1. Problem

25 points
Two electrons interact with contact potential:

$$
H(1,2)=\frac{p_{1}^{2}}{2 m}+\frac{p_{2}^{2}}{2 m}-\gamma \delta\left(x_{1}-x_{2}\right)
$$

a) Introduce the new coordinates $X=\frac{x_{1}+x_{2}}{2}$ and $x=x_{2}-x_{1}$ and rewrite the Hamilton operator of the two particles!
b) Solve the stationary Schrödinger equation for the bound state (square integrable eigenfunction) of the system! Give the spin-part of the wavefunction!
c) Give the condition that the bound state has a negative energy!

Supporting information: Boundary condition for the Dirac-delta

$$
\psi^{\prime}(0+)-\psi^{\prime}(0-)=-\frac{m \gamma}{\hbar^{2}} \psi(0)
$$

Solution:

(a) The new momenta corresponding to $X=x_{1}+x_{2}$, mathcal $P=\frac{\hbar}{i} \frac{\partial}{\partial X}$ and $x=x_{2}-x_{1}, p=\frac{\hbar}{i} \frac{\partial}{\partial x}$

$$
\begin{align*}
& p_{1}=\frac{\hbar}{i} \frac{\partial}{\partial x_{1}}=\frac{\hbar}{i}\left(\frac{\partial X}{\partial x_{1}} \frac{\partial}{\partial X}+\frac{\partial x}{\partial x_{1}} \frac{\partial}{\partial x}\right)=\frac{\mathcal{P}}{2}-p \tag{1}\\
& p_{2}=\frac{\hbar}{i} \frac{\partial}{\partial x_{2}}=\frac{\hbar}{i}\left(\frac{\partial X}{\partial x_{2}} \frac{\partial}{\partial X}+\frac{\partial x}{\partial x_{2}} \frac{\partial}{\partial x}\right)=\frac{\mathcal{P}}{2}+p \tag{2}\\
& \Rightarrow \mathcal{P}=p_{1}+p_{2}, \quad p=\frac{p_{2}-p_{1}}{2} \tag{3}
\end{align*}
$$

With these new variables the Hamiltonian takes the form:

$$
\begin{equation*}
H=\frac{\mathcal{P}^{2}}{4 m}+\frac{p^{2}}{m}-\gamma \delta(x) \tag{4}
\end{equation*}
$$

corresponding to a free particle with mass $2 m$ and a particle with a Dirac-delta potential with mass $\frac{m}{2}$.
(b) Writing in the original coordiantes the wave function takes the form:

$$
\begin{equation*}
\Psi\left(x_{1}, x_{2}\right)=\varphi\left(x_{1}+x_{2}\right) \psi\left(x_{2}-x_{1}\right) \sim e^{i k\left(x_{1}+x_{2}\right)-\alpha\left|x_{2}-x_{1}\right|} \tag{5}
\end{equation*}
$$

being symmetric in x_{1} and x_{2}, that is in order to have a antisymmetric total wavefunction we need an antisymmetric singlet spinor part, $|0,0\rangle$:

$$
\begin{equation*}
\Phi\left(x_{1}, x_{2}, s_{1}, s_{2}\right)=\Psi\left(x_{1}, x_{2}\right)|0,0\rangle \tag{6}
\end{equation*}
$$

having a total spin of zero!
(c) The bound state is the one when the particle in the Dirac delta potential has negative energy, $E=-|E|:$

$$
\begin{align*}
& \partial_{x}^{2} \psi(x)=\frac{2 m|E|}{\hbar^{2}} \psi(x) \tag{7}\\
& \psi^{\prime}(0+)-\psi^{\prime}(0-)=-\frac{m \gamma}{\hbar^{2}} \psi(0) \tag{8}
\end{align*}
$$

The solution of this is $A e^{-\alpha|x|}$, with $\alpha=\sqrt{\frac{m|E|}{\hbar^{2}}}=\frac{m \gamma}{2 \hbar^{2}} \rightarrow E=-\frac{m \gamma^{2}}{4 \hbar^{2}}$ and $A=\sqrt{\frac{1}{2 \alpha}}$. While for the other particle we have the usual free solution:

$$
\begin{equation*}
\varphi(X)=B e^{i k X}, \quad k=2 \sqrt{\frac{m E_{2}}{\hbar^{2}}} \tag{9}
\end{equation*}
$$

with $E_{2}>0$. The negativity of $E_{2}+E<0 \Leftrightarrow \frac{k^{2} \hbar^{2}}{4 m}<\frac{m \gamma^{2}}{4 \hbar^{2}} \rightarrow k<\frac{m \gamma}{\hbar^{2}}$!

2. Problem

25 points
In the ground state of a Na atom the single valence electron occupies one of the $3 s(L=0)$ orbitals, while the first excited states are the $3 p(L=1)$ orbitals.
a) In the first excited state, the total angular momentum operator $\vec{J}=\vec{L}+\vec{S}$ can have the quantum numbers $J=\frac{1}{2}$ and $J=\frac{3}{2}$. Consider a static perturbation $H_{1}=\alpha \vec{L} \vec{S}$ (spin-orbit coupling)! Calculate the energy difference between the states for $J=\frac{1}{2}$ and $J=\frac{3}{2}$!
Hint: Express the $\vec{L} \vec{S}$ operator with the help of the operators $\vec{J}^{2}=(\vec{L}+\vec{S})^{2}, \vec{L}^{2}$ and \vec{S}^{2} !
b) A harmonic perturbation of frequency ω,

$$
V(t)=\mathcal{E} e z \cos (\omega t)
$$

is applied, where \mathcal{E} denotes a uniform electric field along the z direction and e is the unit charge. Find the excited states $\left|J=\frac{1}{2}, M_{J}\right\rangle$ to which a transition is allowed from the ground state $|L, M\rangle\left|S, M_{S}\right\rangle=$ $|0,0\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle$ within first order time-dependent perturbation theory!
Supporting information: the transition matrix element is defined as $\left\langle\varphi_{1}\right| V\left|\varphi_{0}\right\rangle=\mathcal{E} e\left\langle\varphi_{1}\right| z\left|\varphi_{0}\right\rangle$, $z=$ $r \sqrt{\frac{4 \pi}{3}} Y_{1}^{0}=r \sqrt{\frac{4 \pi}{3}}|1,0\rangle$

Solution:

(a)The total spin $J=L+S$ in the $L=1$ subspace, according to the Clebsh-Gordan rules, can be $J=3 / 2,1 / 2$, while in the $L=0$ subspace it is simply $J=1 / 2$. Giving an energy The product can be expressed as $\frac{\mathbf{J}^{2}-\mathbf{L}^{2}-\mathbf{S}^{2}}{2}$ having possible eigenvalues of $\frac{15 / 4-2-3 / 4}{2} \hbar^{2}=\hbar^{2} / 2$ for $J=3 / 2$ and $\frac{3 / 4-2-3 / 4}{2} \hbar^{2}=-\hbar^{2}$ for $J=1 / 2$, giving the energy difference $\alpha \frac{3}{2} \hbar^{2}$
(b) Nevertheless, we actually do not need the Clebsh Gordan coefficients, for sake of extra practice we give them for $L=1$ where we have 6 different states:

$$
\begin{align*}
& |1 / 2,1 / 2\rangle=\frac{1}{\sqrt{3}}|1,0\rangle|1 / 2,1 / 2\rangle-\sqrt{\frac{2}{3}}|1,1\rangle|1 / 2,-1 / 2\rangle \tag{10}\\
& |1 / 2,-1 / 2\rangle=\sqrt{\frac{2}{3}}|1,0\rangle|1 / 2,-1 / 2\rangle-\frac{1}{\sqrt{3}}|1,-1\rangle|1 / 2,1 / 2\rangle \tag{11}\\
& |3 / 2,3 / 2\rangle=|1,1\rangle|1 / 2,1 / 2\rangle \tag{12}\\
& |3 / 2,1 / 2\rangle=\sqrt{\frac{2}{3}}|1,0\rangle|1 / 2,1 / 2\rangle+\frac{1}{\sqrt{3}}|1,1\rangle|1 / 2,-1 / 2\rangle \tag{13}\\
& |3 / 2,-1 / 2\rangle=\frac{1}{\sqrt{3}}|1,0\rangle|1 / 2,-1 / 2\rangle+\sqrt{\frac{2}{3}}|1,-1\rangle|1 / 2,1 / 2\rangle \tag{14}\\
& |3 / 2,-3 / 2\rangle=|1,-1\rangle|1 / 2,-1 / 2\rangle \tag{15}
\end{align*}
$$

The spatial part of the ground state is just a constant as $L=0$ we can consider the $z\left|\varphi_{0}\right\rangle$ term in the inner product as $|1,0\rangle|1 / 2, \pm 1 / 2\rangle$ Now we only need to know what M_{J} quantum
numbers can come up in the $J=1 / 2$ subspace

$$
\begin{align*}
& \langle 1 / 2,1 / 2 \mid\rangle \neq 0=\left(=\frac{1}{\sqrt{3}}\right) \tag{16}\\
& \langle 3 / 2,1 / 2 \mid 1,0\rangle|1 / 2,1 / 2\rangle \neq 0\left(=\sqrt{\frac{2}{3}}\right) \tag{17}\\
& \langle 3 / 2,-1 / 2 \mid 1,0\rangle|1 / 2,-1 / 2\rangle \neq 0\left(=\frac{1}{\sqrt{3}}\right) \tag{18}
\end{align*}
$$

where the "non-zeroness" of the results can be seen from the fact that in these three states we will necessarily have the $|1,0\rangle|1 / 2,1 / 2\rangle$ with some Clebsh-Gordan coefficient, unrelevant for us now! The last 2 results are again for extra practice!

3. Problem

Find the phase shift corresponding to $l=0$ in the case of the following spherical potential:

$$
V(r)=\left\{\begin{array}{ccc}
0 & \text { if } & r>R \\
-V_{0} & \text { if } & r \leq R
\end{array}\right.
$$

The time independent Schrödinger equation has the following form in coordinate representation:

$$
-\frac{1}{r} \frac{d^{2}}{d r^{2}}(r \varphi)+\frac{l(l+1)}{r^{2}} \varphi+\frac{2 m}{\hbar^{2}} V(r) \varphi=k^{2} \varphi
$$

Point out that $r \varphi=\sin (k r)$ and $r \varphi=\cos (k r)$ functions satisfy the Schrödinger equation above in the case of $l=0$! Give the low energy limit of the total cross-section!

Solution:

We can rewrite the equation as:

$$
\begin{gather*}
\frac{d^{2}}{d r^{2}}(r \varphi)=-k^{2}(r \varphi), \text { for } r>R \tag{19}\\
\frac{d^{2}}{d r^{2}}(r \varphi)=-\kappa^{2}(r \varphi), \text { for } r<R \tag{20}
\end{gather*}
$$

with $\kappa^{2}=k^{2}+\frac{2 m V_{0}}{\hbar^{2}}=\frac{2 m\left(E+V_{0}\right)}{\hbar^{2}}$, solved by the general linear combination $a \frac{\cos (k r)}{k}+b \frac{\sin (k r)}{k}$ and $a \frac{\cos (\kappa r)}{\kappa}+b \frac{\sin (\kappa r)}{\kappa}$, where in order to relate it to the $l=0$ special case of the general result, $r j_{0}(k r)=\frac{\sin (k r)}{k}$ and $r n_{0}(k r)=\frac{\cos (k r)}{k}$ we wrote in the denominators the wavenumbers.
Inside the ball we can only have the regular solution, which for $l=0$ reads: $\varphi(r<R)=\frac{\sin (\kappa r)}{\kappa}$, $\kappa^{2}=k^{2}+\frac{2 m V_{0}}{\hbar^{2}} \equiv q^{2}+k^{2}, k^{2}=\frac{2 m E}{\hbar^{2}}$, while outside we can have a general superposition, $\varphi(r>$ $R)=a \frac{\sin (k r)}{k}+b \frac{\cos (k r)}{k} \rightarrow \tan \delta_{0}=b / a$, we write the boundary conditions as

$$
\begin{aligned}
& \frac{\sin (\kappa R)}{\kappa}=a \frac{\sin (k R)}{k}+b \frac{\cos (k R)}{k} \\
& \cos (\kappa R)=a \cos (k R)-b \sin (k R)
\end{aligned}
$$

Which can be cast into a matrix equation:

$$
\left(\begin{array}{cc}
\frac{\sin (k R)}{k} & \frac{\cos (k R)}{k} \\
\cos (k R) & -\sin (k R)
\end{array}\right)\binom{a}{b}=\binom{\frac{\sin (\kappa R)}{\kappa}}{\cos (\kappa R)}
$$

Using the general inversion of a 2×2 matrix we have $\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$ with the trivial substitutions we get that:

$$
\tan \delta_{0}=-\frac{\sin (k R) \cos (\kappa R) / k-\cos (k R) \sin (\kappa R) / \kappa}{\sin (k R) \sin (\kappa R) / \kappa+\cos (k R) \cos (\kappa R) / k}=\frac{k \tan (\kappa R)-\kappa \tan (k R)}{k \tan (k R) \tan (\kappa R)+\kappa}
$$

Let us investigate the low energy limit, with $k \ll 1$ and $q^{2}=\frac{2 m V_{0}}{\hbar^{2}}$, we have for the terms, $\kappa \approx q$, $k \tan (\kappa R) \approx k \tan (q R),-\kappa \tan (k R) \approx-\kappa k R, k \tan (k R) \tan (\kappa R) \sim k^{2} \approx 0$, so in total we have

$$
\tan \delta_{0} \approx k R\left(\frac{1}{q R} \tan (q R)-1\right)
$$

for which the corresponding cross section, using the relation $\sin ^{2} x=\frac{\tan ^{2} x}{1+\tan ^{2} x}$

$$
\sigma_{0}(k)=\frac{4 \pi}{k^{2}} \frac{\tan ^{2} \delta_{0}}{\tan ^{2} \delta_{0}+1} \approx \frac{4 \pi}{k^{2}} \tan ^{2} \delta_{0}=4 \pi R^{2}\left(\frac{1}{q R} \tan (q R)-1\right)^{2}
$$

4. Problem

25 pont
Consider a one dimensional particle with q charge initially in a harmonic oscillator ground state

$$
\varphi_{0}(x)=\frac{1}{\sqrt{x_{0} \sqrt{\pi}}} e^{-\frac{x^{2}}{2 x_{0}^{2}}}
$$

at time $t=0$ we switch on an \mathcal{E} homogenous electric field

$$
H=\frac{p^{2}}{2 m}-\mathcal{E} q x
$$

Determine the time-dependence of the variance of the x coordinate operator!

Solution

$$
\begin{gathered}
x(t)=e^{\frac{i}{\hbar} H t} x e^{-\frac{i}{\hbar} H t} \\
{[H, x]=\frac{\hbar}{i} \frac{p}{m},[H,[H, x]]=\frac{\hbar}{i}\left[H, \frac{p}{m}\right]=-\frac{\hbar}{i} \frac{q \mathcal{E}}{m}[x, p]=\left(\frac{\hbar}{i}\right)^{2} \frac{q \mathcal{E}}{m}}
\end{gathered}
$$

Applying the Haussdorff expansion:

$$
x(t)=x+\frac{p}{m} t+\frac{q \mathcal{E}}{m} t^{2}
$$

from which it follows that

$$
\begin{aligned}
& x^{2}(t)=e^{\frac{i}{\hbar} H t} x^{2} e^{-\frac{i}{\hbar} H t}=e^{\frac{i}{\hbar} H t} x e^{-\frac{i}{\hbar} H t} e^{\frac{i}{\hbar} H t} x e^{-\frac{i}{\hbar} H t}=x(t) x(t) \\
& \Downarrow \\
& x^{2}(t)=x^{2}+\frac{p^{2}}{m^{2}} t^{2}+\frac{q^{2} \mathcal{E}^{2}}{m^{2}} t^{4}+\frac{x p+p x}{m} t-2 x \frac{q \mathcal{E}}{m} t^{2}-2 p \frac{q \mathcal{E}}{m^{2}} t^{3}
\end{aligned}
$$

Exploiting the fact that φ_{0} is an eigenstate of a linear harmonic oscillator

$$
\langle x(t)\rangle=\left\langle\varphi_{0}\right| x(t)\left|\varphi_{0}\right\rangle=\frac{q \mathcal{E}}{m} t^{2}
$$

and

$$
\begin{gathered}
\left\langle x^{2}\right\rangle=\frac{x_{0}^{2}}{2} \\
\left\langle p^{2}\right\rangle=\frac{p_{0}^{2}}{2} \quad\left(p_{0}=\frac{\hbar}{x_{0}}\right) \\
x p+p x \sim\left(a+a^{+}\right)\left(a-a^{+}\right)+\left(a-a^{+}\right)\left(a+a^{+}\right) \\
\left(a+a^{+}\right)\left(a-a^{+}\right)=a^{2}-a^{+2}+a^{+} a-a a^{+} \\
\left(a-a^{+}\right)\left(a+a^{+}\right)=a^{2}-a^{+2}-a^{+} a+a a^{+}
\end{gathered}
$$

$$
\begin{gathered}
x p+p x \sim a^{2}-a^{+2} \\
\Downarrow \\
\left\langle\varphi_{0}\right| x p+p x\left|\varphi_{0}\right\rangle=0
\end{gathered}
$$

From where

$$
\left\langle x^{2}(t)\right\rangle=\left\langle\varphi_{0}\right| x^{2}(t)\left|\varphi_{0}\right\rangle=\frac{x_{0}^{2}}{2}+\frac{p_{0}^{2}}{2 m^{2}} t^{2}+\frac{q^{2} \mathcal{E}^{2}}{m^{2}} t^{4}
$$

implying for the variance

$$
\left\langle x^{2}\right\rangle-\langle x\rangle^{2}=\frac{x_{0}^{2}}{2}+\frac{p_{0}^{2}}{2 m^{2}} t^{2}
$$

