1. PROBLEM

Consider a charged particle moving in the potential of a three-dimensional isotropic harmonic oscillator and in a homogeneous magnetic field in the z direction:

$$
H=\frac{1}{2 m}(\vec{p}-q \vec{A})^{2}+\frac{1}{2} m \omega^{2} r^{2}
$$

Treating the magnetic field as perturbation, determine the first-order correction of the energy in the ground state of the oscillator!
Supporting information: Use the symmetric gauge $\vec{A}=\frac{1}{2}(-B y, B x, 0)$! Furthermore, $x=$ $\sqrt{\frac{\hbar}{2 m \omega}}\left(a+a^{+}\right),\left[a, a^{+}\right]=1$

Solution:

In symmetric gauge the Hamiltonian reads

$$
H=\frac{\mathbf{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} r^{2}+\frac{1}{2} m\left(\frac{\omega_{L}}{2}\right)^{2}\left(x^{2}+y^{2}\right)-\frac{\omega_{L}}{2} L_{z}=H_{0}+W, \quad W=\frac{1}{2} m\left(\frac{\omega_{L}}{2}\right)^{2}\left(x^{2}+y^{2}\right)-\frac{\omega_{L}}{2} L_{z}
$$

Ground state energy of the oscillator $E_{0}=\frac{3}{2} \hbar \omega$, the correction reads:

$$
E_{0}^{(1)}=\langle 000| \frac{1}{2} m\left(\frac{\omega_{L}}{2}\right)^{2}\left(x^{2}+y^{2}\right)-\frac{\omega_{L}}{2} L_{z}|000\rangle
$$

Expressing the perturbation opertors with the ladder operators of the harmonic oscillator we get

$$
\begin{align*}
& -\frac{\omega_{L}}{2} L_{z}=-i \hbar \frac{\omega_{L}}{2}\left(a_{x}^{+} a_{y}-a_{y}^{+} a_{x}\right) \tag{1}\\
& \frac{1}{2} m\left(\frac{\omega}{2}\right)^{2} \frac{x_{0}^{2}}{2}\left(a_{x}^{+} a_{x}^{+}+a_{y}^{+} a_{y}^{+}+a_{x} a_{x}+a_{y} a_{y}+a_{x} a_{x}^{+}+a_{x}^{+} a_{x}+a_{y} a_{y}^{+}+a_{y}^{+} a_{y}\right) \tag{2}
\end{align*}
$$

Putting these into the braket only terms with lowering operators on the right, with double raising or lowering operators vanish and with different orientations vanish. Only the $a_{x} a_{x}^{+}$and $a_{y} a_{y}^{+}$terms give nonzero contribtions, giving the correction:

$$
E_{0}^{(1)}=\frac{1}{2} m\left(\frac{\omega_{L}}{2}\right)^{2} \frac{x_{0}^{2}}{2}\langle 000| a_{x} a_{x}^{+}+a_{y} a_{y}^{+}|000\rangle=\frac{\hbar \omega_{L}^{2}}{8 \omega}
$$

2. PROBLEM

Consider an electron moving in the potential of a three-dimensional isotropic harmonic oscillator and in a homogeneous magnetic field in the z direction:.

$$
H=\frac{1}{2 m}\left(\vec{p}+e \vec{A}^{(z)}\right)^{2}+\frac{1}{2} m \omega^{2} r^{2}-\frac{2 \mu_{B}}{\hbar} S_{z} B,
$$

where curl $\vec{A}^{(z)}=B \vec{e}_{z}$. The system is in ground state, when at $t=0$ the magnetic field is suddenly turned to direction x. Give the time dependence of the expectation value of the spin operators $\langle\vec{S}\rangle$ for $t>0$!
Hint: Let us work in the Heisenberg picture! After switching the direction of the magnetic field, the Hamiltonian that governs the time evolution is given by

$$
H=\frac{1}{2 m}\left(\vec{p}+e \vec{A}^{(x)}\right)^{2}+\frac{1}{2} m \omega^{2} r^{2}-\frac{2 \mu_{B}}{\hbar} S_{x} B,
$$

with curl $\vec{A}^{x}=B \vec{e}_{x}$. At $t=0$ the system was in an eigenstate of the operator S_{z}, therefore only those terms in $e^{\frac{i}{\hbar} H t} S_{i} e^{-\frac{i}{\hbar} H t}$ containing S_{z} give nonvanishing contributions to the expectation value of $\left\langle S_{i}\right\rangle$.

Solution:

The starting state is $|1 / 2\rangle$, the ground state of $-\frac{2 \mu_{B} B}{\hbar} S_{z}$. The time evolution of the spin components is simply

$$
e^{\frac{i}{\hbar} H t} S_{i} e^{-\frac{i}{\hbar} H t} \equiv e^{-\frac{i}{\hbar} \frac{2 \mu_{B}}{\hbar} S_{x} B t} S_{i} e^{\frac{i}{\hbar} \frac{2 \mu_{B}}{\hbar} S_{x} B t}
$$

by the fact that S_{x} commutes with all the other operators int the Hamiltonian.
For $i=x$ i simply yields S_{x}, giving $\left\langle S_{x}\right\rangle=0$
For $i=y$ we need to use the Haussdorf expansion, namely
$S_{y}(t)=S_{y}-i \frac{2 \mu_{B} B}{\hbar^{2}}\left[S_{x}, S_{y}\right] t-\frac{1}{2!}\left(\frac{2 \mu_{B} B}{\hbar^{2}}\right)^{2}\left[S_{x},\left[S_{x}, S_{y}\right]\right] t^{2}+i \frac{1}{3!}\left(\frac{2 \mu_{B} B}{\hbar^{2}}\right)^{3}\left[S_{x},\left[S_{x},\left[S_{x}, S_{y}\right]\right]\right] t^{3}+\ldots$
Using the commutation relations that $\left[S_{x}, S_{y}\right]=i \hbar S_{z}$ and $\left[S_{x}, S_{z}\right]=-i \hbar S_{y}$ we get
$S_{y}(t)=S_{y}+\frac{2 \mu_{B} B}{\hbar} S_{z} t-\frac{1}{2!}\left(\frac{2 \mu_{B} B}{\hbar}\right)^{2} S_{y} t^{2}-\frac{1}{3!}\left(\frac{2 \mu_{B} B}{\hbar}\right)^{3} S_{z} t^{3}+\cdots=S_{z} \sin \left(\frac{2 \mu_{B} B}{\hbar} t\right)+S_{x} \cos \left(\frac{2 \mu_{B} B}{\hbar} t\right)$
The non-vanishing contribution can only come from the S_{z} term, giving

$$
\left\langle S_{z}(t)\right\rangle=-\frac{1}{2} \sin \left(\frac{2 \mu_{B} B}{\hbar} t\right)
$$

For the $S_{z}(t)$ component in a similar way odd power terms will give according to the commutaion relation $\left[S_{z}, S_{x}\right]=i \hbar S_{y}$ which in the end gives zero in the expectation value. The even power terms give, however, in an analogous way $S_{z} \cos \left(\frac{2 \mu_{B} B}{\hbar}\right)$, which results in the expectation value

$$
\left\langle S_{z}(t)\right\rangle=-\frac{1}{2} \cos \left(\frac{2 \mu_{B} B}{\hbar} t\right)
$$

3. PROBLEM

In Minkowski space, the time reversal transformation is given by

$$
x^{0 \prime}=-x^{0} \quad x^{i \prime}=x^{i} \quad(i=1,2,3) .
$$

a) Prove that the solution $\psi(x)$ of the Dirac equation, $\left(\gamma^{\mu}\left(i \hbar \partial_{\mu}-q A_{\mu}(x)\right)-m c\right) \psi(x)=0$ transforms under time reversal as $\psi^{\prime}\left(x^{\prime}\right)=(T \psi(x))^{*}$, where $*$ denotes complex conjugation, and the matrix T satisfies $T^{-1}\left(\gamma^{0}\right)^{*} T=\gamma^{0}$ and $T^{-1}\left(\gamma^{i}\right)^{*} T=-\gamma^{i}$!
(15 points)
Supporting information: The four potential transforms as an axial vector under time reversial, $A_{\mu}^{\prime}\left(x^{\prime}\right)=\left(A_{0}(x),-A_{i}(x)\right)$.
b) Using the standard representation of the matrices γ^{μ}, show that $T=c \Sigma_{y}$, where $|c|=1$! (10 points)
c) Prove that the current density tranforms as an axial vector, $j^{\prime \mu}\left(x^{\prime}\right)=\left(j^{0}(x),-\vec{j}(x)\right)$, where $j^{\mu}(x)=c \psi(x)^{\dagger} \gamma^{0} \gamma^{\mu} \psi(x)$!
(5 points)

Solution:

a) The Dirac equation written out in temproal and spatial coordinates

$$
\begin{equation*}
\left(\gamma^{0}\left(i \hbar \partial_{0}-q A_{0}(\mathrm{x})\right)+\gamma^{i}\left(i \hbar \partial_{i}-q A_{i}(\mathrm{x})\right)-m c\right) \psi(\mathrm{x})=0 \tag{3}
\end{equation*}
$$

Effect of time reversal:

$$
\begin{gather*}
\partial_{0}^{\prime}=\frac{\partial}{\partial x^{0}}=-\frac{\partial}{\partial x^{0}}, \partial_{i}^{\prime}=\frac{\partial}{\partial x^{\prime i}}=\frac{\partial}{\partial x^{i}}=\partial_{i} \tag{4}\\
A_{0}^{\prime}\left(\mathrm{x}^{\prime}\right)=\frac{\phi^{\prime}\left(\mathrm{x}^{\prime}\right)}{c}=\frac{\phi^{\prime}\left(\mathrm{x}^{\prime}\right)}{c}=A_{0}(\mathrm{x}), A_{i}^{\prime}\left(\mathrm{x}^{\prime}\right)=-A_{i}(\mathrm{x}) \tag{5}\\
\Downarrow \\
\left(\gamma^{0}\left(-i \hbar \partial_{0}-q A_{0}(\mathrm{x})\right)-\gamma^{i}\left(i \hbar \partial_{i}+q A_{i}(\mathrm{x})\right)-m c\right) \psi^{\prime}\left(\mathrm{x}^{\prime}\right)=0 \tag{6}\\
\Downarrow \\
\left(\left(\gamma^{0}\right)^{*}\left(i \hbar \partial_{0}-q A_{0}(\mathrm{x})\right)+\left(\gamma^{i}\right)^{*}\left(i \hbar \partial_{i}-q A_{i}(\mathrm{x})\right)-m c\right) \psi^{\prime}\left(\mathrm{x}^{\prime}\right)^{*}=0 \tag{7}\\
\Downarrow \\
\left(T^{-1}\left(\gamma^{0}\right)^{*} T\left(i \hbar \partial_{0}-q A_{0}(\mathrm{x})\right)+T^{-1}\left(\gamma^{i}\right)^{*} T\left(i \hbar \partial_{i}-q A_{i}(\mathrm{x})\right)-m c\right) T \psi(\mathrm{x})=0 \tag{8}\\
\Downarrow \\
\left(T^{-1}\left(\gamma^{0}\right)^{*} T\left(i \hbar \partial_{0}-q A_{0}(\mathrm{x})\right)+T^{-1}\left(\gamma^{i}\right)^{*} T\left(i \hbar \partial_{i}-q A_{i}(\mathrm{x})\right)-m c\right) \psi(\mathrm{x})=0 \tag{9}\\
\Downarrow \\
T^{-1}\left(\gamma^{0}\right)^{*} T=\gamma^{0} \quad T^{-1}\left(\gamma^{i}\right)^{*} T=-\gamma^{i} \tag{10}
\end{gather*}
$$

b) Standard representation

$$
\gamma^{0}=\left(\begin{array}{cc}
I & 0 \tag{11}\\
0 & -I
\end{array}\right) \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right)
$$

Let

$$
\begin{gather*}
T=\left(\begin{array}{ll}
t & 0 \\
0 & t
\end{array}\right) \tag{12}\\
\Downarrow \\
\left(\begin{array}{cc}
t^{-1} & 0 \\
0 & t^{-1}
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)\left(\begin{array}{ll}
t & 0 \\
0 & t
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right) \tag{13}\\
\left(\begin{array}{cc}
t^{-1} & 0 \\
0 & t^{-1}
\end{array}\right)\left(\begin{array}{cc}
0 & \left(\sigma^{i}\right)^{*} \\
-\left(\sigma^{i}\right)^{*} & 0
\end{array}\right)\left(\begin{array}{cc}
t & 0 \\
0 & t
\end{array}\right)=\left(\begin{array}{cc}
0 & t^{-1}\left(\sigma^{i}\right)^{*} t \\
-t^{-1}\left(\sigma^{i}\right)^{*} t & 0
\end{array}\right) \tag{14}\\
\Downarrow \\
t^{-1}\left(\sigma^{i}\right)^{*} t=-\sigma^{i} \tag{15}
\end{gather*}
$$

Furhter exploiting that

$$
\begin{equation*}
\left(\sigma^{x}\right)^{*}=\sigma^{x} \quad\left(\sigma^{y}\right)^{*}=-\sigma^{y} \quad\left(\sigma^{z}\right)^{*}=\sigma^{z} \tag{16}
\end{equation*}
$$

\Downarrow

$$
\begin{gather*}
\sigma^{y} \sigma^{x}=-\sigma^{x} \sigma^{y} \Longrightarrow \sigma^{y} \sigma^{x} \sigma^{y}=-\sigma^{x} \tag{17}\\
\sigma^{y}\left(-\sigma^{y}\right) \sigma^{y}=-\sigma^{y} \tag{18}\\
\sigma^{y} \sigma^{z}=-\sigma^{z} \sigma^{y} \Longrightarrow \sigma^{y} \sigma^{z} \sigma^{y}=-\sigma^{z} \tag{19}
\end{gather*}
$$

As $\Sigma_{y}^{*}=-\Sigma_{y}$, the transformation of the wave function can be written

$$
\begin{equation*}
\psi^{\prime}\left(\mathrm{x}^{\prime}\right)=c \Sigma_{y} \psi(\mathrm{x})^{*} \tag{20}
\end{equation*}
$$

c)

$$
\begin{align*}
j^{\mu}\left(\mathrm{x}^{\prime}\right)^{\prime} & =\psi^{\prime}\left(\mathrm{x}^{\prime}\right)^{\dagger} \gamma^{0} \gamma^{\mu} \psi^{\prime}\left(\mathrm{x}^{\prime}\right)=\left(\Sigma_{y} \psi(\mathrm{x})^{*}\right)^{\dagger} \gamma^{0} \gamma^{\mu} \Sigma_{y} \psi(\mathrm{x})^{*} \tag{21}\\
& =\left(\psi(\mathrm{x})^{*}\right)^{\dagger}\left(\Sigma_{y} \gamma^{0} \gamma^{\mu} \Sigma_{y}\right) \psi(\mathrm{x})^{*} \tag{22}\\
& =\psi(\mathrm{x})^{\dagger}\left(\Sigma_{y} \gamma^{0} \gamma^{\mu} \Sigma_{y}\right)^{*} \psi(\mathrm{x}) \tag{23}\\
& =\psi(\mathrm{x})^{\dagger} \Sigma_{y} \gamma^{0}\left(\gamma^{\mu}\right)^{*} \Sigma_{y} \psi(\mathrm{x}) \tag{24}\\
& =\psi(\mathrm{x})^{\dagger} \gamma^{0} \Sigma_{y}\left(\gamma^{\mu}\right)^{*} \Sigma_{y} \psi(\mathrm{x}) \tag{25}\\
& =\left(\psi(\mathrm{x})^{\dagger} \psi(\mathrm{x}),-\psi(\mathrm{x})^{\dagger} \gamma^{0} \gamma^{\mu} \Sigma_{y} \psi(\mathrm{x})\right) \tag{26}\\
& =\left(j^{0}(\mathrm{x}),-\vec{j}(\mathrm{x})\right) \tag{27}
\end{align*}
$$

where we used that $j^{\mu}(\mathrm{x})$ is real.

