
Quantum mechanics 2 practical course Supplementary test 1 Nov 12th, 2021

Name: Neptun:

1. Problem 25 points

Two electrons interact with contact potential:

H(1, 2) =
p21
2m

+
p22
2m
− γδ(x1 − x2) .

a) Introduce the new coordinates X = x1+x2
2 and x = x2 − x1 and rewrite the Hamilton operator

of the two particles!

b) Solve the stationary Schrödinger equation for the bound state (square integrable eigenfunction)

of the system! Give the spin-part of the wavefunction!

c) Give the condition that the bound state has a negative energy!

Supporting information: Boundary condition for the Dirac-delta

ψ′(0+)− ψ′(0−) = −mγ
~2

ψ(0)

Solution:

(a) The new momenta corresponding to X = x1+x2, mathcalP = ~
i
∂
∂X and x = x2−x1, p = ~

i
∂
∂x

p1 =
~
i

∂

∂x1
=

~
i

(
∂X

∂x1

∂

∂X
+

∂x

∂x1

∂

∂x

)
=
P
2
− p (1)

p2 =
~
i

∂

∂x2
=

~
i

(
∂X

∂x2

∂

∂X
+

∂x

∂x2

∂

∂x

)
=
P
2

+ p (2)

⇒ P = p1 + p2, p =
p2 − p1

2
(3)

With these new variables the Hamiltonian takes the form:

H =
P2

4m
+
p2

m
− γδ(x) (4)

corresponding to a free particle with mass 2m and a particle with a Dirac-delta potential with

mass m
2 .

(b) Writing in the original coordiantes the wave function takes the form:

Ψ(x1, x2) = ϕ(x1 + x2)ψ(x2 − x1) ∼ eik(x1+x2)−α|x2−x1| (5)

being symmetric in x1 and x2, that is in order to have a antisymmetric total wavefunction we

need an antisymmetric singlet spinor part, |0, 0〉:

Φ(x1, x2, s1, s2) = Ψ(x1, x2)|0, 0〉 (6)

having a total spin of zero!

(c) The bound state is the one when the particle in the Dirac delta potential has negative energy,

E = −|E|:

∂2xψ(x) =
2m|E|
~2

ψ(x) (7)

ψ′(0+)− ψ′(0−) = −mγ
~2

ψ(0) (8)



The solution of this is Ae−α|x|, with α =
√

m|E|
~2 = mγ

2~2 → E = −mγ2

4~2 and A =
√

1
2α . While for

the other particle we have the usual free solution:

ϕ(X) = BeikX , k = 2

√
mE2

~2
(9)

with E2 > 0. The negativity of E2 + E < 0⇔ k2~2
4m < mγ2

4~2 → k < mγ
~2 !

2. Problem 25 points

In the ground state of a Na atom the single valence electron occupies one of the 3s (L = 0) orbitals,
while the �rst excited states are the 3p (L = 1) orbitals.

a) In the �rst excited state, the total angular momentum operator ~J = ~L+ ~S can have the quantum

numbers J = 1
2 and J = 3

2 . Consider a static perturbation H1 = α~L~S (spin-orbit coupling)!

Calculate the energy di�erence between the states for J = 1
2 and J = 3

2 !

Hint: Express the ~L~S operator with the help of the operators ~J2 = (~L+ ~S)2, ~L2 and ~S2!

b) A harmonic perturbation of frequency ω,

V (t) = Eez cos(ωt) ,

is applied, where E denotes a uniform electric �eld along the z direction and e is the unit charge. Find
the excited states |J = 1

2 ,MJ〉 to which a transition is allowed from the ground state |L,M〉|S,MS〉 =
|0, 0〉|12 ,

1
2〉 within �rst order time-dependent perturbation theory!

Supporting information: the transition matrix element is de�ned as 〈ϕ1|V |ϕ0〉 = Ee 〈ϕ1|z|ϕ0〉, z =

r
√

4π
3 Y

0
1 = r

√
4π
3 |1, 0〉

Solution:

(a)The total spin J = L+ S in the L = 1 subspace, according to the Clebsh-Gordan rules, can be

J = 3/2, 1/2, while in the L = 0 subspace it is simply J = 1/2. Giving an energy The product

can be expressed as J2−L2−S2

2 having possible eigenvalues of 15/4−2−3/4
2 ~2 = ~2/2 for J = 3/2

and 3/4−2−3/4
2 ~2 = −~2 for J = 1/2, giving the energy di�erence α3

2~
2

(b) Nevertheless, we actually do not need the Clebsh Gordan coe�cients, for sake of extra practice

we give them for L = 1 where we have 6 di�erent states:

|1/2, 1/2〉 =
1√
3
|1, 0〉|1/2, 1/2〉 −

√
2

3
|1, 1〉|1/2,−1/2〉 (10)

|1/2,−1/2〉 =

√
2

3
|1, 0〉|1/2,−1/2〉 − 1√

3
|1,−1〉|1/2, 1/2〉 (11)

|3/2, 3/2〉 = |1, 1〉|1/2, 1/2〉 (12)

|3/2, 1/2〉 =

√
2

3
|1, 0〉|1/2, 1/2〉+

1√
3
|1, 1〉|1/2,−1/2〉 (13)

|3/2,−1/2〉 =
1√
3
|1, 0〉|1/2,−1/2〉+

√
2

3
|1,−1〉|1/2, 1/2〉 (14)

|3/2,−3/2〉 = |1,−1〉|1/2,−1/2〉 (15)

The spatial part of the ground state is just a constant as L = 0 we can consider the z|ϕ0〉
term in the inner product as |1, 0〉|1/2,±1/2〉 Now we only need to know what MJquantum



numbers can come up in the J = 1/2 subspace

〈1/2, 1/2|〉 6= 0 =

(
=

1√
3

)
(16)

〈3/2, 1/2|1, 0〉|1/2, 1/2〉 6= 0

(
=

√
2

3

)
(17)

〈3/2,−1/2|1, 0〉|1/2,−1/2〉 6= 0

(
=

1√
3

)
(18)

where the "non-zeroness" of the results can be seen from the fact that in these three states we

will necessarily have the |1, 0〉|1/2, 1/2〉 with some Clebsh-Gordan coe�cient, unrelevant for us

now! The last 2 results are again for extra practice!

3. Problem

Find the phase shift corresponding to l = 0 in the case of the following spherical potential:

V (r) =

{
0 if r > R
−V0 if r ≤ R

The time independent Schrödinger equation has the following form in coordinate representation:

−1

r

d2

dr2
(rϕ) +

l(l + 1)

r2
ϕ+

2m

~2
V (r)ϕ = k2ϕ

Point out that rϕ = sin(kr) and rϕ = cos(kr) functions satisfy the Schrödinger equation above in

the case of l = 0! Give the low energy limit of the total cross-section!

Solution:

We can rewrite the equation as:

d2

dr2
(rϕ) = −k2(rϕ), for r > R (19)

d2

dr2
(rϕ) = −κ2(rϕ), for r < R (20)

with κ2 = k2 + 2mV0
~2 = 2m(E+V0)

~2 , solved by the general linear combination a cos(kr)
k + b sin(kr)k

and a cos(κr)
κ + b sin(κr)κ , where in order to relate it to the l = 0 special case of the general result,

rj0(kr) = sin(kr)
k and rn0(kr) = cos(kr)

k we wrote in the denominators the wavenumbers.

Inside the ball we can only have the regular solution, which for l = 0 reads: ϕ(r < R) = sin(κr)
κ ,

κ2 = k2 + 2mV0
~2 ≡ q2 + k2, k2 = 2mE

~2 , while outside we can have a general superposition, ϕ(r >

R) = a sin(kr)
k + b cos(kr)k → tan δ0 = b/a, we write the boundary conditions as

sin(κR)

κ
= a

sin(kR)

k
+ b

cos(kR)

k
cos(κR) = a cos(kR)− b sin(kR)

Which can be cast into a matrix equation:(
sin(kR)

k
cos(kR)

k
cos(kR) − sin(kR)

)(
a
b

)
=

(
sin(κR)

κ
cos(κR)

)

Using the general inversion of a 2 × 2 matrix we have

((
a b
c d

))−1
= 1

ad−bc

(
d −b
−c a

)
with the

trivial substitutions we get that:

tan δ0 = −sin(kR) cos(κR)/k − cos(kR) sin(κR)/κ

sin(kR) sin(κR)/κ+ cos(kR) cos(κR)/k
=
k tan(κR)− κ tan(kR)

k tan(kR) tan(κR) + κ



Let us investigate the low energy limit, with k � 1 and q2 = 2mV0
~2 , we have for the terms, κ ≈ q,

k tan(κR) ≈ k tan(qR) ,−κ tan(kR) ≈ −κkR , k tan(kR) tan(κR) ∼ k2 ≈ 0, so in total we have

tan δ0 ≈ kR
(

1

qR
tan(qR)− 1

)
for which the corresponding cross section, using the relation sin2 x = tan2 x

1+tan2 x

σ0(k) =
4π

k2
tan2 δ0

tan2 δ0 + 1
≈ 4π

k2
tan2 δ0 = 4πR2

(
1

qR
tan(qR)− 1

)2

4. Problem 25 pont

Consider a one dimensional particle with q charge initially in a harmonic oscillator ground state

ϕ0 (x) =
1√
x0
√
π
e
− x2

2x20 ,

at time t = 0 we switch on an E homogenous electric �eld

H =
p2

2m
− Eqx .

Determine the time-dependence of the variance of the x coordinate operator!

Solution

x(t) = e
i
~Htxe−

i
~Ht

[H,x] =
~
i

p

m
, [H, [H,x]] =

~
i
[H,

p

m
] = −~

i

qE
m

[x, p] =

(
~
i

)2 qE
m

Applying the Haussdor� expansion:

x(t) = x+
p

m
t+

qE
m
t2 ,

from which it follows that

x2(t) = e
i
~Htx2e−

i
~Ht = e

i
~Htxe−

i
~Hte

i
~Htxe−

i
~Ht = x(t)x(t)

⇓

x2(t) = x2 +
p2

m2
t2 +

q2E2

m2
t4 +

xp+ px

m
t− 2x

qE
m
t2 − 2p

qE
m2

t3

Exploiting the fact that ϕ0 is an eigenstate of a linear harmonic oscillator

〈x (t)〉 = 〈ϕ0|x(t)|ϕ0〉 =
qE
m
t2

and 〈
x2
〉

=
x20
2〈

p2
〉

=
p20
2

(
p0 =

~
x0

)
xp+ px ∼

(
a+ a+

) (
a− a+

)
+
(
a− a+

) (
a+ a+

)
(
a+ a+

) (
a− a+

)
= a2 − a+2 + a+a− aa+(

a− a+
) (
a+ a+

)
= a2 − a+2 − a+a+ aa+



xp+ px ∼ a2 − a+2

⇓

〈ϕ0|xp+ px|ϕ0〉 = 0

From where

〈x2 (t)〉 = 〈ϕ0|x2(t)|ϕ0〉 =
x20
2

+
p20

2m2
t2 +

q2E2

m2
t4

implying for the variance

〈x2〉 − 〈x〉2 =
x20
2

+
p20

2m2
t2


