
Practical Course in Mechanics 2 Class 8 (30.03.2021)

Problem 1

The change of physical quantities in time characterized by their total time derivatives/substantial deriva-
tives describe both their motion in the phase space spanned by the coordiante and momentum and their
explicit time-evolutions. When written out the partial derivatives with respect to the coordinate and
momentum unavoidably the Hamiltonian gets involved, leading us to the so called Poisson bracket of the
physical quantity and the Hamiltonian.

(a) Repeat the steps at class to arrive at the Poissonian brackets expressing the total time derivative
of an F (r,p) function representing a physical quantity.

(b) Derive the Poissonian bracket of the x, y, z coordinates and px, py, pz momenta.

(c) Show that rotation around the z axis does not change the result obtained for the Poisson brackets.

Solution:

(a) Note that for sake of simplicity we have chosen F such that it does not have explicit time depen-
dence, ∂tF = 0, so the its total time derivative by definition for the time being in one dimension
with x and p:

d

dt
F =

∂F

∂x
ẋ+

∂F

∂p
ṗ+ ∂tF =

∂F

∂x

∂H

∂p
− ∂F

∂p

∂H

∂x
≡{F,H} (1)

where in the last step we used the Hamiltonian equations of motion, ẋ = ∂H
∂p , ṗ = −∂H

∂x . Now in

the general three dimensional case we have for the total derivative ∂F
∂r ṙ = ∂F

∂r
∂H
∂p ,

∂F
∂p ṗ = −∂F

∂p
∂H
∂r ,

understood as the scalar product of two gradient vectors, which gives in total:

d

dt
F =

∂F

∂r
ṙ +

∂F

∂p
ṗ =

∂F

∂r

∂H

∂p
− ∂F

∂p

∂H

∂r
≡{F,H} (2)

Poisson brackets are linear in tis arguments, that is {F1 + F2, G} = {F1, G} +{F2, G} as a conse-
quence of the linearity of differentiation.

(b) Now the Poisson brackets for the coordinates and momenta

{x, p} =
∂x

∂x

∂p

∂p
− ∂x

∂p

∂p

∂x
= 1 (3)

as x and p are independent variables and so the partial derivatives, ∂p
∂x = ∂x

∂p = 0 disappear! More
generally for three component coordinates and momenta we have with summation over repeated
indices:

{ri, pj} =
∂ri
∂rk

∂pj
∂pk
− ∂ri
∂pk

∂pj
∂rk

= δikδjk = δij (4)

as now also different coordinate and momentum variables are independent, ∂ri
∂rk

= ∂pi

∂pk
= δik

(c) Perform a rotation around the z axis with angle ϕ and arrive at the new coordinates and momenta

x′ = x cosϕ+ y sinϕ (5)

y′ = −x sinϕ+ y cosϕ (6)

z′ = z (7)

and similar relations for p′x, p
′
y, p

′
z. Now

{x′, p′x} = cos2 ϕ{x, px}+ sin2 ϕ{y, py}+ 2 sinϕ cosϕ({x, py}+{y, px}) = cos2 ϕ+ sin2 ϕ = 1 (8){
y′, p′y

}
= cos2 ϕ{x, px}+ sin2 ϕ{y, py} − 2 sinϕ cosϕ({x, py}+{y, px}) = cos2 ϕ+ sin2 ϕ = 1 (9)

{z′, p′z} ={z, pz} = 1 (10){
x′, p′y

}
= − sinϕ cosϕ{x, px}+ sinϕ cosϕ{y, py} − sin2 ϕ{y, px}+ cos2 ϕ{x, py} = 0 (11)

{x′, p′z} = cosϕ{x, pz}+ sinϕ{y, pz} = 0 (12)

{y′, p′z} = − sinϕ{x, pz}+ cosϕ{y, pz} = 0 (13)

(14)

where we used the linearity of the Poisson brackets, {F1 + F2, G} ={F2, G}+{F1, G}.
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Problem 2

Consider a particle in a central potential. The Hamiltonian of the system is:

H =
p2

2m
+ V (r) (15)

(a) Write down the components of the angular momentum (Lx, Ly and Lz) using the canonical mo-
mentum p and the position r.

(b) Show that the Poisson brackets for product of functions work in the same way as differentiation!

(c) Determine the Poisson brackets {Lx, x}, {Lx, y} , {Lx, px} and {Lx, py}.

(d) Generalize the results of b.), so determine the Poisson brackets {Li, rj} and {Li, pj} for any i, j
indices.

(e) Determine the Poisson bracktes {Li, Lj}.

(f) Determine the Poisson brackets {Li, H} for any value of i. What does this tell about the angular
momentum?

(g) As an extra exercise give the Poisson bracket
{
xn, pk

}
with n, k ∈ Z!

Solution:

(a) The ith component is easily expressed as

Li = εijkxjpk (16)

Lx = ypz − zpy (17)

Ly = zpx − xpz (18)

Lz = xpy − ypx (19)

(b) Poisson bracket for product of functions:

{F1F2, G} =
∂

∂r
(F1F2)

∂G

∂p
− ∂

∂p
(F1F2)

∂G

∂r
= F1

∂F2

∂r

∂G

∂p
− F1

∂F2

∂p

∂G

∂r
+ F2

∂F1

∂r

∂G

∂p
− F2

∂F1

∂p

∂G

∂r

≡ F1{F2, G}+ F2{F1, G} ,
(20)

indeed behaving in an analogous way as the derivative of product of functions.

(c) Poisson bracket for two quantities A(r,p), B(r,p)

{A,B} =
∂A

∂r

∂B

∂p
− ∂B

∂r

∂A

∂p
. (21)

For the angular momentum components we have:

{Lx, x} = {ypz − zpy, x} = 0 (22)

{Lx, y} = {ypz − zpy, y} =
∂zpy
∂py

∂y

∂y
= z (23)

{Lx, px} = {ypz − zpy, px} = 0 (24)

{Lx, py} = {ypz − zpy, py} =
∂ypz
∂y

∂py
∂py

= pz (25)

(26)

(d) Generalizing the above result for arbitrary xj and Li exploiting the property that {xj , pi} = δij

{Li, xj} = {εiklxkpl, xj} = εikl

[
∂(xkpl)

∂xa

∂xj
∂pa
− ∂(xkpl)

∂pa

∂xj
∂xa

]
= −εiklδjaδlaxk = εijkxk. (27)
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Similarly one can handle the Poisson bracket with the angular momenta and momenta:

{Li, pj} = εikl

[
∂(xkpl)

∂xa

∂pj
∂pa
− ∂(xkpl)

∂pa

∂pj
∂xa

]
= εiklδjaδkapl = εijkpk. (28)

A much more simple derivation is provided using the product rules:

{Li, xj} = εikl {xkpl, xj} = εiklxk {pl, xj}+ εiklpl {xk, xj} = −εiklδljxk = εijkxk (29)

and also for the other bracket:

{Li, pj} = εikl {xkpl, pj} = εiklxk {pl, pj}+ εiklpl {xk, pj} = εiklδkjpl = εijlpl (30)

(e) Now a little bit trickier: {Li, Lj}:

εiklεjmn {xkpl, xmpn} = εiklεjmn

[
∂

∂xa
(xkpl)

∂

∂pa
(xmpn)− ∂

∂pa
(xkpl)

∂

∂xa
(xmpn)

]
= εiklεjmn [δakplδnaxm − δalxkδmapn] = [εiklεjmkplxm − εiklεjlnxkpn]

= [(δljδim − δlmδij)plxm − (δinδkj − δijδkn)xkpn] = pjxi − xmpmδij − xjpi + δijxnpn

= pjxi − xjpi ≡ εijkεklmxlpm ≡ εijkLk

(31)

(f) Now we need to calculate two Poisson brackets, namely

{Li, pjpj} = 2pj {Li, pj} 2pjεijkpk = 2(p× p)i = 0 (32)

and the second one, where we use that ∂V (r)
∂xa

= ∂V
∂r

xa

r and ∂V
∂pa

= 0, as the potential does not
depend on pa:

{Li, V (r)} = −εijk
∂

∂pa
(xjpk)

∂V

∂xa
= −εijkδkaxj

xa
r

∂V

∂r
=

1

r

∂V

∂r
(r× r)k = 0. (33)

So in total we have that
d

dt
Li ≡ {Li, H} = 0 (34)

as we expected. Indeed for central potentials angular momentum is conserved!

(g) First let us calcualte {xn, p}:

{xn, p} =
{
xxn−1, pk

}
= x

{
xn−1, p

}
+ xn−1 = xn−1 + x2

{
xn−2, p

}
+ xn−1 = . . .

· · · = (n− 1)xn−1 + xn−1{x, p} = nxn−1.
(35)

Now knowing this we can express the general expression as{
xn, pk

}
= p

{
xn, pk−1

}
+ pk−1{xn, p} = p

{
xn, pk−1

}
+ nxn−1

= (p+ 1)nxn−1 + p2
{
xn, pk−2

}
= · · · = (1 + p+ · · ·+ pk−1)nxn−1 =

1− pk

1− p
nxn−1.

(36)

Problem 3

Introduce in two dimensions polar coordinates according to the usual relations:

x = r cosϕ, (37)

y = r sinϕ (38)

and the associated momentum in case of the Lagrangian L = 1
2m(ṙ2+r2ϕ̇2)−U(r) with central potential

U(r) depending only on the radial variable.

(a) Find the associated radial and tangent momenta!

(b) Derive the results for the Poisson brackets for the canonical coordiantes and momenta!
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(c) Consider a pendulum and derive its equation of motion using Poisson brackets!

Solution:

(a) The associated momenta are pϕ = ∂L
∂ϕ̇ = mr2ϕ̇, pr = ∂L

∂ṙ = mṙ.

(b) Now as pϕ, pr, r, ϕ are the canonical coordinates and momenta Poisson brackets are defiend with
the help of them as well.

{r, pr} =
∂r

∂r

∂pr
∂pr

+
∂r

∂ϕ

∂pr
∂pϕ

− ∂r

∂pr

∂pr
∂r
− ∂r

∂pϕ

∂pr
∂ϕ

= 1 (39)

{r, pϕ} =
∂r

∂r

∂pϕ
∂pr

+
∂r

∂ϕ

∂pϕ
∂pϕ

− ∂r

∂pr

∂pϕ
∂r
− ∂r

∂pϕ

∂pϕ
∂ϕ

= 0 (40)

{ϕ, pr} =
∂ϕ

∂r

∂pr
∂pr

+
∂ϕ

∂ϕ

∂pr
∂pϕ

− ∂ϕ

∂pr

∂pr
∂r
− ∂ϕ

∂pϕ

∂pr
∂ϕ

= 0 (41)

as all derivatives with different variables give zero because they are considered now independent
ones ∂r

∂pr
= ∂r

∂pϕ
= ∂r

∂ϕ = 0 and similar relations hold for {pϕ, pr} ={ϕ, r} = 0.

(c) Consider an ordinary penulum with length l and derive the equations of motion for it. The
corresponding Lagrangian L = 1

2ml
2ϕ̇2−mgl cosϕ and this system has only one degree of freedom,

ϕ and the associated momentum is pϕ = ∂L
∂ϕ̇ = ml2ϕ̇ and Hamiltonian H = ϕ̇pϕ − L =

p2
ϕ

2ml2 +
mgl cosϕ. Now the Poisson brackets for ϕ and pϕ give

ϕ̇ ={ϕ,H} =
∂ϕ

∂ϕ

∂H

∂pϕ
− ∂ϕ

∂pϕ

∂H

∂ϕ
=
∂H

∂pϕ
=

pϕ
ml2

, (42)

ṗϕ ={pϕ, H} =
∂pϕ
∂ϕ

∂H

∂pϕ
− ∂pϕ
∂pϕ

∂H

∂ϕ
= −∂H

∂ϕ
= mgl sinϕ⇒ ϕ̈ =

mg

l
sinϕ. (43)

Problem 4

Consider a harmonic oscillator with the Hamiltonian H = p2

2m + 1
2mω

2x2 in one dimension and a solution
of x(t) = cos(ωt+ ϕ). The goal of this exercise is to check explicitly the kinetic energy of the system.

(a) Write out the kinetic energy’s time derivative using Poisson brackets!

(b) Express it via the known form of x(t).

(c) Express the total energy of the system as a function of time!

(d) Repeat the exercise for an anharmonic oscillator with H = p2

2m + 1
2mω

2x2 + αx4

Soltuion:

(a) Using Poisson brackets we have for the K = p2

2m kinetic energy, exploiting that ∂K
∂p = p

m ,
∂K
∂x = 0

and ∂H
∂x = −ṗ, ∂H

∂p = ẋ

K̇ ={K,H} =
∂K

∂x

∂H

∂p
− ∂K

∂p

∂H

∂x
= −∂K

∂p

∂H

∂x
=

p

m
ṗ. (44)

Now we still need the expression for p

ṗ ={p,H} = −∂p
∂p

∂H

∂x
= −mω2x = −mω2 cos(ωt+ ϕ)⇒ p = −mω sin(ωt+ ϕ) (45)

(b) Now substituing that p = mẋ = −mω sin(ωt+ ϕ) we get

K̇ = mω3 sin(2ωt+ 2ϕ)⇒ K =
1

2
mω2 sin2(ωt+ ϕ) (46)
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(c) The total energy is then simply

E =
1

2
mω2 sin2(ωt+ ϕ) +

1

2
mω2 cos2(ωt+ ϕ) =

1

2
mω2 (47)

(d) Now for the anharmonic oscillator the only modifications are that ∂H
∂x = mωx + 4αx3 and so the

time derivative of K becomes

K̇ = − p

m

∂H

∂x
= −ω2px− 4αpx3/m (48)

Again calculating the derivative of the momentum:

ṗ ={p,H} = −∂p
∂p

∂H

∂x
= −mω2x− 4αx3 = −mω2 cos(ωt+ ϕ)− 4α cos3(ωt+ ϕ)

⇒ p = −mω sin(ωt+ ϕ)− 4α

ω
sin(ωt+ ϕ) +

4α

3ω
sin3(ωt+ ϕ)

(49)

Problem 5

Consider two particles connected by a spring moving in one dimension, whose Lagrangian is given
by L = 1

2mẋ
2
1 + 1

2mẋ
2
2 − D(x1 − x2)2. Prove that the total momentum is conserved. Solution:

First we give the Hamiltonian by p1 = ∂L
∂ẋ1

= mẋ1, p2 = ∂L
∂ẋ2

= mẋ2. From here the Hamiltonian

H = ẋ1p1 + ẋ1p1 − L =
p2
1

2m +
p2
2

2m +D(x1 − x2)2

We show that the Poissonian bracket of p1 + p2 is zero:

Ṗ ≡ ṗ1 + ṗ2 ={p1 + p2, H} =
∂(p1 + p2)

∂x1

∂H

∂p1
+
∂(p1 + p2)

∂x2

∂H

∂p2
− ∂(p1 + p2)

∂p1

∂H

∂x1
− ∂(p1 + p2)

∂p2

∂H

∂x2

= − ∂H
∂x1
− ∂H

∂x2
= D(x1 − x2)−D(x1 − x2) = 0,

(50)

indeed!
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