
Practical Course in Mechanics 2 Class 3 (02.03.2021)

Problem 1

Consider the one-parameter subgroup of Lorentz transformations that containes the boosts in the x
direction. In that case one can simply forget the y and z coodinates because these are not transformed.
Consequently it is sufficient to consider only the top left 2×2 block of the Lorentz matrix. In the lecture
it was shown that in this special case, the Lorentz matrix can be parametrized as

Λ(θ) =

(
cosh(θ) − sinh(θ)
− sinh(θ) cosh(θ)

)
(1)

(a) What is the connection between the parameter θ (the rapidity) and the velocity v of the boost?

(b) Show that the above transformation has the following property

Λ(θ1)Λ(θ2) = Λ(θ1 + θ2) (2)

(c) By the use of this property, derive the “rule of addition” for relativistic velocities. What is the
meaning of this formula?

(d) Two relativisticly fast cars are traveling by 0.8c towards each other. According to one of the drivers,
what is the velocity of the other car?

Solution:

(a) By construction

Λµ·ν =

 1√
1−v2/c2

−v/c√
1−v2/c2

−v/c√
1−v2/c2

1√
1−v2/c2

 (3)

from where cosh θ = 1√
1−v2/c2

, sinh θ = v/c√
1−v2/c2

⇒ tanh θ = v/c⇒ θ = atanh (v/c)

(b) Multiplication of two matrices:

Λ(θ1)Λ(θ2) =

(
cosh θ1 − sinh θ1
− sinh θ1 cosh θ1

)(
cosh θ2 − sinh θ2
− sinh θ2 cosh θ2

)
=

(
cosh θ1 cosh θ2 + sinh θ1 sinh θ2 − cosh θ1 sinh θ2 − sinh θ1 cosh θ2
− cosh θ1 sinh θ2 − sinh θ1 cosh θ2 cosh θ1 cosh θ2 + sinh θ1 sinh θ2

)
=(

cosh(θ1 + θ2) − sinh(θ1 + θ2)
− sinh(θ1 + θ2) cosh(θ1 + θ2)

)
= Λ(θ1 + θ2).

(4)

(c) Addition of velocities by Galilei transformation is simply vtot = v1 + v2. But now consider a
moving frame with velocity V and in the moving frame an object with velocity v (so the object’s
velocity is measured to be v from the frame moving with V ), again in Galilei’s picture the total
velocity of the object in the rest frame would again yield vtot = v + V , but according to the
above discussion we need to transform into first the moving frame and then to the frame of the
object with tanh θ1 = v/c and tanh θ2 = V/c giving a total Lorentz matrix with θ1 + θ2 ⇒ vtot =
c tanh(θ1 + θ2) = c tanh θ1+tanh θ2

1+tanh θ1 tanh θ2
≡ v+V

1+ vV
c2

< v+ V and this always equals c if one of the velocities

are the speed of light!

(d) In the driver’s frame the rest/road’s frame moves with velocity v2 = 0.8c and above that in the
rest/road’s frame the other car moves with velocity v2 = 0.8c. So again we first need to transform
into the frame of the road (originally the rest frame) and then inside the moving frame of the road
into the moving frame of the other car (which is moving with velocity v in the road’s/ moving
frame). So we have rapidities θ1 = θ2 = atanh(0.8)⇒ θ̃ = 2atanh(0.8)⇒ ṽ ≈ 0.975c.

Problem 2

In the lecture the 4-velocity vector uµ = dxµ

dτ has been introduced, and it has been shown that this is a
proper 4-vector.
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(a) Write down the connection between the 4-velocity and the usual (3-)velocity vector.

(b) Let’s suppose, that watching the sky, we see two spacecrafts that are flying towards each other,
and both have velocity 0.6c. We use a coordinate system, where the trajectories of the spacecrafts
lie on the x-axis.

Determine the 4-velocities of the spacecrafts.

(c) Write down a Lorentz-transformation that transforms into the frame of one of the spacecrafts.

(d) Express the 4-velocities of the spacecrafts in that frame of reference.

(e) What is the usual 3-velocity of the spacecrafts in that frame?

Let suppose now, that – as we see from the Earth – the two spacecrafts travel in perpendicular directions,
x and y.

(f) Determine the modified 4-velocities of the spacecrafts

(g) Transform to the frame of the spacecraft travelling in the x direction. What is the 4-velocity of
the other spacecraft in this frame?

(h) What is the usual 3-velocity of the other spacecraft in this frame?

Solution:

(a) Four velcoity is defined as the change in position, but with respect to the proper time, implying
that usual time derivative is multiplied by the familiar contraction factor dτ = dt

√
1− v2/c2.

uµ =
xµ

dτ
=



c√
1−v2/c2
dx1/dt√
1−v2/c2
dx2/dt√
1−v2/c2
dx3/dt√
1−v2/c2

 =
1√

1− v2/c2

(
c
v

)
(5)

with v denoting the usual 3 velocity, derivative with respect to time, v = dx
dt . The four velocity

Minkowski length is Lorentz invariant, as uµuµ = 1
1−v2/c2 (c2 − v2) = c2

(b) Two space crafts with velocities along x and v1,2 = ±0.6c

uµ1,2 =
1√

1− v2/c2

(
c
±v

)
=

c√
1− v2/c2


1
±0.6

0
0

 =


5/4
±3/4

0
0

 c (6)

The length of them are easily calculated and gives c2.

(c) The spacecrafts go in opposite direction so we need to consider again the negative velocity and
rapidity in case of one of them, which have the same magnitude. Then we just easily express the
velocity of one of the spacecrafts measured from the other’s frame by which we can immediately
tell the corresponding Lorentz transformation’s matrix

ṽ =
2v

1 + v2/c2
=

1.2

1.36
c = 15/17c, (7)

Λ =

 1√
1−ṽ2/c2

−ṽ/c√
1−ṽ2/c2

−ṽ/c√
1−ṽ2/c2

1√
1−ṽ2/c2

 =

(
2.125 −1.875
−1.875 2.125

)
. (8)

(d) The spacecraft in its own rest frame stays, but the other’s four velocity is easily given by the
composite Lorentz transformation:

u′2 =

(
2.125 −1.875
−1.875 2.125

)
u2 =

(
34/16c
−30/16c

)
(9)
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the length of which is indeed 342−302
162 c2 = c2. Here we could have just plug in the result for ṽ and

write

u′2 =
1√

1− ṽ2/c2


c
ṽ
0
0

 . (10)

(e) The 3 velocities take the form

v′2 =

−30/16
0
0

 c (11)

v′1 = 0 (12)

(f) Now with the second spacecraft going in y direction we can again calculate the modified velocity
in the frame of the first spacecraft by just acting with an x dieected boost on the y diercted four
velocity:

u′2 = c


5/4 −3/3 0 0
−3/4 5/4 0 0

0 0 1 0
0 0 0 1




5/4
0

3/4
0

 = c


25/16
−15/16

3/4
0

 (13)

Note that the acquired velocity along the x axis has a different magnitude as the other spacecraft’s
original velocity!

(g) One can now extract the transformed 3 velocity from this result via the prefactor of the zeroth

component,
√

1− (v′2)
2
/c2 = 16/25, from where we have for the velocity part:

v′2 =
16c

25

−15/16
3/4
0

 = c

−3/5
12/25

0

 (14)

Problem 3

The Compton effect (Artur Holly Compton 1892 – 1962. Nobel-prize: 1927) was one of the important
experimental results that led to the birth of quantum mechanics. This experiment showed that a photon
of energy ~ω has also a momentum ~ω/c. Here ω is the frequency of the photon.

In the experiment a photon of frequency ω0 collides with an electron that is initially in rest (mass
m). After the collision the electron has a momentum p while the photon loses from its energy, and its
trajectory distorts by an angle of ϑ. After the collision we detect the scattered photon.

(a) Define a convenient coordinate system. Sketch a figure about the process.

(b) Write down the total 4-momentum of the system before and after the collision.

(c) Determine the frequency ω′ of the scattered photon as a function of the distortion angle ϑ. Exploit
the conservation of 4-momentum.

Solution:

(a) Four momentum generally, with pµ = muµ, m is the rest mass

pµ =

(
E/c
p

)
=

1√
1− v2/c2

 mc√
1−v2/c2
mv√

1−v2/c2

 (15)

and trivially we have that pµpµ = m2uµuµ = m2c2. For zero rest mass particles we have pµpµ = 0
that is |p| = E/c. For a photon it yields E = ~ω, |p| = ~ω

c .
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(b) Four momentum is Lorentz invariant, so it must be conserved during elastic processes, that is we
write up its conservation in the rest frame of the electron with qµ and pµ denoting the photon’s
and electron’s four momenta

qµ =


~ω0/c
~ω0/c

0
0

 , pµ =


mc
0
0
0

 (16)

Pµ = qµ + pµ =


~ω0/c+m

~ω0/c
0
0

 (17)

which is conserved and is equal to the final sum, which we look for in case of scattering angle of
the photon, θ, with new frequency ω and some momenta and energy px, py, E, which gives

(q′)
µ

=

 ~ω/c
~ω/c cos θ
~ω/c sin θ

 (18)

pµ =

E/cpx
py

 (19)

(20)

Note that this is the usual energy and momentum conservation for elastic scatterings but with
relativistic masses. Now writing up the three equations belonging to the given coordinates:

E + ~ω = mc2 + ~ω0 (21)

~ω0 = ~ω cos θ + cpx (22)

0 = ~ω sin θ + cpy (23)

(24)

Our aim is to express the new frequency in terms of the scattering angle. First exploit the fact
that E2 = c2p2x + c2p2y +m2c4 and express the momenta as px = ~

c (ω0 − ω cos θ), py = −~ω
c sin θ.

We write this back into the first equation and square everything:

E2 =
(
mc2 + ~(ω − ω0)

)2
= c2p2x + c2p2y +m2c4

= m2c4 + ~2(ω − ω0)2 + 2mc2~(ω − ω0) = m2c4 + ~2ω2 sin2 θ + ~2(ω cos θ − ω0)2
(25)

which after sime trivial simplifications results in

2mc2~(ω − ω0)− 2~2ωω0 = −2~2ωω0 cos θ ⇒ ω =
mc2

mc2 − 2~ω0 sin2(θ/2)
ω0 (26)

Problem 4

Let’s consider the elastic collision of two particles. The particles move on a common, straight trajectory.
One has rest mass m1 and (usual) velocity v1 while the other has rest mass m2 and velocity v2. Their
common trajectory defines the x-axis.

(a) Write down the 4-momenta pµ1 and pµ2 of the two particles. What is the meaning of their compo-
nents?

(b) Write down the equation for the 4-momentum conservation. It’s scary, isn’t it?

(c) In non-relativistic collision problems it is a neat trick to transform of the frame of the “center of
mass”. In this frame, the 4-momentum conservation gives a much simpler equation, and one can
immediately write down the momenta after the collision. Let’s try to generalize this trick for the
relativistic case.
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(d) Write down the total 4-momentum of the system before the collision.

(e) Write down the matrix of a Lorentz boost with some arbitrary velocity V , and transform the
4-momentum with this transformation.

(f) What should be V , if we want the total (3-)momentum to vanish in the moving frame? Let’s define
this velocity as the velocity of the “center of mass”.

(g) Transform to the frame of the center of mass. Express the 4-momenta of the particles in that frame
before and after the collision.

(h) Transform back to the original frame, and express the 4-momenta of the particles after the collision.

Solution:

(a) The four momenta with rest masses m1 and m2:

pµ1 =
1√

1− v21/c2

(
m1c
m1v1

)
, pµ2 =

1√
1− v22/c2

(
m2c
m2v2

)
(27)

and similar expressions for their momenta after the collisions happened

(p′1)
µ

=
1√

1− (v′1)
2
/c2

(
m1c
m1v

′
1

)
, (p′2)

µ
=

1√
1− (v′2)

2
/c2

(
m2c
m2v

′
2

)
. (28)

(b) Now the conservation laws:

m1c√
1− v21/c2

+
m2c√

1− v22/c2
=

m1c√
1− (v′1)

2
/c2

+
m2c√

1− (v′2)
2
/c2

, (29)

m1v1√
1− v21/c2

+
m2v2√

1− v22/c2
=

m1v
′
1√

1− (v′1)
2
/c2

+
m2v

′
2√

1− (v′2)
2
/c2

, (30)

which is, indeed, scary, I guess...

(c) Total four momentum before the collision happened:

Pµ =

 m1c√
1−v21/c2

+ m2c√
1−v22/c2

m1v1√
1−v21/c2

+ m2v2√
1−v22/c2

 . (31)

(d) Lorentz boost with some undetermined velocity V :

Λµ·ν =
1√

1− V 2/c2

(
1 −V/c
−V/c 1

)
. (32)

Now the transformed four momentum looks a bit nasty as well:

(P ′)
µ

=
1√

1− V 2/c2

m1(c−v1V/c)√
1−v21/c2

+ m2(c−v2V/c)√
1−v22/c2

m1(v1−V )√
1−v21/c2

+ m2(v2−V )√
1−v22/c2

 . (33)

(e) To make vanish the spatial component part we need to choose:

V =

m2v2√
1−v22/c2

+ m1v1√
1−v21/c2

m2√
1−v22/c2

+ m1√
1−v21/c2

(34)

called center of mass velocity! Somehow trivial, isn’t it? Indeed, it is just the average momentum,
but with relativistic masses!
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(f) Now the momenta of the individual particles read as

p̃µ1 =
m1√

1− v21/c2
√

1− V 2/c2

(
c− v1V/c
v1 − V

)
, p̃µ2 =

m2√
1− v22/c2

√
1− V 2/c2

(
c− v2V/c
v2 − V

)
(p̃′1)

µ
=

m1√
1− (v′1)

2
/c2
√

1− V 2/c2

(
c− v′1V/c
v′1 − V

)
, (p̃′2)

µ
=

m2√
1− (v′2)

2
/c2
√

1− V 2/c2

(
c− v′2V/c
v′2 − V

)
(35)

But we know that in center of mass coordinate the system’s total spatial momentum is zero and as
particles have the same mass we simply have that for velocities in COM frame satisfy taht ṽ1 = −ṽ′1
and ṽ2 = −ṽ′2. However it would include a tedious calculation to bring to the form the final momenta

as p̃ = 1√
1−ṽ2/c2

(
mc
mṽ

)
. So we rather work with rapidities tanh θ1,2 =

v1,2
c , tanh θ̃1,2 =

ṽ1,2
c and

tanh Θ = V
c with V = m1c sinh θ1+m2c sinh θ2

m1c cosh θ1+m2c cosh θ2
. After the transformation we have θ̃1,2 = θ1,2 −Θ and

θ̃′1,2 = −θ̃1,2 = Θ− θ1,2 giving for the fina momenta in COM frame

p̃′1,2 = c

(
m1 cosh θ̃′1,2
m1 sinh θ̃′1,2

)
(36)

(g) Now the final momenta are obtained by transforming back to the original system with the Lorentz
transformation

Λµ·ν =

(
cosh Θ sinh Θ
sinh Θ cosh Θ

)
(37)

giving in the end momenta parametrized with rapidities θ′1,2 = 2Θ−θ1,2 rsulting in, indeed, a scary
final result:

p′1,2 = m1,2c

(
cosh Θ cosh(Θ− θ1,2) + sinh Θ sinh(Θ− θ1,2)
sinh Θ cosh(Θ− θ1,2) + cosh Θ sinh(Θ− θ1,2)

)
= m1,2c

(
cosh(2Θ− θ1,2)
sinh(2Θ− θ1,2)

)
=

m1,2

(c2 − V 2)
√

1− v21,2/c2

(
V 2v1,2 − V cv1,2 + c2v1,2 − V c2
cV v1,2 − c2v1,2 + V cv1,2 − V 2v1,2

)
.

(38)
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