Quantum Mechanics 2 Practical course Test 2 extra exercises

1. PROBLEM

Consider a charged particle moving in the potential of a three-dimensional isotropic harmonic
oscillator and in a homogeneous magnetic field in the z direction:
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Treating the magnetic field as perturbation, determine the first-order correction of the energy
in the ground state of the oscillator!
Supporting information: Use the symmetric gauge A= %(—By, Bx,0) ! Furthermore, x =

s (atat), fo,at] =1

Solution:
In symmetric gauge the Hamiltonian reads
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Ground state energy of the oscillator Fy = %hw, the correction reads:
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Expressing the perturbation opertors with the ladder operators of the harmonic oscillator we
get
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Putting these into the braket only terms with lowering operators on the right, with double
raising or lowering operators vanish and with different orientations vanish. Only the a,a; and
aya;j terms give nonzero contribtions, giving the correction:
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2. PROBLEM

Consider an electron moving in the potential of a three-dimensional isotropic harmonic oscillator
and in a homogeneous magnetic field in the z direction:.
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where curl A®) = Bé,. The system is in ground state, when at ¢t = 0 the magnetic field is

suddenly turned to direction z. Give the time dependence of the expectation value of the spin
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operators (S) for ¢ > 0!

Hint: Let us work in the Heisenberg picture! After switching the direction of the magnetic field,
the Hamiltonian that governs the time evolution is given by
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with curl AT = Beé,. At t = 0 the system was in an eigenstate of the operator S, therefore only
those terms in entS;e~#* containing S. give nonvanishing contributions to the expectation

value of (S;).

Solution:
The starting state is |1/2), the ground state of —222S_ The time evolution of the spin com-
ponents is simply

e%HtSief%Ht = ef%MTBSthSie%“TBSIBt
by the fact that S, commutes with all the other operators int the Hamiltonian.
For i = x i simply yields S,, giving (S,) =0
For i = y we need to use the Haussdorf expansion, namely

Sy(t) = Sy_zv [Szs Sy t_a 72
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Using the commutation relations that [S,,S,] = ihS, and [S,, S;] = —ihS, we get
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The non-vanishing contribution can only come from the S, term, giving

(S.(1)) = —%sin (2“§Bt>

For the S,(t) component in a similar way odd power terms will give according to the commutaion
relation [S,, S;] = ¢hS, which in the end gives zero in the expectation value. The even power

terms give, however, in an analogous way S, cos (2“ A B), which results in the expectation value

(S.(t)) = 1 cos (QNBBt)
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3. PROBLEM

In Minkowski space, the time reversal transformation is given by
oV =2 2'=2" (i=1,2,3).

a) Prove that the solution ¢ (z) of the Dirac equation, (v* (:h0, — qA, (x)) —mec) Y (z) = 0
transforms under time reversal as ¢’ (z') = (T4 (x))*, where * denotes complex conjugation,
and the matrix T satisfies T~ (7°)" T = and T~ (/)" T = —+*! (15 points)

Supporting information: The four potential transforms as an azial vector under time reversial,

AL (@) = (Ao (2), = A; (2)).

b) Using the standard representation of the matrices v#, show that 7" = cX,, where |¢| = 1!
(10 points)

c) Prove that the current density tranforms as an axial vector, j* (z') = <j0 (z), —;(I)),
where j# (z) = et (z)' 409" (z)! (5 points)
Solution:

a) The Dirac equation written out in temproal and spatial coordinates

(7° (ihdo — qAo (x)) + " (h0; — qA; (x)) — me) 9 (x) =0 (3)



Effect of time reversal:
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Let

090" = —0%0Y = oY0%0Y = —0"
o’ (=0¥) oY = —a¥

Y0 = —0%0Y = oY0%0Y = —0*

As 3y = =X, the transformation of the wave function can be written

U (X) = Xyt (x)°
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where we used that j* (x) is real.
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