Problem:

Starting from the expression

$$
F^{\mu \nu}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right)
$$

work out the transformation rules of the fields \vec{E}, \vec{B} under Lorentz-boost in the x direction. (or you could choose the z direction, as we discussed in class) Which components are invariant? Show that certain pairs of components transform as Lorentzian 2-vectors!

Solution:

The Lorentz transformation for speed v pointing in the x direction can be written as a concrete matrix

$$
\Lambda_{\nu}^{\mu}=\left(\begin{array}{cccc}
\cosh (\beta) & -\sinh (\beta) & & \tag{1}\\
-\sinh (\beta) & \cosh (\beta) & & \\
& & 1 & \\
& & & 1
\end{array}\right), \quad \tanh (\beta)=v
$$

The Lorentz transformation of the electro-magnetic field tensor is

$$
\begin{equation*}
F^{\prime \mu \nu}=\Lambda_{\delta}^{\mu} \Lambda_{\kappa}^{\nu} F^{\mu \kappa} \tag{2}
\end{equation*}
$$

As concrete matrices this can be written as

$$
\begin{equation*}
F^{\prime}=\Lambda F \tilde{\Lambda} \tag{3}
\end{equation*}
$$

So we need to multiply three matrices. After this is done, we obtain
$F^{\prime}=\left(\begin{array}{cccc}0 & -E_{x} & -\cosh (\beta) E_{y}+\sinh (\beta) B_{z} & -\cosh (\beta) E_{z}-\sinh (\beta) B_{y} \\ E_{x} & 0 & \cosh (\beta) B_{z}+\sinh (\beta) E_{y} & \cosh (\beta) B_{y}+\sinh (\beta) E_{z} \\ \cosh (\beta) E_{y}-\sinh (\beta) B_{z} & \cosh (\beta) B_{z}-\sinh (\beta) E_{y} & 0 & -B_{x} \\ \cosh (\beta) E_{z}+\sinh (\beta) B_{y} & -\cosh (\beta) B_{y}-\sinh (\beta) E_{z} & B_{x} & 0\end{array}\right)$

