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1. PROBLEM
Two fermionic particles with spin s = % are moving in a linear harmonic potential and they interact
by a contact interaction described by the d-function,

p% p% 1 2 (.2 2
H=g 4o+ gmw (@] +a3) +76(z1 — ).

Let us refer the unperturbed system to the above Hamilton operator without the interaction term.

a) Give the ground state and the first excited state of the unperturbed system and the corresponding
energies! Specify the spin part of these states?

b) Using first order perturbation theory find the energy corrections to the ground state and the first
excited state!

Supporting information:

Solution:

Ground state
a) Since the spatial part of the ground state o(x1)po(z2) is symmetric, the two-spin part must by
antisymmetric, i.e. a singlet state,

Po(1,2) = 900(561)@0(962)\}§ (11/2,1/2)[1/2,-1/2) = [1/2,-1/2)|1/2,1/2)) .

The ground state energy of the unperturbed system is then
_ _ghw 0) _
H0|(I)0> = (Hosc(l) + Hosc(2)) ’(I)0> = 27|(I)0> — EO = hw.

b) The first order correction to the ground state energy is given by
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FEzxcited state

a) Here the spatial part of the two-fermion wavefunction can be both symmetric and antisymmet-
ric, %(gpo(xl)gpl(xg) + po(x2)pi(x1)). Consequently, the spin of the two fermions can be in the
antisymmetric singlet state, S =0

Bro0(1,2) = \2(800@1)901(902) T o) pr(21))[0,0)]



or in the symmetric triplet states, S =1
P1am(1,2) = \2(@0(901)801(@) —o(z2)p1(z1)) [, M) (M =-1,0,1).
The above states form a four-dimensional eigenspace of Hy (1,2) = Hose(1)+ Hosc(2) with the energy
EY = 2nw.
Since the perturbation is independent of the spin and the unperturbed wavefunctions contain or-

thonormal two-spin vectors, the 4 x 4 matrix of the perturbation is diagonal. The first order
correction to the energy for the state ®1,99 can be calculated as

6E§7130 = (®1,00|70(z1 — 22)|P1,00) = 2’7/6190 lpo(x)1 ()]
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while for q)lew

5E§,11)M = (P11 |70(21 — 22)|P1as)

- ;//dxldxz (po(z1)p1(z2) — o(22)p1(21))" 0(z1 — 22) (Po(21)P1(22) — wo(x2)p1(21))

=1 [ @ lan@yea(o) = olader @) =o.

. PROBLEM 25 points
Two electrons occupy p-like orbitals in a Hydrogen-like atom: ¢; =1, {5 = 1.

a) What values can take the total angular momentum L7
b) Give the expectation value of the /1, operator in the |L, M) = |1,1) state!

Supporting information:

o A\ 2 ~ ~
(zl + @) L, M) = R*L (L + 1) |L, M), (ﬁlz + £2Z> L, M) = hM |L, M)

Solution:
a) The possible values are according to the rules derived in the lecture:

h+lb=2=L=21,0
b) First we give the state with the highest L = 2, M = 2 quantum number:
12,2) = [1,1)1[1,1)2
Then acting on it with the lowering operator:
L_]2,2) = /6 —22,1) = (I3 _ + 15 ) 1,1)1]1, 1)y = Aiv2[[1,1)1]1,0)2 + |1,1)1]1,0)9]

1
s Hlv 1>1|17 0>2 + |17 0>1’17 1>2]

=12,1) = 7



Now we get the |1,1) state in question by orthogonalization, that is looking for it in form of
11,1) = 1]1,1)1]1,0)2 + ¢2|1,0)1|1,1)2 with real ¢, co coefficients and satisfying the normality
condition, ¢? + ¢ = 1, which is orthogonal to |2, 1):

1

21|, 1)=ci+co=0=>c = —c=—,
@111 7
yielding the result

1
V2
Now in the expectaion value of /1., we act only on the first brakets, which are eigenstates of /1 ., as
a consequence of which only the same brakets can give nonzero results in the scalar product:
h

h
1L 11, 11+ 1(1, 0l 21, 0)1] = 5 +0 =5

|2a1> = [|171>1|1a0>2_|170>1|131>2]

1
(2,11 2]2,1) = 5 [

. PROBLEM 25 points
Consider the scattering of a particle on a Dirac delta shell potential. The radial part of the wave-
function, %w (r), can be determined from the radial Schrédinger equation,

2 r m
d“ (r) _ (e + 1)1/1(7“> — 277(5(7" —R)Y(r)= —k*p (r)

dr? r2 h?

where k? = 222 (E > 0) .

a) Determine the phase shift for £ =0 (dp)!

b) In which cases does the phase shift §y vanish?

¢) Give the low energy limit of the total cross-section!

Supporting information:

dp (r) dip (r)

2
=ay (R) where «= %

lim lim
r—R+0 dr r—R—0 dr

Solution:
a) In case of £ = 0 the radial Schrodinger equation takes the form,

1 d? 2m
*;W(T’@) + ﬁ%(r - R)p=Fp.

By multiplying with —r and introducing ¥ (r) = rp (r) ,we get

d? 2
T:f—%V (r—R)y =~k .

The solutions inside and outside the sphere are ¢,«p = sin(kr) and ¥,~r = asin(kr) + bcos(kr),
respectively. The solution must be continuous and its derivative has a jump at » = R. These
conditions results in the following equations,

sin(kR) = asin(kR) + bcos(kR)
ak cos(kR) — bk sin(kR) — kcos(kR) = asin(kR) ,

2m
where o = ﬁ'y. We can write these two equations in matrix form,

( 22&5{?3) (j)li(slfrlf()kR) ) ( b ) - ( asin(kz?flijlos(kl%) > '
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Employing

< sin(kR)  cos(kR) )‘1 B

1 [ ksin(kR) cos(kR)
kcos(kR) —ksin(kR) Tk < ) ’

kcos(kR) —sin(kR)

the coefficients can be calculated from
a\ _1/( ksin(kR) cos(kR) sin(kR)
b ) k\ kcos(kR) —sin(kR) asin(kR) + kcos(kR)
4

ka =k + asin(kR) cos(kR
kb = —asin®(kR)
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ton 6 — b asin?(kR)
07 Ta T k+ asin(kR) cos(kR)

b) The condition for vanishing dp = 0! In this case, the nominator must vanish, that is tan dy must
be zero,
asin® (kR) = 0

4

k=
R

¢) The phase shift equals to zero, if kR = nm. This is the case when the wavefunction vanishes at
radius R.

d) The low energy limit of the phase shift:

tan s — i a(kR)?  aR?
o= Mk rokR "1+ aR’

At low energies, only dg has contribution to the total cross-section :

4j52_4j » o’R! — 4T R2 (QR)2
k2
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tot "7 k2 (1+aR)? (1+ aR)?

4. PROBLEM 25 points
For t < 0 a charged harmonic oscillator is placed in a uniform electric field, which is turned off at
t=20:

2

H:{ %—f—%mwz:z:?—gqx if t<0
o+ %mwsz if t>0
For t < 0 the system is found in the corresponding ground state. Determine the expectation value
of the position operator for ¢ > 0!

Supporting remarks: Using the ladder operator a = % (x + miwp), find the ladder operator b such

2z

that for t <0 H = hw (b+b + %) — Ey, where Fjy is an appropriate constant. For ¢ < 0, the ground
state of the system is then given by b|0,) = 0. In Heisenberg picture, the ladder operators are given
as ap (t) = ae~ ™" and a}; (t) = a*e™!. Calculate (0p| z g (t)[0p) !

Solution:



Change the = coordinate for ¢ < 0

1 Eq 2 E2q?
2 2 _ 2
g — Eqrx = 5w (x — mwQ) R
\
p* 1 2
H:%+§mw2($—d) _EO
&q 1 2 12 52612
d=—7= FEy== d°= ——
mw? 0= M 2mw?

Hamiltonians with ladder operators

g [ w (bt 3) -~ E if t<0
o h/,u(aJra—i—%) if t>0

1 i d
b= r—d)+—p|=a-—
V2w <( ) mwp) V20
Ground state for ¢ < 0 p
b|0), =0—al0p) = 0
| >b | b> \/ix(] | b>
Heisenberg picture A ‘
ap (t) = ae™™" af, (t) =ate™!
L L —iw iw
vt (1) = 75 (an () + @ () = 5 (ae™ + aTe™)

Expectation value of the position

L —iw w
(2 () = Opl i (8)106) = =5 (0] ac™ +a*e" 0y)
o d —iwt iwt
= e +e ) = dcoswt
\/§ \/ESL’O (



