A14

Two bricks (masses: m_{1} and m_{2}) are connected by a spring (strength: D). The Hamiltonian of the system is

$$
H=\frac{p_{1}^{2}}{2 m_{1}}+\frac{p_{2}^{2}}{2 m_{2}}+\frac{D}{2}\left(x_{2}-x_{1}\right)^{2} .
$$

Consider the following quantities:

$$
\begin{gathered}
P=p_{1}+p_{2} \\
F=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}-t \frac{p_{1}+p_{2}}{m_{1}+m_{2}}
\end{gathered}
$$

(a) By determining the $\{P, H\}$ Poisson bracket show that P is a conserved quantity.
(b) By determining the $\{F, H\}$ Poisson bracket show that F is a conserved quantity. Be careful, F depends explicitly on time (Include also the partial time derivative into the total time derivative of F).

A15

The Hamiltonian of a system with two degrees of freedom reads

$$
\begin{equation*}
H=q_{1} p_{1}-q_{2} p_{2}-A q_{1}^{2}+B q_{2}^{2} \tag{1}
\end{equation*}
$$

where A and B are real parameters.
(a) Write down the equations of motion (Hamilton's canonical equations) for the system..
(b) Consider the following quantities:

$$
\begin{equation*}
F_{1}=\frac{p_{1}-A q_{1}}{q_{2}} \quad F_{2}=q_{1} q_{2} \tag{2}
\end{equation*}
$$

Calculate the Poisson brackets $\left\{F_{1}, H\right\}$ and $\left\{F_{2}, H\right\}$. Show that both quantities are constants of motion.
(c) Calculate the Poisson bracket $\left\{F_{1}, F_{2}\right\}$. Let $F_{3}=\left\{F_{1}, F_{2}\right\}$. Is it a constant of motion?

B11

Consider the two dimensional harmonic oscillator, given by the Hamiltonian:

$$
H=\frac{1}{2 m}\left(p_{1}^{2}+p_{2}^{2}\right)+\frac{1}{2} m \omega^{2}\left(x_{1}^{2}+x_{2}^{2}\right) .
$$

Let us construct the 2×2 matrix $A_{j k}$ through

$$
A_{j k}=\frac{1}{2}\left(\frac{1}{m} p_{i} p_{j}+m \omega^{2} x_{i} x_{j}\right)
$$

Show that the $A_{j k}$ matrix elements are conserved quantities. Solution:
We again use the trivial rules that $\left\{p_{i}, p_{j}\right\}=\left\{x_{i}, x_{j}\right\}=0,\left\{x_{i}, p_{j}\right\}=\delta_{i j}$. So in general the first term in $A_{i j}$

$$
\begin{align*}
& \frac{1}{2 m}\left\{p_{i} p_{j}, H\right\}=\frac{\omega^{2}}{4}\left\{p_{i} p_{j}, x_{1}^{2}+x_{2}^{2}\right\}=\frac{\omega^{2}}{2}\left(x_{1}\left\{p_{i} p_{j}, x_{1}\right\}+x_{2}\left\{p_{i} p_{j}, x_{2}\right\}\right) \\
& =\frac{\omega^{2}}{2}\left(x_{1} p_{i}\left\{p_{j}, x_{1}\right\}+x_{2} p_{i}\left\{p_{j}, x_{2}\right\}+x_{1} p_{j}\left\{p_{i}, x_{1}\right\}+x_{2} p_{j}\left\{p_{i}, x_{2}\right\}\right) \tag{3}\\
& =-\frac{\omega^{2}}{2}\left(x_{1} p_{i} \delta_{j 2}+x_{1} p_{j} \delta_{i 2}+x_{2} p_{i} \delta_{j 1}+x_{2} p_{j} \delta_{i 1}\right)
\end{align*}
$$

Now for the second term we have

$$
\begin{align*}
& \frac{\omega^{2}}{4}\left\{x_{i} x_{j}, p_{1}^{2}+p_{2}^{2}\right\}=\frac{\omega^{2}}{2}\left(2 p_{1}\left\{x_{i} x_{j}, p_{1}\right\}+2 p_{2}\left\{x_{i} x_{j}, p_{2}\right\}\right) \\
& =\frac{\omega^{2}}{2}\left(2 p_{1} x_{i}\left\{x_{j}, p_{1}\right\}+2 p_{1} x_{j}\left\{x_{i}, p_{1}\right\}+2 p_{2} x_{i}\left\{x_{j}, p_{2}\right\}+2 p_{2} x_{j}\left\{x_{i}, p_{2}\right\}\right)=\frac{\omega^{2}}{2}\left(x_{1} p_{i} \delta_{j 2}+x_{1} p_{j} \delta_{i 2}+x_{2} p_{i} \delta_{j 1}+x_{2} p_{j} \delta_{i 1}\right) \tag{4}
\end{align*}
$$

which is exactly the same as the first term but with different sign, giving in total a zero Poisson bracket!

B12

Consider again the two dimensional harmonic oscillator as defined in the previous exercise. In particular let us construct the following linear combinations of the $A_{j k}$ matrix elements:

$$
S_{1}=\frac{A_{12}}{\omega} \quad S_{2}=\frac{A_{22}-A_{11}}{2 \omega} \quad S_{3}=\frac{L}{2}=\frac{1}{2}\left(x p_{y}-y p_{x}\right) .
$$

(a) Show that the Poisson brackets of the S_{i} quantities are

$$
\left\{S_{1}, S_{2}\right\}=S_{3}, \quad\left\{S_{3}, S_{1}\right\}=S_{2}, \quad\left\{S_{2}, S_{3}\right\}=S_{1}
$$

(b) Show that $H^{2}=4 \omega^{2}\left(S_{1}^{2}+S_{2}^{2}+S_{3}^{2}\right)$.

