CHAPTER FOUR

Dynamical
properties of chaotic
systems

In Chapter 3 we have concentrated on geometric aspects of chaos. In
particular, we have discussed the fractal dimension characterization of
strange attractors and their natural invariant measures, as well as issues
concerning phase space dimensionality and embedding. In this chapter we
concentrate on the time evolution dynamics of chaotic orbits. We begm
with a discussion of the horseshoe map and symbolic dynamics.

4.1 The horseshoe map and symbolic dynamics

The horseshoe map was introduced by Smale (1967) as a motivating
example in his development of symbolic dynamics as a basis for under-
standing a large class of dynamical systems. The horseshoe map M, 1
specified geometrically in Figure 4.1. The map takes the square S (Figure
4.1(a)), uniformly stretches it vertically by a factor greater than 2 and
uniformly compresses it horizontally by a factor less than 1 (Figure
4.1(b)). Then the long thin strip is bent into a horseshoe shape with all the
bending deformations taking place in the cross-hatched regions of Figures
4.1(b) and (c). Then the horseshoe is placed on top of the original square,
as shown in Figure 4.1(d). Note that a certain fraction, which we denote
1 — f, of the original area of the square S is mapped to the region outside
the square. If initial conditions are spread over the square with a
distribution which is uniform in the vertical direction, then the fraction of
initial conditions that generate orbits that do not leave S during n
applications of the map is just f". This is because a vertically uniform
distribution in § remains vertically uniform on application of M,,.
Since f" — 0 as n — co, almost every initial condition with respect to
Lebesgue measure eventually leaves the square. (Thus there is no attractor
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Figure 4 1 Construc-
tion of the horseshoe
map.

contained in the square.!) We are interested in characterizing the
invariant set A (which is of Lebesgue measure zero) of points which never
leave the square. Furthermore, we wish to investigate the orbits followed
by points in A. In order to do this, we first note that the intersection of the
horseshoe with the square represents the regions that points in the square
map to if they return to the square on one iterate. These regions are the
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110 4 Dynamical properties of chaotic systems

two cross-hatched vertical strips labeled ¥, and V; in Figure 4.2(a). We
now ask, where did these strips come from? To answer this question we
follow the horseshoe construction in Figures 4.1(a)-(d) backward in time
(i-e., from (d) to (¢) to (b) to (a) in Figure 4.1). Thus, we find that the two
vertical strips V, and V, are the images of two horizontal strips
H, =M, '(V,) and H, = M, ' (V,), as shown in Figure 4.2(b). Figure
4.2(c) shows what happens if we apply the horseshoe map to the vertical
strips V,, and V;. Thus, taking the intersection of M, (V) and M, (V) with
S (Figure 4.2(d)), we see that points originating in the square which
remain in the square for two iterates of M, are mapped to the four vertical
strips labeled Vg, V51, V1o, V11 in Figure 4.2 (d). The subscripts on these
strips ¥, are such that V] is contained in V, and M, ! (¥,,)is contained m
V,. Figure 4.2 (¢) shows the four horizontal strips that the vertical strips ¥/,
came from two iterates previous, H, = M,,_Z(V,J).

Now consider the invariant set A and the horizontal and vertical strips,
H,, H,, V,, V,. Since points in A never leave S, the forward iterate of A
must be in the square. Hence A is contained in H,u H, and is also

Figue 4.2 Vertical and M, (S) M, (V1)
horizontal strips V,,
M; (M)

V,, H and H,, for the M;l ()
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Figure 4.3 (a)

(HouH )N (Vou V)
and (b)) (Hoo WHy, v
H,VH,)n

(Voo Vor W ¥Viguw
Vll)‘

contained in ¥, u V. Thus, A is contained in the intersection,
(HowH) (Vyu V).

This intersection consists of four squares as shown in Figure 4.3(a).
Similarly A must also lie in the intersection

(HooW Hoy WH ; WH; o) (Voo W Vo Vip L Vo)
shown in Figure 4.3 (b). This intersection consists of 16 squares, four of
which are contained in each of the four squares of Figure 4.3(a).
Proceeding in stages of this type, at each successive stage, each square is
replaced by four smaller squares that it contains. Taking the limit of
repeating this construction an infinite number of times we obtain the
invariant set A. This set is the intersection of a Cantor set of vertical lines
(the Vs in the limit of an infinite number of iterations) with a Cantor set of
horizontal lines (the Hs in the limit of an infinite number of iterations),
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Figure 4.4 Equiva-
lence of the shift
operation ¢ and the
horseshoe map.

Let x be a point in the invariant set A. Then we claim that we can specify
it by a bi-infinite symbol sequence a,

a=...a_3a_,4_,"'Ag04,... 4.1
and each symbol g, is a function of x specified by
_JO if M(x) is in H,,
T if My(x) is in H,.
The above represents a correspondence between bi-infinite symbol

sequences a and points x in A. We denote this correspondence

a = ¢(x). 43
In Figure 4.3 (b) we label the 16 rectangles by the symbols a_,a_, - a44,
that correspond to the four middle symbols in (4.1) that all points in A
that fall in that rectangle must have. The correspondence given by Egs.
(4.1)—(4.3) may be shown to be one to one and continuous (with a suitable
definition of a metric on the space of bi-infinife symbol sequences). Define
the shift operation,

@2)

a' =o(a),

where a, = a,, ,. Thatis a’is obtained from a by moving the decimal point
in Eq. (4.1) one place to the right. From Eq. (4.2) we have

, 0 if MY (x) = M,(M,(x)) is in H,,

i MY (x) = ML, (M, (x)) is in H,.
Hence, a' is the symbol sequence corresponding to M,(x), or
o(a) = ¢(M,(x)). We represent the situation schematically in Figure 4.4
Thus, the shift on the bi-infinite symbol space is equivalent to the
horseshoe map applied to the invariant set A,

Myr=¢"'0-9, 44
where M, |, symbolizes the restriction of M, to the invariant set A. Thus,
to obtain x,,, ; from x, we can either apply M,, to x,,, or else we can obtain
a, = ¢(x,), shift the decimal point to the right to geta,, , and then obtam
X, from x,,; = ¢~ !(a,, ). Furthermore, to obtain x, ., from x, we

7
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can first get a, = ¢(x,,), then shift the decimal point m places to the right to
get a,, .. and then obtain x, , , from x,,, = ¢~ '(a,, ). For example,
fixed points of ¢" are mapped by ¢ ! to fixed points of M}. Since the
former are just sequences that repeat after n shifts and since there are 2"
ways of choosing a sequence of n zeros and ones, we see that there are 2"
fixed points of M} in A. This can be shown to imply that the set of points
on periodic orbits is dense in the invariant set A. In addition, there is an
uncountable set of nonperiodic orbitsin A, and it may be shown that there
are orbits which are dense in A. (If there is an orbit that is dense in an
invariant set then we say that the set is transitive.) In Sections 2.1 and 3.1
we have established symbolic dynamics representations for one-dimen-
sional noninvertible maps (Egs. (2.3) and (3.3)) in which the system state
was represented as an infinite sequence (‘aya,qa,...), as opposed to the
bi-infinite sequence representation, Eq. (4.1). This difference comes about
as a result of the noninvertibility of the maps of Sections 2.1 and 3.1. (This
is reflected by the fact that the shift operating on ‘aga,a, ... produces
“a,d,a, . .., and thus there is no information in the new symbol sequence
of what a, is. Hence, we cannot go backward in time.) The correspon-
dence we have established above between the horseshoe map and the shift
of a bi-infinite symbol sequence of zeros and ones is an example of a
reduction to symbolic dynamics that can be established for a large class of
smooth invertible dynamical systems (in particular, systems having the
property of hyperbolicity which we define later in this chapter).

As another example of symbolic dynamics, consider the map M
geometrically shown in Figure 4.5(a). The map is similar to the horseshoe
map, but contains an additional intersection with the square S, namely the
region M(H,, ). The three regions H,,, H, and H, shown in Figure 4.5(b)
represent initial conditions that return to the square. We can again
represent points X in the invariant set A of the map M as points in a
bi-infinite symbol sequence, Eq. (4.1), but now we need three symbols;

0 if M'(x) is in H,,
a, =<1 if M(x)is in H,,
2 if Mi(x) is in H,.

n+m n+m

Again the operation of the map M corresponds to a shift o operating on a.
There is, however, an important difference with the horseshoe. This is that
all possible sequences of zeros, ones and twos are not allowed. In
particular, we see from Figures 4.5(a) and (b) that points of A that are in
H, are always mapped by M to H, and not to H, or H, (M(H, ) intersects
H,, but does not intersect either H; or H,). Thus, the possible allowable
transitions are as shown in Figure 4.5 (¢). This means that whenever a 2
appears in our symbol sequence it is immediately followed by a zero (i.e.,
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Figure 4.5(a) The
map M. (b)) M(S)~ S
corresponds to the
three strips Hy, H,,
H,. (c) Allowed
transitions for M if x
is in H, it is always in
H, after one iterate.
(d) Allowed transitions
for Levi’s problem.

a, = 2 implies a;, , = 0). We call the symbolic dynamics corresponding to
M a shift of finite type on three symbols (the phrase shift of finite type
signifies a restriction on the allowed sequences), while we call the symbolic
dynamics corresponding to the horseshoe map a full shift on two symbols
(the word full signifying that there is no restriction on the allowed
sequences).

As an application of symbolic dynamics, we mention the work of Lev
(1981), who has analyzed a model periodically forced van der Pol
equation (i.e., Eq. (1.13) with a periodic function of time on the right hand
side). (Levi modifies the equation to facilitate his analysis.) Levi shows
that the map obtained from the stroboscopic surface of section obtained
by sampling at the forcing period (cf. Chapter 1) possesses an invariant set
on which the dynamics is described by a shift of finite type on four
symbols. Figure 4.5(d) shows the allowed transitions for Levi’s problem
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4.2 Linear stability of steady states and periodic orbits 115

4.2 Linear stability of steady states and periodic
orbits

Consider a system of real first-order differential equations dx/d¢ = F(x).
A steady state for this system is a point x = x,, at which
F(x,)=0.
We wish to examine the behaviour of orbits near x,. Thus we set
X(t) = X, + 1(t),
where we assume #(t) is small. Substituting this into dx/d¢ = F(x), we
expand F(x) to first order 5(t),

F(x, + 1) =F(x,) + DF(x,) 7+ O(n?),
where, since x is a steady state, F(x,) = 0, and DF denotes the Jacobian
matrix of partial derivatives of F. That is, if we write

x® FO(xD, x® - x™)
‘e x(.Z) F F‘z)(x“),x‘.z),...,x‘”’) ’
X FN(x‘”,x‘é),...,x‘N’)
then
OFV/oxtD  BFW/ox | gFW/gx™
DF(x) = 6F‘2)/6x‘1) 6F‘2)/6x‘2) 8F‘2’./é’x‘N)
S @F‘N):/c?x‘z’ L OFM A

We obtain the following equation for the time dependence of the
perturbation of x from the steady state
dn/dt = DF(x, ) 7+ O(n*). (4.5)
The linearized stability problem is obtained by neglecting terms of
order 97 in (4.5) and is of the general form
dy/dt = Ay, (4.6)
where y is a real N-dimensional vector and A is a real time-independent
N x N matrix. If we seek solutions of Eq. (4.6) of the form y(¢) = e exp (st),
then (4.6) becomes the eigenvalue equation
A-e =se, 4.7)
which has nontrivial solutions for values of s satisfying the Nth order
polynomial equation
D(s) = det[A —s1] =0, (4.8)
where | denotes the N x N identity matrix. For our purposes it suffices to
consider only the case where D(s) = 0 has N distinct roots s = s, for
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k=1,2,...,N, (ie., s, #s, if k #j). For each such root there is an
eigenvector e,, and any time evolution can be represented as

y() = i A€, exp(sit), (49)

k=1
where the A, are constant coefficients (that may be complex) determined
from the initial condition y(0) = Z)_, A4,e,. Since the coefficients of the
polynomial D(s) are real, the eigenvalues s, are either real or else occur in
complex conjugate pairs.

In the case of complex conjugate pairs of eigenvalues s; = s}, =
0, —iw,, we can also take e; = e}, = e} + ie}, where the * denotes
complex conjugate, and ¢}, w;, e? and e} are all real. Combining the two
solutions, jand j + 1, we obtain two linearly independent real solutions,

g, ()= %[ejexp(sjt) + €, 1exp(s;, )]
= e}( exp(o;t) cos(w;t) + e}exp(ajt)sin (w;t),  (4.10q)
t
8,+1(t) = Z[QjeXP(sjt) — €, eXp(S;4 )]

= e}exp (o;t)sin(w;t) — e}( exp(o,t)cos(w;t).  (4.10h)
If 5; is real (s; = o;), then we write g;(t) = e;exp(o;t) (where e; is real)
Equation (4.9) thus becomes

N
y(t)= ) B;g;(t), (d.11)
j=1

where (in contrast with the coefficients A, of Eq. (4.9)) all the B; are redl
By use of a similarity transformation

z(t) = T - y(¢), (@.12)
where T is a real N x N matrix, we can recast Eq. (4.6) as
dz/dt=C-z, C=T-A- T .. (@.13)
where, if there are K real eigenvalues, 5,,0,,...,0,,and N — K compler
conjugate eigenvalues, then the real N x N matrix € has the following
canonical form,
¥ 0
C=[O A:l, (4.4
where X is a K x K diagonal matrix
(s, 0 0 0
0 o, 0 ... O
=10 0 g3 ... 0|, (4.19)

0 0 0 .. og
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Figure 4.6 Stable
(0,<0) and unstable
(0, > 0) orbits.

and A is a real matrix of 2 x 2 blocks along its diagonal

A, O O
A= o O A, 4.16)
with the 2 x 2 matrix block A, having the form
A, = [ I w"‘], @.17)

and O being 2 x 2 matrices of zeros.

For Re(s;) = g; < 0, the corresponding solution g,(t) approaches the
origin asymptotically in time, either spiraling in the plane spanned by e}‘
and e} if Im (s,) # 0, or else by moving along the line through the origin in
the direction of the real eigenvector ¢; if Im(s;) = 0. For Re (s;) = 0, > 0,
the corresponding solution g, (¢) diverges from the origin exponentially in
time, either (as for o, < 0) by spiraling or by moving linearly. We call
solutions which move away from the origin exponentially with time
unstable and those that move exponentially toward the origin stable. The
situation is as illustrated in Figure 4.6.

Note that for the case w;# 0 any initial condition purely in the
subspace spanned by the vectors e}‘ and e; remains in that subspace for all
time. Hence, that subspace is invariant under the flow dy/dt = A-y.
Similarly, if the eigenvalue is real (s, = ¢,), then an initial condition on the
ray from the origin along e; remains on that ray, and hence the set of

0, <0,w;#0 0;<0,w; =0 e
7

1 s

[H0) » g/ 7
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e
F P == —— e,R

0,>0,0;=0 e
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vectors that are scalar multiples of e, 1s an invariant subspace. We collect
all the independent vectors spanning invariant subspaces corresponding
to unstable solutions (o, > 0) and denote them

u,,u,,...,u

> Hy *
Similarly, we collect all the independent vectors spanning invarant
subspaces corresponding to stable solutions (¢, < 0) and denote them

VisVo, ooy ¥y

If there are eigenvalues whose real parts are zero (g, = 0), we denote the
corresponding set of independent vectors spanning this subspace
WL Wy, W,
All of the us, vs and ws, taken together, span the whole phase space. Thus
n,+n +n =N.
We define the unstable subspace as

E =span[u,,u,,...,u, ],
(i.e., the space spanned by the vectoru,u,,u,, ..., u, )the stable subspace
as

E* =span[v,,v,,...,v, ],

and the center subspace as
E° =span[w,,w,,...,w, ]

Figure 4.7 illustrates some cases of stable and unstable subspaces and
the corresponding orbits (n, = 0 in Figure 4.7: (a) N =2, n, =n,=1,
(b) N = 3,n, =1 and n, = 2, where the stable space corresponds to two
real eigenvalues; (¢) N = 3,5, = | and n, = 2, where the stable subspace
corresponds to a pair of complex conjugate eigenvalues; and (d) N =3,
n, = 1 and n, = 2, where the unstable subspace corresponds to a pair of
complex conjugate eigenvalues).

We now turn from the study of the linear stability of a steady state
X = X,, to the study of the stability of a periodic orbit,

X(t) =X, (t) =X, (t+ T),
where T denotes the period. As for the case of the steady state, we wnte
X(1) = X, (1) + 7(t)
and expand for small 5(t). We obtain
dn/dt = DF(X, (1)) 7+ O(g?), (4.18)
which is similar to (4.5) except that now the matrix DF (X, (t)) vanes

periodically in time, whereas DF(x, ) in (4.5) is independent of time. The
linearized stability problem is of the form

dy/dt = A1)y, .19
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Figure 4.7 Stable and
unstable subspaces.

where y is a real N-dimensional vector and A(t) is a real time periodic
N x N matrix,

Aty=A(+ T).
Solutions of (4.19) can be sought in the Floquet form,

e(t) exp(st),
where e(t) is periodic in time e(t) = e(r + 7). This defines an eigenvalue
problem for eigenvalues s, and vector eigenfunctions e;(t). A development
parallel to that for Eq. (4.6) goes through, and stable, unstable, and center
subspaces can be analogously defined, although the solution of the
Floquet problem is much more difficult. One result for the system (4.18) is
immediate, however. Namely, Eq. (4.18) has a solution corresponding to
a zero eigenvalue (s =0). To see this, differentiate the equation
dX, (t)/dt = F(X,(t)) with respect to time. This gives an equation of the
form of Eq. (4.19), de, (t)/dt = DF(X_ (1)) e, (t), where e, (¢t) = dX, (t)/dt.
This zero eigenvalue solution can be interpreted as saying that, if the
perturbation () puts the perturbed orbit on the closed phase space curve
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Figure 4.8(a) The zero
eigenvalue solution of
(4.18). (b) Surface of
section for a periodic
orbit.

followed by X_ (¢) but slightly displaced from X, (z), then n(z) varies
periodically in time (s = 0). This is illustrated in Figure 4.8 (a).

Instead of pursuing the Floquet solutions further, we employ a surface
of section to reduce the problem dx/dt = F(x) to a map R,,, = M(&,),
where £, has lower dimensionality than x by one. As shown in Figure
4.8(b), we assume that the periodic solution X_ (¢) results in a fixed point
R, of the map. Linearizing the map around X, by writing &, = %, + 1,
with #, small, we obtain

i, = DM(&,)" i, + O(f17), (4.0
which yields a linearized problem of the form
$ni1 = Ay, (421)
Seeking solutions § = A"&, we obtain the eigenvalue equation
A-&=je @)
Again we assume eigenvalue solutions 4; of the determinantal equation,
D) = det[A — il1 =0, 4.2

and denote the corresponding eigenvectors &;. Directions corresponding
to |4;| > 1 are unstable; directions corresponding to |4;} < 1 are stabl.
Again, we can identify unstable, stable and center subspaces, E¥, E® and
E*, for the map (e.g., the stable subspace is spanned by the real and
imaginary parts of all those vectors &; for which |4;] < 1).

The map eigenvalues and the Floquet eigenvalues are related by

X. () X. ) +0(n)

@)

®)
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Figue 4.9 Period three
orbit of the surface of
section map M.

4; = exp(s;T), (4.24)
and all the s; of the Floquet problem are included except for the zero
eigenvalue illustrated in Figure 4.8 (a). The zero eigenvalue is not included
because a perturbation # that displaces the orbit along the closed curve
path followed by X, (¢) results in no perturbation of the orbit’s surface of
section piercing at & = &, (cf. Figure 4.8).

We remark that we have assumed in the above that the periodic orbit
resultsin a fixed point of the surface of section map. If instead it resultsin a
period p orbit (as shown in Figure 4.9 for p=3), 8 > %F > >
R% = k3, then we select one of the p points &7 on the map orbit and
examine the pth iterate of the map MP?. For the map M? the point £} is a
fixed point,

R = MP(®7). (4.25)
Linearizing about this point, we again have a problem of the form of

(4.21), but now A is identified with DMP? (8} ). We note that the chain rule
for differentiation yields

DM?(R}) = DM(X}_ | )DM(X}_,).. . DM&3)DM(R;_,)... DMR}).
(4.26)
This is a matrix version of the one-dimensional map result Eq. (2.7).
Finally, we wish to stress that, although we have been discussing the map
M as arising from a surface of section of a continuous time system, our
discussion connected with Eqs. (4.20)—(4.23) and (4.25)-(4.26) applies to
maps in general, whether they arise via a surface of section or not. (As an

example of the latter, Problem 5 deals with the stability of a periodic orbit
of the Hénon map.)
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4.3 Stable and unstable manifolds

We define stable and unstable manifolds of steady states and periodic
orbits of smooth dynamical systems as follows. The stable manifold of a
steady state or periodic orbit is the set of points x such that the forward
orbit starting from x approaches the steady state or the closed curve
traced out by the periodic orbit. Similarly, the unstable manifold of a
steady state or periodic orbit is the set of points x such that the orbit going
backward in time starting from x approaches the steady state or the closed
curve traced out by the periodic orbit (this assumes invertibility if we are
dealing with a map). The existence and smoothness of these manifolds can
be proven under very general conditions. Furthermore, stable and
unstable manifolds, W* and W", of a steady state or periodic orbit, have
the same dimensionality as the linear subspace E® and E* and are tangent
to them,

dim(W*) = n,,
dim(W") = n,.

Figure 4.10 (a) illustrates the situation for a two-dimensional map witha
fixed point y that has one stable and one unstable direction. Figure 4.10(h)
applies for a situation where n, = 2 and n, = 1for a fixed point y of a flow
Also, in Figure 4.10(b), we show an orbit in W*(y) spiraling into the fixed
point y for the case where the two stable eigenvalues are complex
conjugates.

For specificity, in what follows we will only be considering the case of
periodic orbits of an invertible map where the orbit period is 1 (i.c., fixed
points of the map). We now show that stable manifolds cannot intersect
stable manifolds, and unstable manifolds cannot intersect unstable
manifolds. For the case of self-intersections of an unstable manifold, this
follows from the following considerations. Very near the fixed point y, say
within a distance ¢, the unstable manifold is a small section of an
n,-dimensional surface tangent to E". Call this small piece of the unstable
manifold W} (y). Since W} (y) lies close to the n,-dimensional plane E*, 1t
does not intersect itself. Now, continually mapping the small surface
W (y)forward in time, it expands in all its n, unstable directions filling out
the whole unstable manifold of y, W"(y). Since we assume the map is
invertible, two distinct points cannot be mapped to the same point. Thus,
W*(y) cannot intersect itself. Now consider two distinct fixed points 7,
and y, with unstable manifolds W"(y,) and W"(y,). These cannot
intersect each other because, if they did, then a backward orbit starting at
an intersection point would have to approach both y, and y, in the limit of
an infinite number of backwards iterates. However, y, # y,; so this s
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impossible. Hence there can be no intersections of unstable manifolds,
and, applying a similar argument, with the direction of time reversed,
there can be no intersection of stable manifolds.

We note, however, that stable and unstable manifolds can intersect
each other. In Figure 4.10(c) we show an intersection of stable and
unstable manifolds of a fixed point y of a two-dimensional map. This is

Figure 4.10 Stable and
unstable manifolds.

Wi ()

wh(y)
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called a homoclinic intersection. In Figure 4,10 (d ) we show intersections of
the stable and unstable manifolds of one fixed point y, with those of
another fixed point y,. This is called a heteroclinic intersection. The
complexity of these diagrams stems from the fact that, if a stable and
unstable manifold intersect once, then they must intersect an infinite
number of times. To see this, we have labeled one of the intersections Oin
Figure 4.10(c). Since Ois on W*(y)and W" (y)its subsequent iterates, both
forward and backward in time, must also be on W*(y) and W™ (y), because
W*(y) and W™ (y) are invariant sets by their construction. Thus intersec-
tion points map into intersection points. Iterating the point O forwardin
time, it approaches y along the stable manifold, successively mapping to
the points labeled 1, 2 and 3 in Figure 4.10(c). Iterating the point 0
backward in time, it approaches y along the unstable manifold, success
ively mapping to the points labeled —1, —2 and — 3. The complicated
nature of Figures 4.10(c) and (d) suggests complicated dynamics when
homoclinic or heteroclinic intersections @re present. Indeed this is so
Smale (1967) shows that a homoclinic intersection implies horseshoe type
dynamics for some sufficiently high iterate of the map. To see this consider
the homoclinic intersection for the fixed point y shown in Figure 4.11(a)
The manifolds W=(y) and W*(y) intersect at the point £. Choosing a smal
rectangle J about the point y and mapping it forward in time a sufficient
number of iterates g, we obtain M?+(J). Similarly mapping J backward
q_ iterates, we obtain the region M™7-(J) = S. (See Figure 4.11(b)). Thus
we have the picture shown in Figure 4.11(c) which shows that M?, where
q=4q, +q_, maps S to a horseshoe as in Figure 4.1. Hence, M’ 152
horseshoe map on the long thin rectangle S and has an invariant setin§
on which the dynamics is equivalent to a full shift on two symbols. We
note that, although we have drawn the shapes of W*(y) and W"() u
Figure 4.11(a) to make the horseshoe shape obvious (Figure 4.11(c)), the
result stated above and proved by Smale depends only on the existence of
a homoclinic intersection.? Furthermore, a similar result applies in the
heteroclinic case, Figure 4.10(d).

In Section 4.2 we have discussed the linearized mapy,,, = Ay, about
a fixed point X, and the splitting of the vector space in which y lies into
subspaces E®, E* and E° that are invariant under the matrix A. We call the
vectors y tangent vectors. We call the space in which they lie the tangen
space of the map at x = x_, and we denote this space T, .

We say the fixed point x is hyperbolic if there is no center subspace E*
That is, if all the magnitudes of the eigenvalues 4, are either greater than|
orlessthan 1,and n, + n,is the dimension of y. In this case, we say thatthe
tangent space T,, has a direct sum decomposition into E® and EY,
T.. = E*® E". That is, vectors in the space T, can be uniquely specified
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Figure 411 Construc-
tion of a horseshoe
from a homoclinic

intersection.

as the sum of two component vectors, one in the subspace E®* and one in
the subspace E*.

There is a notion of hyperbolicity not only for fixed points, but also for
more general invariant sets of a map. Such an invariant set might be, for
example, a strange attractor (the strange attractor of the generalized
baker’s map is hyperbolic), or it may not be an attractor (like the invariant
set of the horseshoe map).

We say that an invariant set X is hyperbolic if there is a direct sum
decomposition of T, into stable and unstable subspace T, = E; @ E; for
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Figure 4.12 Illustra-
tion of the stable
marifold.

all x in X, such that the splitting into E; and E, varies continuously withx
in X and is invariant in the sense that DM(E.") = Epy,,, and there are
some numbers K > 0 and 0 < p < 1 such that the following hold.

(a) If yis in E; then

(DM (x) -yl < Kp"[yl. (4.27)
(b) If y is in E, then

[DM™"(x)-yl < Kp"ly|. (4.27h)

Consider x as an initial condition. Conditions (a) and (b) basically say
that the orbit originating from another initial condition infinitesimally
displaced from x exponentially approaches the orbit, M"(x)} or exponen-
tially diverges from it if the infinitesimal displacement is in E; or E,,
respectively.

Hyperbolic invariant sets are mainly of interest because the property of
hyperbolicity allows many interesting mathematically rigorous results to
be obtained. Much of what is rigorously known about the structure and
dynamics of chaos is only known for cases which satisfy the hyperbolicity
conditions. (See, for example, the text by Guckenheimer and Holmes
(1983).) Some of these results are the following (some restrictions i
addition to hyperbolicity are also required for some of these statements)

(1) Stable and unstable manifolds at x in X, denoted W*(x) and W"(x),
can be locally defined. Two points on the same stable manifold, for
example, approach each other exponentially in time as illustrated in
Figure 4.12. Note that W**(x) is tangent to E;" at x.

(2) If small noise is added to a hyperbolic system with a chaotic attractor,
then a resulting noisy orbit perturbed from the chaotic attractor can
be ‘shadowed’ by a ‘true’ orbit of the noiseless system such that the

We(M(x)) =
Wi (x) MW (x)) W*(M? (x))

M(x")

M2 (x")
X M(x) M2(x)
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true orbit closely follows the noisy orbit (see Section 1.5 and Problem
2 of Chapter 2 for other discussions of shadowing).

(3) The dynamics on the invariant set can be represented via symbolic
dynamics as a full shift or a shift of finite type on a bi-infinite symbol
sequence (as illustrated in Figure 4.4).

(4) If the invariant hyperbolic set is an attractor, then a natural measure
(as defined in Chapter 2) exists.

(5) The invariant set and its dynamics are structurally stable in the sense
that small smooth perturbations of the map preserve the dynamics. In
particular, if m(x) is a smooth function of x, then there exists some
positive number ¢, such that the perturbed map, M(x) + em(x), can
be transformed to the original map M by a one to one change of
variables for all ¢ satisfying |¢| < &,. (This change of variables is
continuous but may not be differentiable.) In particular, in the range
le| < &4, the perturbed map and the original map have the same
number of periodic orbits for any period, and have the same symbolic
dynamics.

An example of chaotic attractors that are apparently not structurally
stable are those occurring for the logistic map x, ., = rx,(1 — x,). In this
case, we saw in Section 2.2 that r-values yielding attracting periodic orbits
are thought to be dense in r. Thus, for the case where r is such that there is
achaotic attractor, an arbitrarily small change of r (which can also be said
to produce an arbitrarily small change in the map) can completely change
the character of the attractor® (i.e., from chaotic to periodic).

As mentioned previously, the generalized baker’s map and the horse-
shoe map yield examples of hyperbolic sets. For the generalized baker’s
map, Eq. (3.7), the Jacobian matrix is

pM(x) =| =¥ O ] 4.28
(x) [ > Lo @.28)
where A, (y) = 4, or A, for y < awand y > «, respectively, and 4,(y) = a™*
or B~ for y < « and y > «, respectively. Since A,(y) <1 and 4,(y) > 1,
the unstable manifolds are vertical lines and the stable manifolds are
horizontal lines. Similar considerations apply for the horseshoe, where the
stable and unstable manifolds are also horizontal and vertical lines. (In
fact they are Cantor sets of horizontal and vertical lines whose intersection
is the invariant set.) Another example is the Anosov map,

Xoer | |1 1] x4
[y,.+1:|_|:1 2}[))"] modulo 1. (4.29)

Since x and y are taken modulo 1, they may be viewed as angle variables,
and this map is a map acting on the two-dimensional surface of a torus.
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Figure 4.13 The cat
map. Note the mixing
action of the map.

The coordinates specifying points on this surface are the two angles x and
y, one giving the location the long way around the torus, the other giving
the location the short way around the torus, as shown in Figure 4.13(a).
(Here one circuit around is signified by increasing the corresponding
angle variable by one, rather than by 27.) The map is continuous (i.e., two
points near each other on the toroidal surface are mapped to two other
points that are near each other) by virtue of the fact that the entries of the
matrix are integers (note the modulo 1 in (4.29)). This map is hyperbolc
and structurally stable. To see this, we note that, by virtue of the linearity
of (4.29), the Jacobian matrix DM(x) is the same as the matrix in (4.29)
specifying the map. The eigenvalues of the matrix (4.29) ar
Ay=0B+5/2>1 and i, =3 —./5)/2 < 1. Thus, there arc one
dimensional stable and unstable directions that are just the directions
parallel to the eigenvectors of the matrix which are (1,4, , — 1).

For typical initial conditions the map (4.29) generates orbits which
eventually come arbitrarily close to ady point on the toroidal surfac.
Furthermore, the typical orbit visits equal areas with equal frequency and
hence the natural invariant measure is uniform on the toroidal surface.
Note that this map is area preserving,

11
detl:1 2:|=1

The book by Arnold and Avez (1968) contains the illustration of the
action of the map (4.29) which we reproduce in Figure 4.13 (b). A picture

”\

(@) )
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of the face of a cat is shown on the surface before the map is applied.
Neglecting the modulo 1 operations, the square is mapped to a stretched
out parallelogram which is returned to the square when the modulo 1 1s
taken. Because of this picture, (4.29) has been called the ‘cat map.’

The map Eq. (3.17) considered by Sinai 1s a perturbation of Eq. (3.29)
(the perturbation is the term A cos (2ny, )). Thus, by the structural stability
of (4.29), if A is not too large, the attractor for (3.17) is also hyperbolic and
structurally stable (we do not know whether this is so for the value A = 0.1
used for the plot in Figure 3.6).

While hyperbolic sets are very convenient mathematically, it is
unfortunately the case that much of the chaotic phenomena seen in
systems occurring in practice is nonhyperbolic and apparently not
structurally stable. This seems to be the case for almost all practically
interesting chaotic attractors examined to date. On the other hand, in
cases of nonattracting chaotic sets, such as those arising in problems of
chaotic scattering and fractal basin boundaries (see Chapter 5) hyper-
bolicity seems to be fairly common. As an example of a nonhyperbolic
chaotic attractor we mention the Hénon attractor (Figure 1.12). The
reason why the Hénon attractor fails to be hyperbolic is that there are
points x on the attractor at which the stable and unstable manifolds W*(x)
and W"(r) are tangent. We can regard the attractor itself as being the
closure of the unstable manifold of points on the attractor.* Numenical
calculations of stable manifolds of the attractor reveal the structure shown
1n Figure 4.14, which, according to the discussion in the caption, shows
that there are tangencies of stable and unstable manifolds. We require for
hyperbolicity that E; @ E, span the tangent space at every point X on the
attractor. Since the tangents to W*(x) and W"(x) coincide for x at such
points, E; and E, cannot be defined at tangency points, and the Hénon
attractor is thus not hyperbolic.

4.4 Lyapunov exponents

Lyapunov exponents give a means of characterizing the stretching and
contracting characteristics of attractors and other invariant sets. First
consider the case of a map M. Let x, be an initial condition and x,
(n=0,1,2,...) the corresponding orbit. If we consider an infinitesimal
displacement from X, in the direction of a tangent vector y,, then the
evolution of the tangent vector, given by

Voe1 = DM(x,)"Y,, (4.30)

determines the evolution of the infinitesimal displacement of the orbit
from the unperturbed orbit x,. In particular, y,/|y,| gives the direction of



