal basin boundaries 153

two stable equilibrium points x = x, 0or x = —x,. Figure 5.1(b) schemati-
cally shows the basins of attraction for these two attractors in the
position—velocity phase space of the system. Initial conditions starting in
the crosshatched region are attracted to the attractor at x = +x,,
dx/dt = 0, while initial conditions starting in the uncrosshatched region
are attracted to the attractor at x = —Xx,, dx/dt = 0. The boundary
separating these two regions (the ‘basin boundary’) is, in this case, a
simple curve. This curve goes through the unstable fixed point x = 0.
Initial conditions on the basin boundary generate orbits that eventually
approach the unstable fixed point x =0, dx/dt = 0. Thus, the basin
boundary is the stable manifold of an unstable invariant set. In this case the
unstable invariant set is particularly simple (it is the point x =0,
dx/dt = 0). We shall see, however, that the above statement also holds
when the unstable invariant set is chaotic.

For the example of Figure 5.1 the basin boundary was a simple curve.
We now give several pictorial examples showing that basin boundaries
can be much more complicated than is the case for Figure 5.1.

Figure 5.2 (a) shows the basins of attraction for the map (Grebogi et al.,
1983a; McDonald et al., 1985),

0,,,=0,+asin20, — bsin40, — x,sin6,, (5.2a)
Xp41 = —Jcosb,, (5.2b)

where J, = 0.3, a = 1.32 and b = 0.90. This map has two fixed points,
0,x)=(0,—-Jy) and (m,J,), which are attracting. Figure 5.2 was
constructed using a 256 x 256 grid of initial conditions. For each initial
condition the map was iterated a large number of times. It was found that
all the initial conditions generate orbits which go to one of the two fixed
point attractors. Thus, we conclude that these are the only attractors for
this map. If an initial condition yields an orbit which goes to (0, —J,),
then a black dot is plotted at the location of the initial condition. If the
orbit goes to the other attractor, then no dot is plotted. (The size of the
plotted points on the grid is such that, if all points were plotted, the entire
region would be black.) Thus, the black and blank regions are essentially
pictures of the two basins of attraction to within the accuracy of the grid
used. The graininess in this figure is due to the finite resolution used. At
any rate it is apparent that very fine-scale structure in the basins of
attraction is present. Furthermore, this fine-scale structure is evidently
present on all scales, as revealed by examining magnifications of
successively smaller and smaller regions of the phase space which contain
fine scale structure. Figure 5.2 (b) shows such a magnification. We see that
on a small scale the basins evidently consist of many narrow black and
blank parallel strips of varying widths. In fact, as we shall see, the basin
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Figure 5.2(a) Basins
of attraction for Eqgs.
(5.2). A, and A_
denote the two fixed
point attractors.

(b) Magnification by a
factor of 10° of the
region 1n {a) given by
1.92200 < 6 < 1.92201
and —0.50000 < x <
—0.49999 (McDonald
et al., 1985).

boundary on this scale may be regarded as a Cantor set of parallel lines
(separating the black and blank regions), and the fractal dimension of this
basin boundary has been numerically computed to be approximately 1.8
(Grebogi et al., 1983a).

Figure 5.3 shows the basin structure for the forced damped pendulum
equation

d?6/dt? + 0.1d6/dt + sin@ = f cost

for two cases, f =1.2 (Figure 5.3(a)) and f = 2.0 (Figure 5.3(b))
(Grebogi, Ott and Yorke, 1987c). In both cases there are two periodic
attractors that have the same period as the forcing (namely 27). The orbit
for one of these two attractors has average clockwise motion (negative
average value of ), while the orbit for the other attractor has average
counterclockwise motion. In Figure 5.3 the black region represents initial
(t = 0) values of 6 and 6 that asymptote to the attractor whose orbit has
average counterclockwise motion. Again, we see that there is small scaled
structure on which the black and blank regions appear to be finely
interwoven. This is again a manifestation of the fractal nature of the basin
boundaries. Numerical experiments on the forced damped pendulum
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Figure 5.3 Basins of
attraction for the
forced damped
pendulum equation
using a grid of over
108 initial conditions
m each case (Grebogi
et al., 1987¢).

Figure 5.4 The double
rotor (there 1s no
gravity).

equation show that fractal basin boundaries are extremely common for
this system.

As a further illustrative example, consider the ‘kicked double rotor’
mechanical system illustrated in Figure 5.4. A fixed pivot is attached to a
bar with moment of inertia I,. The free end of this bar is attached by a
pivot to the middle of a second bar of moment of inertia I,. An impulsive
upward vertical force, F = f X 6(t — nT'), is periodically applied to one
end of the second bar at time instants t =0,7,27,37,... . There is
friction at the two pivots with coefficients v, and v,. Examining the
positions (0, ¢) and the angular velocities (d6/dr,d¢/dt) just after an
impulsive kick, we can analytically derive a four-dimensional map giving
the positions and angular velocities just after the (r + 1)th kick in terms of
their values just after the nth kick (Grebogi et al., 1987a). Figure 5.5 shows
the basin structure for this map for a particular set of the parameters f, I,

Fixed
pivot

Kicker
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Figure 5.5 Basins of
attraction for the
kicked double rotor;
(b) shows a
manifestation of a
small subregion of (a)
(Grebog et al.,
1987a).

I,,v;and v,. For this choice of parameters there are two attractors; one1s
the stable fixed point 8 = ¢ =0, d6/dt = d¢/dt = 0 (both arms are
oriented straight up), while the other attractor is chaotic. The plot 1n
Figure 5.5(a) and the magnification in Figure 5.5(b) show imtal
conditions on a two-dimensional surface in the four-dimensional phase
space (namely, the surface df/dt = d¢/dt = 0), with the black region
corresponding to the basin of the fixed point attractor and the blank
region corresponding to the basin of the chaotic attractor. Thus, we can
regard Figure 5.5 (a) as a ‘slice’ by a two-dimensional plane cutting across
the four-dimensional phase space. Numerically, it is found that the
boundary between the black and blank regions in Figure 5.5 has
dimension 1.9, corresponding to a dimension of the basin boundary in the
full four-dimensional phase space® of 3.9.

Fractal basin boundaries also occur for one-dimensional maps
Consider the map shown in Figure 5.6(a), where the map function
consists of straight lines in [0,3], [%,2], [%,1]. This map has two
attracting fixed points, labeled A . and A _. The region x > 11is part of the
basin of attraction for A ; and that the region x < 0 is part of the basin of
attraction for A_. We now focus on the structure of the basins in [0,1]
Since the interval [5,%] maps to x > 1, it is in the basin of 4 , . Since the
interval [3,%] maps to x < 1, it is in the basin of A _ . This is indicated m
Figure 5.6(b). We now ask, which intervals map to [£,2] and which to

2,417 These are the six intervals of length 75 shown in Figure 5.6 (b). We
see that, at this stage of the construction, the intervals assigned to the two
basins alternate between the basin of A, and the basin of A_ as we move
from x = 0 to x = 1. In fact, this is true at every stage of the construction
Thus, we build up a very complicated, finely interwoven basin structure,
and the boundary between the two basins is the nonattracting invanant
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Figure 5.6 (a) One-
dimensional map with
a fractal basin
boundary. (b) The
basin m [0, 1].

Cantor set of points which never leave the interval [0, 1]. (The dimension
of this Cantor set is (In 3)/(In 5).)

As a final example of a fractal basin boundary, consider the logistic
map, X,.; = M(x,) =rx,(1 — x,), in the range of r-values for which
there is an attracting period three orbit. Although there is only one
attractor in this case (the period three orbit), we can create a situation
where there are three attractors by considering the map M3 (x) rather than
M((x) (see Figure 2.13). In this case there are three fixed point attractors,
which are just the three components of the attracting period three orbit of
M(x), and the boundary separating their basins is fractal (McDonald et
al., 1985; Park et al., 1989; Napiorkowski, 1986). Figure 5.7 shows the
basin of the middle fixed point attractor of M>(x) (blank regions) as a
function of r.

For further discussion and examples of fractal basin boundaries see
McDonald et al. (1985) and the book by Gumowski and Mira (1980).
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Figure 5.7 Basin
structure of the third
iterate of the logistic

map in the period
three window {(Park et
al., 1989).

5.2 Final state sensitivity

The small scale alternation between different basins that we have seen in
the above examples can present a problem when one attempts to predict
the future state of a dynamical system. In particular, in the presence of
fractal basin boundaries, a small uncertainty in initial conditions can
cause anomalously large degradation in one’s ability to determine which
attractor is approached. In order to make this quantitative, first consider
the case of a simple nonfractal basin boundary X for two fixed point
attractors A, and A _, as shown schematically in Figure 5.8. Say our
initial conditions are uncertain by an amount ¢ in the sense that, when we
say that the initial condition is X = x,,, what we really know is only that
the initial condition lies somewhere in [x — x| < &. For the situation in
Figure 5.8, under uncertainty ¢, we know for sure that initial condition |
goes to attractor 4 , . On the other hand, the point labeled 2 in the figure
lies in the basin of attractor A_, but because of the ¢ uncertainty, the
actual orbit may go to either attractor 4, or attractor A _. We call initial
condition 1 e-certain and initial condition 2 e-uncertain. Clearly, initial
conditions that are e-uncertain are those which lie within a distance ¢ of
the basin boundary X. If we were to pick an initial condition at randomin
the rectangle shown in Figure 5.8, the probability of obtaining an
e-uncertain initial condition is the fraction of the area (or, in higher
dimensionality, volume) of the phase space which lies within ¢ of the
boundary . Denote this fraction f (¢). For a simple nonfractal boundary,
asin Figure 5.8, f(¢) scales linearly with ¢, f () ~ ¢. Thus improvement of
the initial condition accuracy say by a factor of 10 (i.e., reduction of ¢ by
10), reduces f'(¢) and hence our probability of potential error by a factor of
10. However, as we show in the appendix, when the boundary is fractal,
f(e) has a different scaling with ¢;

Beginning of the
period three window
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Figure 5.8 Region of
phase space divided by
a nonfractal basin
boundary X.

f(e) ~ &, (5.3a)
a=N—-D,, (5.3b)
where N is the phase space dimensionality and D, is the box-counting
dimension of the basin boundary. For a nonfractal boundary D, = N — 1
and o = 1. For fractal basin boundaries, such as those in Figures 5.2-5.4,
Dy, > N — 1 and hence a < 1. For example, for the situation in Figure 5.5
wehave N = 4,D, ~ 3.9,and hence a = 0.1. Thus f(¢) ~ ¢° ! In this case
there is relatively little one can do to reduce f(¢) by improving the
accuracy of initial conditions. In the case of Figure 5.5 (& & 0.1), to reduce
f(¢) by a factor of 10 requires a reduction of ¢ by a factor of 10'°! If & < 1
(i.e., the boundary is fractal), then we say there is final state sensitivity,
and, as the example above makes clear, the situation with respect to
potential improvement in prediction by increasing initial condition
accuracy is less favorable the smaller a is. (Note in Eq. (5.3b) that the
dimension D, satisfies D, > N — 1, since the basin boundary must divide
the phase space; hence a cannot exceed 1.) We call « the ‘uncertainty
exponent’.

The dimension of a fractal basin boundary can be numerically
calculated on the basis of the above discussion (McDonald et al., 1983).
For example, for the case of the basin boundary shown in Figure 5.2 we
proceed as follows. Consider an initial condition (8,, x, ), and perturbits x
coordinate by an amount ¢ producing two new initial conditions,
(fy,xq — &) and (B, x, + ¢). Now iterate the map and determine which
attractor (A, or A_)each of the three initial conditions goes to. [f they do
not all go to the same attractor, then we count the original initial
condition as uncertain. Now, we randomly choose a large number of
initial conditions in the rectangle of Figure 5.3. We then determine the
fraction f(e) of these that are uncertain, and we repeat this for several
values of &. From the definitions of f(g) and f(g), we expect that f is
approximately proportional to f (for further discussion see Grebogi et al.
(1988a)) so that « can be extracted from the scaling of f with &. Figure 5.9
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Figure 5.9 f versus ¢
(McDonald et al.,
1985).

shows results from a set of numerical experiments plotted on log—log axes.
The straight line fit indicates that f scales as a power of ¢, and the slope of
the line gives the power a. The result is & = 0.2, from which Eq. (5.3) yields
D, ~ 1.8.

Even when error in initial conditions is essentially absent, errors in the
specification of parameter values specifying the system may be present
(e.g., the parameter f in the pendulum equation used in Figure 5.3;
d?0/dt*> + 0.1d6/dt + sin@ = f cost). A small error in a system par-
ameter might alter the location of the basin boundary so that a fixed initial
condition shifts from one basin to another. In a finite region of parameter
space, the fraction of randomly chosen parameter values which produces
such a change when perturbed by a parameter error ¢ is some uncertain
fraction which we denote f,(d). If the basin boundary dimension is
approximately constant in the region of parameter space examined, then
the scaling of f,(6) is the same as that for f(e); f,(0) ~ o with
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o= N — D,. Moon (1984) has experimentally examined the parameter
dependence of the system in Figure 1.1 to see which attractor a fixed initial
condition goes to, and he has concluded, on this basis, that the basin
boundary is fractal.

In addition to final state and parameter sensitivity, another practical
consequence of fractal basin boundaries and nonattracting chaotic sets
has been investigated in the Josephson junction experiments of Iansiti et
al. (1985). These authors find that, when periodic attractors are near a
fractal basin boundary, noise can cause frequent kicks of the orbit into the
region of finely interwoven basin structure. This leads to an orbit which
resembles a chaotic orbit on a strange attractor even when the noise is
relatively small.

5.3 Structure of fractal basin boundaries

We now give a description of how the dynamics of the map Eq. (5.2) leads
to the fractal basin boundary structure in Figure 5.2. Figure 5.10(a)
schematically shows a region of the phase space in 0 <6 <n (and
narrower in x than the region shown in Figure 5.2). In addition to the two
fixed point attractors A, and A _, there are also three other fixed points
which are not attracting. These three, labeled S, , S_ and S, are saddles;
that is, they have a one-dimensional stable manifold and a one-
dimensional unstable manifold. We are particularly interested in the
saddles S, and S_ segments of whose stable manifolds ab and cd are
indicated in the figure. The entire region to the left of ab (right of ¢d ) can be
shown to be part of the basin of attraction of the fixed point attractor 4 ,
(A_). The question now becomes, what is the basin structure in the region
Q = abcd which lies between the two stable manifold segments ab and ¢d ?
(Q is shown crosshatched in Figure 5.10(a).) For the purpose of
addressing this question, we show an expanded schematic view of the
region Q in Figure 5.10(b). The action of the map on Q is to take it into the
S-shaped crosshatched region shown in Figure 5.10(b), where the map
takesatoa’,btob’,ctoc and dtod’. The stable manifold segments ab and
cd divide the S-shaped region M(Q)into five subregions, labeled U, II', [1T',
IV’ and V'. The region IT’ lies to the right of the stable manifold of S _ and
so is in the basin of attraction of A _ . Similarly, region [V’ is in the basin of
A, . We now ask, what are the preimages of these regions? In particular,
the preimage of IT' (which we denote IT) will be in the basin of 4 _, and the
preimage of the region IV’ (denoted IV) will be in the basin of A, . These
preimages are shown in Figure 5.11. Since the region M(Q) n Il is in the
basin of A _ its preimage, M~ {[M(Q) n I1] is also in the basin of 4_. This
preimage is also shown in Figure 5.11 as the three narrow crosshatched
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Figure 5.10 Schematic
illustration of the
construction of the
basin structure for the
map Eq. (5.2).

vertical strips. Similarly, M~ '[M(Q) nIV] is the three narrow shaded
vertical strips and is part of the basin of 4 | . Proceeding iteratively in this
way we build up successively finer and finer scale resolution of the basin
structure. Note that the shaded and crosshatched vertical strips alternate
as we move horizontally across Q, and that this is true at all stages of the
construction.® Note the similarity of the action of the map on the region 0
in Figure 5.10 with the horseshoe map (imagine turning Figure 4.1(d) on
its side). The main difference is that M(Q) n Q consists of three strips for
the case in Figure 5.10, while the action of the horseshoe map on the
square produces a region (the horseshoe) which intersects the original
square in two strips. A symbolic dynamics of the chaotic invariant set for
Figure 5.10 can be worked out in analogy to the horseshoe analysis (cf.
Problem 1 of Chapter 4), and is a full shift on three symbols (in contrast
with the two symbols of the horseshoe map). As in the horseshoe, we may
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think of the chaotic invariant set as the intersection of a Cantor set of lines
running vertically with a Cantor set of lines running horizontally.
Furthermore, the Cantor set of vertically oriented lines constitutes the
basin boundary in the region @, and is also the stable manifold of the
chaotic invariant set. (The horizontal lines are the unstable manifold.)
Thus, we see that, in both this example and the example of the two well
potential (Figure 5.1), the basin boundary is the stable manifold for a
nonattracting invariant set (i.e., the point x = dx/dt = 0 for Figure 5.1
and a nonattracting chaotic invariant set for the case of Figure 5.10).

We emphasize that the type of basin structure we have found here,
locally consisting of a Cantor set of smooth curves, is very common, but 1t
is not the only type of structure that fractal basin boundanes for typical
dynamical systems can have. In particular, McDonald et al. (1985) and
Grebogi et al. (1983b, 1985a) give an example where the basin boundary
can be analytically calculated and is a continuous, but nowhere different:-
able, curve. The example they consider is the following map,

Xp41 = A, X, (mod 1), (5.4a)
Vo1 = A Y, + cOs(2nx,), (5.4b)

with 4, and 4, greater than 1 and 4, an integer greater than 4.

This map has no attractors with fimted y (cf. Problem 4 of Chapter 4).
Almost every initial condition generates an orbit which approaches cither
y=+ow or y= —o0. We regard y = + o0 and y = — o0 as the two
attractors for this system. The basins of attraction are shown in Figure
5.12 (the y = — oo attractor is shown black). The analysis shows that the
basin boundary is the continuous curve given by

y=—Y 2, 'cos(2nil 'x). (5.5
=1

Figure 511 The basin I 11 \%

of A 1sshown cross- a
hatched, and the basin
of A, 1s shown
shaded
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Figure 5.12 Basins for
Eqgs. (5.4) with 4, =3
and 4, = 1.5
(McDonald et al.,
1985).

The sum converges since 4, > 1. The derivative dy/dx does not exis,
however; differentiating inside the sum produces the sum

2 & (ALY -

=53 <—"> sin(2nAl” ' x),

A, \4,
which does not converge since we have assumed (4,/4,) > 1. Equation
(5.5) is called a Weierstrass curve and has fractal dimension

Dy=2—[(n4,)/(n4,)]

(which is D, = 1.62... for the parameters of Figure 5.12).

Another type of basin structure that is common is the case where the
same basin boundary can have different dimensions in different regions.
Furthermore, in a certain sense, these regions of different dimension can
beintertwined on arbitrarily fine scale (Grebogi et al., 1987a). An example
illustrating this phenomenon is the basin boundary of the kicked double
rotor shown in the cross section in Figure 5.5. In Figure 5.5(a) we see that
the boundary between the black and blank areas in the region
0<(0,¢) <1 appears to be a simple smooth curve (D, = 1) sharply
dividing the two basins. On the other hand the very mixed appearance in
the central region surrounding the point 8 = ¢ = © suggests that the
boundary is fractal there. Indeed application of the numerical final state
sensitivity technique to the region 0 < (8, ¢) < 2= yields a dimension of
the boundary of approximately 1.9 (in the df/dt = d¢/dt =0 cross
section). Note, however, that, when we consider two sets, S, and §,, o
different dimensions, d, and d,,, the dimension of the union of the two sets
is the larger of the dimensions of the two sets,

dim(S, U S,) = max(d,,d,).

2.0(
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Figure 5.13(a) Particle
moving in a region
with reflecting walls

and two holes A and
B. (b) Inmitial
conditions in the black
region exit through
hole A (r=1, L =4,
a=0.1,b=02)
(Bleher et al., 1988).

Thus, there is no contradiction with our observation that the dimension in
0 < (8, ¢) < 1is 1. (Indeed applying the final state sensitivity technique to
the region 0 < (0, ¢) < 1yields D, = 1.) Now, consider the magnification
shown in Figure 5.5(b). The dimension of the boundary in this small
region is again D, &~ 1.9. Note, however, that there are areas within this
small region where the basin boundary is apparently one-dimensional
(e.g. 1.010 < 8 < 1.012, 2.160 < ¢ < 2.162). Moreover, this situation is
general for the double rotor: Given any square subregion within
0 < (9, ¢) < 2z which contains part of the basin boundary, the boundary
in that square is nonfractal (D, = 1) or fractal, and if it is fractal its
dimension is always the same (D, & 1.9). Furthermore, no matter how
small the square is, if the dimension of the boundary in the square is
fractal, then there is some smaller square within it for which the contained
boundary is not fractal (D, = 1). Thus, regions of the basin boundary
with different dimension are interwoven on arbitrarily fine scale. For
further discussion of this phenomenon and how it comes about as a result
of the dynamics see Grebogi et al. (1987a, 1988a).

So far we have been discussing fractal boundaries that separate the
basins of different attractors. We wish to point out, however, that fractal
boundaries can also occur even in conservative (nondissipative) systems
for which attractors do not exist. As a simple example of this type,
consider the motion of a point particle without friction moving along
straight line orbit segments in a region bounded by hard walls (shown in
Figure 5.13(a)) at which the particle experiences specular reflection on
each encounter (Bleher et al., 1988). We examine initial conditions on the
dashed horizontal line segment shown in Figure 5.13(a). The initial
position x, is measured from the center of the line and the initial velocity
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vector angle 6, 1s measured clockwise from the vertical. Figure 5.13(b)
shows the regions of this initial condition space for which the particle exits
through hole A (black) and for which it exits through hole B (blank). The
dimension of the boundary separating these two regions is numerically
found to be approximately 1.8. Blow-ups, however, reveal that there is the
same sort of fine-scaled interweaving of fractal (D, ~ 1.8) and nonfractal
(Do = 1) boundary regions as for the kicked double rotor example.

5.4 Chaotic scattering

In this section we consider the classical scattering problem for a
conservative dynamical system.* The simplest example of this problem
deals with the motion without friction of a point particle in a potential
V(x) for which V' (x)is zero, or else very small, outside of some finite region
of space which we call the scattering region. Thus, the particle moves
along a straight line (or an approximately straight line) sufficiently far
outside the scattering region. We envision that a particle moves toward
the scattering region from outside it, interacts with the scatterer, and then
leaves the scattering region. The question to be addressed is how does the
motion far from the scatterer after scattering depend on the motion far
from the scatterer before scattering? As an example, consider Figure 5.14
which shows a scattering problem in two dimensions. The incident
particle has a velocity parallel to the x-axis at a vertical displacement
y = b. After interacting with the scatterer, the particle moves off to infimty
with its velocity vector making an angle ¢ to the x-axis. We refer to the
quantities b and ¢ as the impact parameter and the scattering angle, and
we wish to investigate the character of the functional dependence of ¢ on
b.
As an example consider the potential (Bleher et al., 1990)

Vix,y) = x*y?exp[— (x> + y*)] (5.6)
shown in Figure 5.15. This potential consists of four potential ‘hills’ with
equal maxima at (x, y)-coordinate locations (1,1), (1, — 1), (—1, 1), and
(=1, —1). The maximum value of the potential is E_ = 1/e*. For large
distances r = (x? + y?)¥/2 from the origin, V(x,y) approaches zero
rapidly with increasing r. Figure 5.16(a) shows a plot of the scattering
function, ¢ versus b, for the case where the incident particle energy E 1s
larger than E . We observe for this case (E/E, = 1.626) that the
scattering function is a smooth curve. Furthermore, it is also found to bea
smooth curvefor all E > E_, . Figure 5.16 (b) shows the scattering function
for a case where E < E,. We observe that the numerically computed
dependence of ¢ on b is poorly resolved in the regions 0.6 > +b > 0.2. To



