To pass the test, you have to gain minimum 20 points.

Problem 1 (12.5 points)

A beam of particles in a laboratory on Earth (that is the rest frame) is observed to travel with $v=0.6 c$ along the x direction. Measurements on the particles are also performed in a spacecraft travelling along the y axis with velocity $V=0.6 c$. Our goal is to predict from Earth what kind of motion of the particles will be observed from the spacecraft.
(a) Determine the 4 -velocity of the particles in the reference frame of Earth. (2.5 points)
(b) Determine the Lorentz transformation that transforms to the frame of the moving spacecraft. (2.5 points)
(c) Express the 4-velocity of the particles in the frame of the spacecraft. (2.5 points)
(d) Determine the particles' "usual" 3- velocity (i.e.: spatial part of the 4 -velocity), give its magnitude and its direction by the angle between its x and y components! (5 points)

Solutions are only briefly summarized Solution:

(a) Easier to consider it only in $2+1$ dimensions $u^{\mu}=5 / 4 c(1,3 / 5,0)$.
(b) $\sqrt{1-v^{2} / c^{2}}=4 / 5, v / c=3 / 5$:

$$
\Lambda=\left[\begin{array}{ccc}
5 / 4 & 0 & -3 / 4 \tag{1}\\
0 & 1 & 0 \\
-3 / 4 & 0 & 5 / 4
\end{array}\right]
$$

(c) $\left(u^{\prime}\right)^{\mu}=\Lambda u^{\mu}=c(25 / 16,3 / 4,-15 / 16)=\frac{25}{16} c(1,12 / 25,-3 / 5)$
(d) $\mathbf{v}=12 / 25 c(1,-5 / 4)$.
(e) $|\mathbf{v}|=288 / 625 \approx 0.77 c, \varphi=-\operatorname{arctg}(5 / 4)=-0.896$

Problem 2 (12.5 points)

We would like to slow down a beam of muons moving in a homogenous electric field. The electric field's magnitude is E, charge and mass of the muons are $-q$ and m, respectively. Initially they move with velocity $v=0.8 c$ along the $+x$ direction. The electric field also points in the direction of $+x$, so it is slowing the motion of the muons with negative charge! The electric field is turned on at $t=0$.
(a) Write down the relativistic equations of moiton! (2 points)
(b) Express $p_{x}(t)$ as a function of time (t is the time in the rest frame!) (1.5 points)
(c) Give the final time, t_{f}, when the muons stop moving! (1.5 points)
(d) Calculate, based on the form of $p_{x}(t)$, the time dependence of $v_{x}(t)$ as well! (2.5 points)
(e) Relate the infinitesimal changes in $\mathrm{d} t$ with the changes in the muons' proper time, $\mathrm{d} \tau$, via time dilation and express τ_{f} as an integral with respect to the rest frame time, t. (2.5 points)
(f) Compute the integral and determine the duration of the process, τ_{f}, in the muons' frame. (2.5 points)

Supplementary information:

$$
\begin{equation*}
(\operatorname{asinh}(x))^{\prime}=\frac{1}{\sqrt{1+x^{2}}},(\operatorname{acosh}(x))^{\prime}=\frac{1}{\sqrt{x^{2}-1}} \tag{2}
\end{equation*}
$$

Solution:

(a) $\frac{\mathrm{d} p}{\mathrm{~d} t}=-E q, p(0)=m v_{0} / \sqrt{1-v_{0}^{2} / c^{2}}=4 / 3 m c$
(b) $p(t)=4 / 3 q, m c-q E t$
(c) $t_{f}: q E t_{f}=4 / 3 m c \Rightarrow t_{f}=\frac{4 m c}{3 q E}$
(d) $p(t)=m v / \sqrt{1-v^{2} / c^{2}} \Rightarrow v=\frac{4 / 3-q E t / m c}{\sqrt{1+(4 / 3-q E t / m c)^{2}}} c$
(e) $\mathrm{d} \tau=\sqrt{1-v^{2} / c^{2}} \mathrm{~d} t \Rightarrow \tau_{f}=\int_{0}^{t_{f}} \mathrm{~d} t \sqrt{1-v^{2} / c^{2}}$
(f) $\sqrt{1-v^{2} / c^{2}}=\frac{1}{\sqrt{1+(4 / 3-q E t / m c)^{2}}} \Rightarrow \int_{0}^{t_{f}} \mathrm{~d} t \frac{1}{\sqrt{1+(4 / 3-q E t / m c)^{2}}}=-\left.\frac{m c}{q E} \operatorname{asinh}(4 / 3-q E t / m c)\right|_{0} ^{t_{f}}=$ $\frac{m c}{q E} \operatorname{asinh}(4 / 3) \equiv \operatorname{asinh}(4 / 3) t_{f}$

Problem 3 (12.5 points)

Consider a thin elastic rod of unit cross section and length L described by the Lagrangian density

$$
\begin{equation*}
\mathcal{L}=\frac{\rho}{2}\left(\partial_{t} \xi\right)^{2}-\frac{E}{2}\left(\partial_{x} \xi\right)^{2}-\frac{F}{12}\left(\partial_{x} \xi\right)^{4} . \tag{3}
\end{equation*}
$$

(a) Using the Euler-Lagrange equations determine the equation of motion! (2 points)
(b) Looking for the solution in terms of plane waves, $\xi=\sin (\omega t-k x)$, give the relation between the frequency, ω, and the wavenumber, k, and determine the possible values of k knowing that at $t=0$ $\xi(t=0, x=0, L)=0$ (the displacement field disappears at the ends of the rod)! What is the requirement for the sign of F ? (3 points)
(c) Express the energy density of the system! (2 points)
(d) Calculate the energy density current! (2.5 points)
(e) Calculate the change of energy inside the rod by integrating the energy density along the rod! (3 points)
(f) $*$ Bonus for $(+2.5$ points) Show that it is the same as taking the difference of the energy density current at the ends of the rod!

Solution:

(a)

$$
\begin{align*}
& \frac{\partial \mathcal{L}}{\partial \xi}=0, \frac{\partial \mathcal{L}}{\partial \partial_{x} \xi}=-E \partial_{x} \xi-\frac{F}{3}\left(\partial_{x} \xi\right)^{3}, \frac{\partial \mathcal{L}}{\partial \partial_{x} \xi}=\rho \partial_{t} \xi \tag{4}\\
& \rho \partial_{t}^{2} \xi=E \partial_{x}^{2} \xi+\frac{F}{3} \partial_{x}\left(\partial_{x} \xi\right)^{3} \tag{5}
\end{align*}
$$

(b) $\partial_{t}^{2} \leftrightarrow-\omega^{2} \sin (\omega t-k x), \partial_{x}^{2} \leftrightarrow-k^{2} \sin (\omega t-k x), \partial_{x}\left(\partial_{x} \xi\right)^{3} \leftrightarrow-3 k^{4} \sin (\omega t-k x) \cos ^{2}(\omega t-k x)$, in addition $\sin (k L)=0 \rightarrow k=\frac{n \pi}{L}$:
Investigation at $k=n \pi / L$, as an approximation:

$$
\begin{equation*}
\rho \omega^{2}=E k^{2}+F \omega^{4} \cos ^{2}(n \pi / L) \rightarrow \omega^{2}=\frac{E}{\rho} k^{2}+\frac{F}{\rho} k^{4} \tag{6}
\end{equation*}
$$

(c) $\mathcal{H}=\partial_{t} \xi \frac{\partial \mathcal{L}}{\partial \partial_{t} \xi}-\mathcal{L}=\frac{\rho}{2}\left(\partial_{t} \xi\right)^{2}+\frac{E}{2}\left(\partial_{x} \xi\right)^{2}+\frac{F}{12}\left(\partial_{x} \xi\right)^{4}$
(d) $J_{E}=\partial_{t} \xi \frac{\partial \mathcal{L}}{\partial \partial_{x} \xi}=-E \partial_{t} \xi \partial_{x} \xi-\frac{F}{3} \partial_{t} \xi\left(\partial_{x} \xi\right)^{3}$
(e) $E=\int_{0}^{L} \frac{\rho \omega^{2}}{2} \cos ^{2}(\omega t-k x)+\frac{E k^{2}}{2} \cos ^{2}(\omega t-k x)+\frac{F k^{4}}{12} \cos ^{4}(\omega t-k x) \mathrm{d} x=L\left(\frac{\rho \omega^{2}}{4}+\frac{E k^{2}}{4}+\frac{F k^{4}}{24}\right)$

Problem 4 (12.5 points)

The Lagrangian of a one dimensional system along the x axis in the interval $[0, L]$

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{t} \xi \partial_{x} \xi-\frac{\nu}{2}\left(\partial_{x}^{2} \xi\right)^{2} \tag{7}
\end{equation*}
$$

where the field $\xi(x, t)$ describes some continuous medium.
(a) Write down the action of the system! (2 points)
(b) Based on the principle of least action give the variation of the action and determine the equation of motion! (3 points)
(c) Determine the \mathcal{H} energy density of the system! (2.5 points)
(d) Determine the J_{E} energy density current of the system! (2 points)
(e) Show explicitly for this system that the time derivative of the energy density equals the minus space derivative of the energy density current, $\frac{\mathrm{d} \mathcal{H}}{\mathrm{d} t}=-\partial_{x} J_{E}$! (3 points)

Supplementary information:

$$
\begin{equation*}
\mathcal{H}=\partial_{t} \xi \frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \xi\right)}-\mathcal{L}, J_{E}=\partial_{t} \xi \frac{\partial \mathcal{L}}{\partial\left(\partial_{x} \xi\right)} \tag{8}
\end{equation*}
$$

Solution:

(a) $S=\int \mathrm{d} t \mathrm{~d} x \frac{1}{2} \partial_{t} \xi \partial_{x} \xi-\frac{\nu}{2}\left(\partial_{x}^{2} \xi\right)^{2}$
(b) $\delta S=\int \mathrm{d} t \mathrm{~d} x \frac{1}{2} \partial_{t} \delta \xi \partial_{x} \xi+\frac{1}{2} \partial_{t} \xi \partial_{x} \delta \xi-\nu \partial_{x}^{2} \xi \partial_{x}^{2} \delta \xi=\int \mathrm{d} t \mathrm{~d} x\left(-\partial_{t} \partial_{x} \xi-\nu \partial_{x}^{4} \xi\right) \delta \xi=0 \Rightarrow \partial_{t} \partial_{x} \xi=-\nu \partial_{x}^{4} \xi$, integrating by parts two times.
(c) $\mathcal{H}=\partial_{t} \xi \frac{\partial \mathcal{L}}{\partial \partial_{t} \xi}-\mathcal{L}=\frac{\nu}{2}\left(\partial_{x}^{2} \xi\right)^{2}$
(d) $J_{E}=\partial_{t} \xi \frac{\partial \mathcal{L}}{\partial \partial_{x} \xi}=\frac{1}{2}\left(\partial_{t} \xi\right)^{2}+\nu \partial_{t} \xi \partial_{x}^{3} \xi$, again using that the derivative according to $\partial_{x} \xi$ should be understood as a functional derivative.
(e) $-\partial_{x} J_{E}=-\partial_{t} \xi \partial_{t} \partial_{x} \xi-\nu \partial_{x} \partial_{t} \xi \partial_{x}^{3} \xi-\nu \partial_{t} \xi \partial_{x}^{4} \xi=\partial_{t} \xi \partial_{t} \partial_{x} \xi$
$\frac{\mathrm{d} \mathcal{H}}{\mathrm{d} t}=\nu \partial_{x}^{4} \xi \partial_{t} \xi=\partial_{t} \xi \partial_{t} \partial_{x} \xi$, again in a funcional derivative sense.

