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Name: Neptun:

1. PROBLEM

Two fermionic particles with spin s = 1
2 are moving in a linear harmonic potential and they interact

by a contact interaction described by the δ-function,

H =
p21
2m

+
p22
2m

+
1

2
mω2

(
x21 + x22

)
+ γδ(x1 − x2) .

Let us refer the unperturbed system to the above Hamilton operator without the interaction term.

a) Give the ground state and the �rst excited state of the unperturbed system and the corresponding

energies! Specify the spin part of these states?

b) Using �rst order perturbation theory �nd the energy corrections to the ground state and the �rst

excited state!

Supporting information:

ϕ0(x) =
1√
x0
√
π
e
− x2

2x20 , ϕ1(x) =
1√
x0
√
π

√
2x

x0
e
− x2

2x20

(
x0 =

√
~
mω

)
∫ ∞
−∞

e−z
2
dz =

√
π ,

∫ ∞
−∞

z2e−z
2
dz =

√
π

2
.

Solution:

Ground state

a) Since the spatial part of the ground state ϕ0(x1)ϕ0(x2) is symmetric, the two-spin part must by

antisymmetric, i.e. a singlet state,

Φ0(1, 2) = ϕ0(x1)ϕ0(x2)
1√
2

(|1/2, 1/2〉|1/2,−1/2〉 − |1/2,−1/2〉|1/2, 1/2〉) .

The ground state energy of the unperturbed system is then

H0|Φ0〉 = (Hosc(1) +Hosc(2)) |Φ0〉 = 2
~ω
2
|Φ0〉 → E

(0)
0 = ~ω .

b) The �rst order correction to the ground state energy is given by

δE
(1)
0 = 〈Φ0|γδ(x1 − x2)|Φ0〉 = γ

∫ ∫
dx1dx2 ϕ

∗
0(x1)ϕ

∗
0(x2)δ(x1 − x2)ϕ0(x1)ϕ0(x2)

= γ

∫
dx |ϕ0(x)|4 =

γ

x20π

∫ ∞
−∞

e
− 2x2

x20 dx =
γ√

2x0π

∫ ∞
−∞

e−z
2
dz︸ ︷︷ ︸

√
π

=
γ

x0
√

2π
.

Excited state

a) Here the spatial part of the two-fermion wavefunction can be both symmetric and antisymmet-

ric, 1√
2
(ϕ0(x1)ϕ1(x2) ± ϕ0(x2)ϕ1(x1)). Consequently, the spin of the two fermions can be in the

antisymmetric singlet state, S = 0

Φ1,00(1, 2) =
1√
2

(ϕ0(x1)ϕ1(x2) + ϕ0(x2)ϕ1(x1)) |0, 0〉|
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or in the symmetric triplet states, S = 1

Φ1,1M (1, 2) =
1√
2

(ϕ0(x1)ϕ1(x2)− ϕ0(x2)ϕ1(x1)) |1,M〉 (M = −1, 0, 1) .

The above states form a four-dimensional eigenspace of H0 (1, 2) = Hosc(1)+Hosc(2) with the energy

E
(0)
1 = 2~ω .

Since the perturbation is independent of the spin and the unperturbed wavefunctions contain or-

thonormal two-spin vectors, the 4 × 4 matrix of the perturbation is diagonal. The �rst order

correction to the energy for the state Φ1,00 can be calculated as

δE
(1)
1,00 = 〈Φ1,00|γδ(x1 − x2)|Φ1,00〉 = 2γ

∫
dx |ϕ0(x)ϕ1(x)|2

=
2γ

x20π

∫ ∞
−∞

(√
2x

x0

)2

e
− 2x2

x20 dx =
γ
√

2

x0π

∫ ∞
−∞

z2e−z
2
dz︸ ︷︷ ︸

√
π/2

=
γ

x0
√

2π

while for Φ1,1M

δE
(1)
1,1M = 〈Φ1,1M |γδ(x1 − x2)|Φ1M 〉

=
γ

2

∫ ∫
dx1dx2 (ϕ0(x1)ϕ1(x2)− ϕ0(x2)ϕ1(x1))

∗ δ(x1 − x2) (ϕ0(x1)ϕ1(x2)− ϕ0(x2)ϕ1(x1))

=
γ

2

∫
dx |ϕ0(x)ϕ1(x)− ϕ0(x)ϕ1(x)|2 = 0 .

2. PROBLEM 25 points

Two electrons occupy p-like orbitals in a Hydrogen-like atom: `1 = 1, `2 = 1.

a) What values can take the total angular momentum L?

b) Give the expectation value of the ˆ̀
1z operator in the |L,M〉 = |1, 1〉 state!

Supporting information:(
ˆ̀
1 + ˆ̀

2

)2
|L,M〉 = ~2L (L+ 1) |L,M〉 ,

(
ˆ̀
1z + ˆ̀

2z

)
|L,M〉 = ~M |L,M〉

Solution:

a) The possible values are according to the rules derived in the lecture:

l1 + l2 = 2⇒ L = 2, 1, 0

b) First we give the state with the highest L = 2,M = 2 quantum number:

|2, 2〉 = |1, 1〉1|1, 1〉2

Then acting on it with the lowering operator:

L−|2, 2〉 = ~
√

6− 2|2, 1〉 = (l1,− + l2,−) 1, 1〉1|1, 1〉2 = ~
√

2 [|1, 1〉1|1, 0〉2 + |1, 1〉1|1, 0〉2]

⇒ |2, 1〉 =
1√
2

[|1, 1〉1|1, 0〉2 + |1, 0〉1|1, 1〉2]
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Now we get the |1, 1〉 state in question by orthogonalization, that is looking for it in form of

|1, 1〉 = c1|1, 1〉1|1, 0〉2 + c2|1, 0〉1|1, 1〉2 with real c1, c2 coe�cients and satisfying the normality

condition, c21 + c22 = 1, which is orthogonal to |2, 1〉:

〈2, 1|1, 1〉 = c1 + c2 = 0⇒ c1 = −c2 =
1√
2
,

yielding the result

|2, 1〉 =
1√
2

[|1, 1〉1|1, 0〉2 − |1, 0〉1|1, 1〉2]

Now in the expectaion value of l1z, we act only on the �rst brakets, which are eigenstates of l1,z, as
a consequence of which only the same brakets can give nonzero results in the scalar product:

〈2, 1|l1,z|2, 1〉 =
1

2
[1〈1, 1|l1,z|1, 1〉1 + 1〈1, 0|l1,z|1, 0〉1] =

~
2

+ 0 =
~
2

3. PROBLEM 25 points

Consider the scattering of a particle on a Dirac delta shell potential. The radial part of the wave-

function, 1
rψ (r) , can be determined from the radial Schrödinger equation,

d2ψ (r)

dr2
− `(`+ 1)

r2
ψ (r)− 2m

~2
γδ(r −R)ψ (r) = −k2ψ (r) ,

where k2 = 2mE
~2 (E > 0) .

a) Determine the phase shift for ` = 0 (δ0)!

b) In which cases does the phase shift δ0 vanish?

c) Give the low energy limit of the total cross-section!

Supporting information:

lim
r→R+0

dψ (r)

dr
− lim
r→R−0

dψ (r)

dr
= αψ (R) where α =

2mγ

~2

Solution:

a) In case of ` = 0 the radial Schrödinger equation takes the form,

−1

r

d2

dr2
(rϕ) +

2m

~2
γδ(r −R)ϕ = k2ϕ .

By multiplying with −r and introducing ψ (r) = rϕ (r) ,we get

d2ψ

dr2
− 2m

~2
γδ(r −R)ψ = −k2ψ .

The solutions inside and outside the sphere are ψr<R = sin(kr) and ψr>R = a sin(kr) + b cos(kr),
respectively. The solution must be continuous and its derivative has a jump at r = R. These

conditions results in the following equations,

sin(kR) = a sin(kR) + b cos(kR)

ak cos(kR)− bk sin(kR)− k cos(kR) = α sin(kR) ,

where α =
2m

~2
γ. We can write these two equations in matrix form,(

sin(kR) cos(kR)
k cos(kR) −k sin(kR)

)(
a
b

)
=

(
sin(kR)

α sin(kR) + k cos(kR)

)
.
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Employing (
sin(kR) cos(kR)
k cos(kR) −k sin(kR)

)−1
=

1

k

(
k sin(kR) cos(kR)
k cos(kR) − sin(kR)

)
,

the coe�cients can be calculated from(
a
b

)
=

1

k

(
k sin(kR) cos(kR)
k cos(kR) − sin(kR)

)(
sin(kR)

α sin(kR) + k cos(kR)

)

⇓

ka = k + α sin(kR) cos(kR

kb = −α sin2(kR)

⇓

tan δ0 = − b
a

=
α sin2(kR)

k + α sin(kR) cos(kR)

b) The condition for vanishing δ0 = 0! In this case, the nominator must vanish, that is tan δ0 must
be zero,

α sin2 (kR) = 0

⇓

k =
nπ

R

c) The phase shift equals to zero, if kR = nπ. This is the case when the wavefunction vanishes at

radius R.

d) The low energy limit of the phase shift:

tan δ0 = lim
k→0

α(kR)2

k + αkR
= k

αR2

1 + αR
.

At low energies, only δ0 has contribution to the total cross-section :

σtot =
4π

k2
δ20 =

4π

k2
k2

α2R4

(1 + αR)2
= 4πR2 (αR)2

(1 + αR)2

4. PROBLEM 25 points

For t < 0 a charged harmonic oscillator is placed in a uniform electric �eld, which is turned o� at

t = 0 :

H =

{
p2

2m + 1
2mω

2x2 − Eqx if t < 0
p2

2m + 1
2mω

2x2 if t ≥ 0
.

For t < 0 the system is found in the corresponding ground state. Determine the expectation value

of the position operator for t ≥ 0!

Supporting remarks: Using the ladder operator a = 1√
2x0

(
x+ i

mωp
)
, �nd the ladder operator b such

that for t < 0 H = ~ω
(
b+b+ 1

2

)
−E0, where E0 is an appropriate constant. For t < 0, the ground

state of the system is then given by b |0b〉 = 0. In Heisenberg picture, the ladder operators are given

as aH (t) = ae−iωt and a+H (t) = a+eiωt. Calculate 〈0b|xH (t) |0b〉 !

Solution:
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Change the x coordinate for t < 0

1

2
mω2x2 − Eqx =

1

2
mω2

(
x− Eq

mω2

)2

− E
2q2

2mω2

⇓

H =
p2

2m
+

1

2
mω2 (x− d)2 − E0

d =
Eq
mω2

E0 =
1

2
mω2d2 =

E2q2

2mω2

Hamiltonians with ladder operators

H =

{
~ω
(
b+b+ 1

2

)
− E0 if t < 0

~ω
(
a+a+ 1

2

)
if t ≥ 0

.

b =
1√
2x0

(
(x− d) +

i

mω
p

)
= a− d√

2x0

Ground state for t < 0

b |0〉b = 0→ a |0b〉 =
d√
2x0
|0b〉

Heisenberg picture

aH (t) = ae−iωt a+H (t) = a+eiωt

xH (t) =
x0√

2

(
aH (t) + a+H (t)

)
=

x0√
2

(
ae−iωt + a+eiωt

)
Expectation value of the position

〈x (t)〉 = 〈0b|xH (t) |0b〉 =
x0√

2
〈0b| ae−iωt + a+eiωt |0b〉

=
x0√

2

d√
2x0

(
e−iωt + eiωt

)
= d cosωt
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