A20

A cilinder having moment of inertia Θ can easily rotate around a fixed axis. The Hamiltonian of the system is

$$
\begin{equation*}
H\left(\phi, p_{\phi}\right)=\frac{p_{\phi}^{2}}{2 \Theta} \tag{1}
\end{equation*}
$$

(a) Write down the Hamilton-Jacobi equation for the system.
(b) Following the usual separation $S(\phi, t)=S_{0}(\phi)-E t$ write down the abbreviated Hamilton Jacobi equation for S_{0}.
(c) Solve the abbreviated equation, i.e. express the solution $S_{0}(\phi, E)$.
(d) At $t=0$ the cilinder is in the position $\phi=0$, and has angular momentum $p_{\phi}=L$. Using this information determine the values of the constants of motion E and $\beta_{E}=\frac{\partial S}{\partial E}$.
(e) From the results of d.) determine the $\phi(t)$ solution of the equations of motion.

A21

The Hamiltonian of a free particle in special relativity is

$$
\begin{equation*}
H(x, p)=\sqrt{m^{2} c^{4}+p^{2} c^{2}} \tag{2}
\end{equation*}
$$

(a) Write down the Hamilton-Jacobi equation for the system.
(b) Following the usual separation of time, by introducing the constant E, write down the abbreviated Hamilton-Jacobi equation.
(c) Solve the abbreviated equation. Determine also the solution of the full Hamilton-Jacobi equation.
(d) Determine β_{E}, which is the canonical pair of E.

Solution:

Hamilton-Jacobi with the the Hamiltonain with the help of the genreating function is expressed as

$$
\begin{equation*}
H\left(x, \frac{\partial S}{\partial x}\right)=\sqrt{m^{2} c^{4}+c^{2}\left(\frac{\partial S}{\partial x}\right)^{2}} \tag{3}
\end{equation*}
$$

So the equation takes the form

$$
\begin{equation*}
\sqrt{m^{2} c^{4}+c^{2}\left(\frac{\partial S}{\partial x}\right)^{2}}+\frac{\partial S}{\partial t}=0 \tag{4}
\end{equation*}
$$

again looking for S in terms of $S=S_{x}(x)-E t$

$$
\begin{equation*}
\sqrt{m^{2} c^{4}+c^{2}\left(\frac{\partial S}{\partial x}\right)^{2}}=E \tag{5}
\end{equation*}
$$

From here

$$
\begin{equation*}
\frac{\partial S}{\partial x}=\frac{1}{c} \sqrt{E^{2}-m^{2} c^{4}} \rightarrow S=\frac{1}{c} \sqrt{E^{2}-m^{2} c^{4}} x-E t \tag{6}
\end{equation*}
$$

Now let us introduce for the new canonical and conserved momentum $\alpha=E$. Suppose initially the particle travels with momentum p_{0} starting from position x_{0}, then

$$
\begin{equation*}
\partial_{x} S_{x}=\frac{1}{c} \sqrt{E^{2}-m^{2} c^{4}}=\frac{1}{c} \sqrt{\alpha^{2}-m^{2} c^{4}} \tag{7}
\end{equation*}
$$

as already obtained above, as the derivative of the action is independent of the coordinate. Now for new coordinate we have

$$
\begin{equation*}
\beta=\frac{\partial S}{\partial \alpha}=-t+\frac{1}{c} \frac{\alpha}{\sqrt{\alpha^{2}-m^{2} c^{4}}} x=\frac{1}{c} \frac{\alpha}{\sqrt{\alpha^{2}-m^{2} c^{4}}} x_{0} \rightarrow x(t)=\frac{\sqrt{\alpha^{2}-m^{2} c^{4}}}{\alpha} c t+x_{0} . \tag{8}
\end{equation*}
$$

A22

A particle of mass m can move along the x axis while a $V(x)=k|x|$ potential is also present. The Hamiltonian of the system is

$$
H=\frac{p^{2}}{2 m}+k|x| .
$$

Our goal is to determine the the period T of the oscillations as a function of the energy of the particle.
(a) Knowing the energy E of the particle, determine amplitude of the oscillations, i.e. $x_{\max }(E)$.
(b) Determine the particles momentum as a function of its position and energy, $p(x, E)$.
(c) For a fixed value E draw the contour line of $H(p, x)$ in the $p-x$ phase plane.
(d) By calculating the "phase-area" surrounded by the contour line determine the action variable as a function of energy $I(E)$. We know that $\int_{-1}^{1} d x \sqrt{1-|x|}=\frac{4}{3}$.
(e) Determine the period of the oscillation as a function of the energy.

A23

A charged particle can move in the $x-y$ plane in the presence of a magnetic field parallel to the z axis. A possible Hamiltonian of the system is

$$
\begin{equation*}
H=\frac{p_{x}^{2}}{2 m}+\frac{1}{2 m}\left(p_{y}-e B x\right)^{2} . \tag{9}
\end{equation*}
$$

(a) Write down the Hamilton-Jacobi equation of the system.
(b) Apply the separation $S(x, y, t)=S_{0}(x, y, E)-E t$ and write down the differential equation for S_{0}.
(c) Separate further as $S_{0}(x, y, E)=S_{y}(x, E, \alpha)+S_{y}(y, E, \alpha)$ and substitute this form into the Hamilton-Jacobi equation of S_{0}.
(d) All the y dependences are encoded only in the $\frac{\partial S_{y}}{\partial y}$. Choose therefore the constant solution of $\frac{\partial S_{y}}{\partial y}=\alpha$.
(e) Write down then the equation for $S_{x}(x, y, E, t)$ and solve it!

Solution:

Hamilton-Jacobi with $p_{x, y}=\partial_{x, y} S$:

$$
\begin{equation*}
\frac{\left(\partial_{x} S\right)^{2}}{2 m}+\frac{1}{2 m}\left(\partial_{y} S-e B x\right)^{2}+\partial_{t} S=0 \tag{10}
\end{equation*}
$$

Again separating the generator as $S(x, y, E, \alpha, t)=S_{x}(x, E, \alpha)+S_{y}(y, E, \alpha)-E t$ we have

$$
\begin{equation*}
\frac{\left(\partial_{x} S_{x}\right)^{2}}{2 m}+\frac{1}{2 m}\left(\partial_{y} S_{y}-e B x\right)^{2}=E \tag{11}
\end{equation*}
$$

Now as only $\partial_{y} S_{y}$ dependson y it will be a constatn, $\partial_{y} S_{y}=\alpha$, rewriting the equation we get

$$
\begin{equation*}
\frac{\left(\partial_{x} S_{x}\right)^{2}}{2 m}+\frac{1}{2 m}(\alpha-e B x)^{2}=E \tag{12}
\end{equation*}
$$

fro mhere expressing $\partial_{x} S_{x}$ we get

$$
\begin{align*}
& \partial_{x} S_{x}=\sqrt{2 m E-(\alpha-e B x)^{2}} \rightarrow S_{x}=\sqrt{2 m E} \int \mathrm{~d} x \sqrt{1-\left(\frac{\alpha}{\sqrt{2 m E}}-\frac{e B x}{\sqrt{2 m E}}\right)^{2}} \\
& =\frac{m E}{e B}\left(\left(\frac{\alpha}{\sqrt{2 m E}}-\frac{e B x}{\sqrt{2 m E}}\right) \sqrt{1-\left(\frac{\alpha}{\sqrt{2 m E}}-\frac{e B x}{\sqrt{2 m E}}\right)^{2}}+\arcsin \left(\frac{\alpha}{\sqrt{2 m E}}-\frac{e B x}{\sqrt{2 m E}}\right)\right) \tag{13}
\end{align*}
$$

now supposing to start initially with momentum $p_{x}(0)=p_{0}$ and $p_{y}(0)=0$ and positions $x_{0}=y_{0}=0$, we can write that

$$
\begin{equation*}
\partial_{x} S_{x}=p_{0}=\sqrt{2 m E-\left(\alpha-e B x_{0}\right)^{2}} \rightarrow \alpha=\sqrt{2 m E-p_{0}^{2}} \tag{14}
\end{equation*}
$$

Now the time-evolution of the coordinates can obtained again by the initial conditions

$$
\begin{equation*}
\partial_{E} S=\text { const. }=\left.\beta_{E} \equiv \partial_{E} S\right|_{t=0}, \quad \partial_{\alpha} S=\text { const. }=\left.\beta_{\alpha} \equiv \partial_{\alpha} S\right|_{t=0} \tag{15}
\end{equation*}
$$

fro which knwoing the initial conditions one can trae back the time-evolution of the coordinates!

B19

A particle can move along the x axis. An external force that increases linearly in time acts on the particle, therefore the Hamiltonian of the system is

$$
\begin{equation*}
H(x, p)=\frac{p^{2}}{2 m}-A x t \tag{16}
\end{equation*}
$$

(a) Write down the Hamilton-Jacobi equation for the system.
(b) The Hamilton function depends explicitly on time, therefore we cannot follow the usual separation technique. Try the following form instead:

$$
\begin{equation*}
S(x, t)=F(t) x+G(t) \tag{17}
\end{equation*}
$$

Substitute this to the Hamilton-Jacobi equation.
(c) Collect the terms according to the powers of x.
(d) In order to find a solution to the equation, both the first order and zero'th order terms in x must be zero. Use this to determine the functions $F(t)$ and $G(t)$. If your calculation is correct, an integration constant appears. Denote it by α.
(e) Write down the solution $S(x, \alpha, t)$. At $t=0$ the particle is at $x_{0}=0$ and has momentum $p_{0}=0$. Using this information determine the value of α.
(f) According to the Hamilton-Jacobi theory, $\beta=\frac{\partial S}{\partial \alpha}$ is also a constant of motion. Express its value using the initial conditions.
(g) Use the equation for β to determine the $x(t)$ solution of the equation of motion.

B20

In class we considered the particle in gravitational field. The Hamiltonian is

$$
\begin{equation*}
H(x, p)=\frac{p^{2}}{2 m}+m g x \tag{18}
\end{equation*}
$$

In the usual Hamilton-Jacobi approach we search a 2nd type generator function $S(x, \alpha, t)$ that makes the new Hamiltonian zero. Then we exploit the fact that the new momentum α is a constant of motion. However, this is not the only possible choice.

In this problem we consider a 3rd type generator function $S(p, \alpha)$. In this case $x=-\frac{\partial S}{\partial p}$.
(a) Write down the Hamilton-Jacobi equation.
(b) Separate the time using $S(p, E, t)=S_{0}(p, E)-E t$. Write down the abbreviated Hamilton-Jacobi equation for S_{0}.
(c) Solve the equation, and express the function $S_{0}(p, E)$.
(d) At the moment $t=0$ the particle starts from the position $x=0$ having momentum p_{0}. Express the value of the constant E.
(e) The quantity $\beta=\frac{\partial S}{\partial E}$ is also a constant of motion. Express its value using the initial conditions.
(f) Determine the $x(t)$ function.

