
Practical Course in Mechanics 2 Class 11 (10.05.2022)

Problem 1

Consider a two-dimensional anisotropic oscillator. The Hamiltonian of the system is

H =
p2
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(a) Write down the full (time dependent) Hamilton-Jacobi equation for the system.

(b) The Hamiltonian does not depend on time, therefore the Hamilton-Jacobi equation can be separated
in the form S(x, y, t) = S0(x, y, E) − Et. Write down the abbreviated Hamilton-Jacobi equation
for S0.

(c) Separate further the function S0, i.e. look for the solution in the form

S0(x, y, E) = Sx(x, αx) + Sy(y, αy) (2)

Write down the equations for Sx and Sy. Denote the new constants by αx,y.

(d) Determine the functions Sx, Sy, and express the full solution S(x, y, αx, αy, t) of the Hamilton-
Jacobi equation.

(e) The particle is initially (t = 0) at the position x = x0 and y = y0, and has zero momentum.
Determine the values of the constants.

(f) How can one get the x(t), y(t) solutions of the equations of motion, using S(x, y, t)? (Don’t
calculate it! It’s a lengthy calculation.)

Solution

(a) Hamilton Jacobi equation with second type generator unction S(x, y, Px, Py) where the old mo-
menta again can be expressed as px = ∂xS and py = ∂yS.

H(x, y, ∂xS, ∂yS) + ∂tS = 0 (3)

(b) Looking for the solution in form of S(x, y, t) = S0(x, y)− Et we get

H(x, y, ∂xS0, ∂yS0) = E (4)

(c) Now separate the action as S(x, y, E) = Sx(x, αx)+Sy(y, αy) with αx,y denoting the new momenta,
we also write the Hamiltonaina as

H = Hx +Hy (5)

and then
Hx(x, ∂xSx) = αx Hx(y, ∂ySy) = αy E = αx + αy (6)

(d) Writing in the the above two equations the Sx and Sy parts of the action we get
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we get
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so
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The full solution is of course

S = Sx + Sy − Et =
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(e) With initially zero momentum we get ∂xSx = ∂ySy = 0, so Ax = x0 and Ay = y0.

(f) The orbits would be given simply by the second equation for the new coordinates according to the
rule for the second type of generating functions, βx,y = ∂αx,αyS = const. from where we can trace
back the time-evolution of x(t) and y(t).

∂Ax,AyS = const. (12)

Note that it does not matter which variable we use here, so we were free to take derivative with
respect to Ax, Ay, etc.

Problem 2

Two identical bodies can move along the x axis in a box. The two bodies are attached to the walls
through two springs with spring constant D, and there is also a spring between the two bodies. The
Hamiltonian of the system is

H(x1, p1, x2, p2) =
p2

1 + p2
2

2m
+
D

2
(x2

1 + x2
2) +

D

2
(x1 − x2)2 (13)

(a) Write down the full (time dependent) Hamilton-Jacobi equation for the system.

(b) The Hamiltonian does not depend on time, therefore the Hamilton-Jacobi equation can be separated
int the form S = S0 − Et. Write down the abbreviated Hamilton-Jacobi equation for S0.

(c) Further separation cannot be done using the coordinates x1 ,x2. Transform the equation to the new
variables X = (x1 + x2)/2 and y = x1 − x2 and rewrite the equation of b.) using these variables.

(d) Separate the S0 function as S0(x1, x2, E) = Sy(y, αy) + SX(X,αX). Write down the equations for
SX and Sy! Denote the new constants by αy, αX .

(e) Determine the functions SX and Sy.

(f) Knowing the initial conditions (x1,0, x2,0, p1,0, p2,0) determine the values of the αX,y parameters.

Solution:

(a) Hamilton-Jacobi equation with new momenta αx1
, αx2

H(x, y, ∂xS, ∂yS, t) + ∂tS(x, y, αx1
, αx2

, t) = 0 (14)

(b) Again looking for the action as S(x, y, αx1
, αx2

, t) = S0(x, y, αx1
, αx2

)− Et

E =
(∂x1S0)2 + (∂x2S0)2
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D

2
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D

2
(x2

1 + x2
2) (15)

(c) With the new coordinates X = (x1 + x2)/2, y = x1 − x2 and x1 = X + y/2, x2 = X − y/2 the
derivatives become

∂x1
S0 = ∂yS0

∂y

∂x1
+ ∂XS0

∂X

∂x1
= ∂yS0 +

∂XS0

2
(16)

and

∂x2
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2
(17)

Summing the squares:

(∂x1
S0)2 + (∂x2

S0)2 = 2(∂yS0)2 +
1

2
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So
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(d) Now separating the action as S0(x1, x2, αx1
, αx2

, t) = Sy(y, αy) + SX(X,αX) we can write:

αy =
(S′y)2

m
+

3D

4
y2, αX =
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4m
+DX2, E = αX + αy (20)
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(e) We can easily express now Sy and SX as

S′y =
√
mαy − 3Dy2/4→ Sy = arcsin

(√
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(f) Again being of a cumbersome task to determine the new constant cooridnates βX and βy according
to the initial conditions. First we should determine the values of αy, αX as

∂XS = pX,0 = (p10 + p20)/2, ∂yS = py,0 = p1,0 − p2,0 (24)

This leads to √
mαy − 3Dy2

0/4 = py,0 → αy =
(p1,0 − p2,0)2 + 3D(x1,0 − x2,0)2/4

m
(25)√

16mαX −DX2
0 = pX,0 → αX =

(p1,0 + p2,0)2 +D(x1,0 + x2,0)2

64m
(26)

From this the original momenta

αx1 = αX + αy/2, αx2 = αX − αy/2 (27)

Then from it we can write the condition that

∂αySy = const. ≡ βy, ∂αX
SX = const. ≡ βX (28)

which can in theory be obtained i na closed formula.

Problem 3

Consider the following generalized oscillator, that is described by a power-law potential as

H(p, x) =
p2

2m
+ k|x|4 (29)

(a) Draw the contour lines H(p, x) = E on the p− x plane.

(b) Determine the integral that equals the phase-surface bounded by the contour-lines. Denote it
by 2πI.

(c) In the generic case the integral cannot be analytically determined. The best we can do is to
determine the (power-law) dependence on the parameters E, m, and k. Performing appropri-
ate variable transformations make the integral dimensionless, i.e. collect all the dependence
on the parameters outside the integral. In this case the value of the dimensionless integral is
only a number, that can be calculated numerically.

(d) Using the derivation of I(E) determine the period of the oscillation as a function of the
parameters.

Solution:

(a) Contours of H(p, x) = E are determined by the relation p =
√

2mE
√

1− k|x|4

(b) The integral is given by

I(E) =
1

2π

∮
dq p (30)

Now consider a small segment d between the contours related to energies H(p, x) = E and

H(p, x) = E + ∆E. Then d = ∆E
|gradH| with |gradH| ≡ vph =

√(
∂H
∂p

)2

+
(
∂H
∂x

)2
. The the
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phase volume is given by dv dt = ∆E dt. In other words the period can be expressed as the
change of the phase space volume divided by the change in the energy, T = dphase space volume

dE :

T = 2π
dI

dE
. (31)

which also imply a canonical transformation as

x, p→ Φ, I . (32)

As te action only depends on the energy one can consider it as a new momentum and try to
introduce a second type generator function as W2 = W2(q, J). Introducing the new coordinate
accordign to the ”rule”

Φ =
∂W2

∂I
⇒ Φ̇ =

∂H(J)

∂J
= ω(J) (33)

which is time-independent, where we wrote for the new Hamiltonian also H but now only
depending on the actio nas we are considering constant energies and there is a one-to-one
correspondence between the energy and the action! Let us consider how it changes druing a
complete cyle of the motion:

∆Φ =

∮
dq
∂Φ

∂q
=

∮
dq

∂2W

∂q∂∂J
=

∂

∂J

∮
dqp = 2π. (34)

that is Φ evolves linear in time with cosntant frequency, depending only on E and so on J
and takes the multiplets of 2π per cylce!

(c) Now let us calculate the action at energy E

p = ±
√

2mE − 2mk|x|4 ⇒ I =
1

π

∫ xmax

xmin

√
2mE − 2mk|x|4 =

√
2mE

π

(
E

k

)1/4 ∫ 1

−1

√
1− |y|4dy

≈ 1.748

√
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(35)

From here we can express the energy dependence of the period

T = 2π
dI

dE
= 1.748

3
√
m

4π

(
E

k

)1/4

(36)

where we exploited that at xmina and xmax momentum is zero and the energy equals the
potential term.

Problem 4

Consider a pendulum with Hmailtonian with length l

H =
p2
θ

2ml2
−mgl cos θ (37)

(a) Sketch the phase space trajectory for a given energy H(pθ, θ) = E.

(b) Write down the energy expression for the action.

(c) Give the expression for the period/frequency of the periodic motion in the phase-space.

(d) For small amplitudes, θ � 1 determine the frequency of the motion.

Solution:

(a) Trajectories are given by the equation pθ = ±
√

2ml2E + 2m2gl2 cos θ.
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(b) The action is then exrpessed as comolicated integral

2πI = 2

∫ θmax

θmin

dθ
√

2ml2E + 2m2gl2 cos θ (38)

which cannot be determined in general, nevertheless we can again apply our knwoledge for
the period of time and furthermore no power law behavior can be obtained as generally for
all angles we may have non-zero momentum!

T =
dI

dE
=

√
2ml

2π

∫ 2π

0

dθ
1√

E + gl cos θ
(39)

(c) Now with small amplitudes we can write with redefined energy E → E + gl.

T =

√
2ml

4π

√
E

gl

2√
2mE

∫ 1

−1

dy
1√

1− y2
=

1

2π

√
g

l
(40)

where we again used that in the small amplitude case we have E = mglθmin,max/2.

Extra exercise
Consider the problem of the vertical motion in a homogeneous gravitational field. The Hamiltonian
of the system is

H(p, x) =
p2

2m
+mgx (41)

• Write down the full (time dependent) Hamilton-Jacobi equation for the system.

• Because the Hamiltonian does not depend on time explicitly, we can look for the function
S(x, t) in the form S(x, t) = S0(x,E) − Et, where E is a constant. Express the abbreviated
Hamilton-Jacobi equation for the function S0.

• Solve the equation for S0.

• Knowing the function S(x,E, t), determine the canonical transformation that it generates.
Express the canonical coordinate βE , that is the canonical pair of E.

• The particle is initially in the position x = 0 and has momentum p0. Using this information
determine the values of E and βE .

• Express the x(t) solution of the equation of motion.

Solutions

Full:

H

(
x,
∂S

∂x
, t

)
= −∂S(x, t)

∂t
(42)

Now
S(x, t) = S0(x)− E(t) (43)

and

E = H

(
x,
∂S

∂x

)
(44)

From this:
S′0 =

√
2mE − 2m2gx (45)

and

S0 = −(2mE − 2m2gx)3/2 2

3

1

2m2g
+ c (46)

as a canonical transformation:
W2(x, P, t) = S0(x,E)− Et (47)

it will give
H(E, βE) = 0 (48)
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and

p =
∂W2

∂x
βE =

∂W2

∂E
=
−
√

2mE − 2m2gx

mg
− t (49)

We know that βE = 0, therefore

βE(t = 0) = −
√

2mE

mg
= − p0

mg
(50)

and
p0

mg
− t =

√
2mE − 2m2gx

mg
(51)

or
(p0 −mgt)2 = 2mE − 2m2gx = p2

0 − 2m2gx (52)

and
2m2gx = −m2g2t2 + 2p0mgt (53)

and
x = −g

2
t2 +

p0

m
t (54)
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