
Problem solving class 9 (19th Nov)

1. Dirac equation

(γµpµ −M)ψ = 0

gives back the Klein-Gordon equation after acting with (γµpµ +M), if the γ-matrices satisfy the

following anticommutation relations:

{γµ, γν} = 2gµν

and M = mc. In terms of di�erential operators,

(iγµ∂µ − κ)ψ = 0 ,

with κ = mc
~ being the Compton wavelength.

Trivially, we have
(
γ0
)2

= I,
(
γi
)2

= −I, while the traces are zero:

Tr
(
γ0
)

= −Tr
(
γ0
(
γi
)2)

= Tr
(
γiγ0γi

)
= Tr

(
γ0
(
γi
)2)

= −Tr
(
γ0
)

= 0 (1)

Tr
(
γi
)

= Tr
(
γi
(
γ0
)2)

= −Tr
(
γ0γiγ0

)
= −Tr

(
γi
(
γ0
)2)

= −Tr
(
γi
)

= 0 (2)

Furthermore the Dirac matrices' dimension is even. Since
(
γ0
)2

= I and
(
γi
)2

= −I, the eigenvalues

are ±1 and ±i, respectively. Thus, the multiplicity of the eigenvalues +1 and -1 (or +i and −i)

should be the same in order to get a zero trace, meaning that we have an even number of eigenval-

ues, which equals the dimension of the matrix!

The Dirac group has 32 elements and 17 conjugate classes implying that either we have 16 one

dimensional and 1 four dimensional or 12 one dimensional and 5 two dimensional irreducible rep-

resentations .

2. Let us show that we cannot �nd four independent 2 dimensional matrices that satisfy the an-

ticommutation relations. Let us take the three Pauli matrices as multiplied by i, satisfying the

anticommutation relations:

γj ≡ iσj ,
{
iσj , iσk

}
= −2δjk (3)

Now if we could �nd a fourth matrix satisfying the relations in the same way as γ0, there would

be a faithful representation also for 2× 2 matrices. Using the fact that the Pauli matrices together

with the unit matrix σ0 ≡ I2 form a basis in the space of 2× 2 matrice, we write

γ0 = c0σ
0 + ckσ

k

and investigate the anticommutators with σj ,

{
c0σ

0 + ckσ
k, σj

}
= 2c0σ

j − 2cj = 0⇔ c0 = 0, cj = 0, ∀j = 1, 2, 3 , (4)

meaning that there cannot exist a fourth 2× 2 matrix.



3. The γ5 matrix

Dirac matrices in standard representation:

γ0 =

(
I 0
0 −I

)
, γk =

(
0 σk
−σk 0

)
β = γ0 , αk = γ0γk =

(
0 σk
σk 0

)
, Σk =

(
σk 0
0 σk

)
Important observation is that γ5 = γ0γ1γ2γ3 anticommutes with all the Dirac matrices:

γ5 =

(
I 0
0 −I

)(
0 σ1
−σ1 0

)(
0 σ2
−σ2 0

)(
0 σ3
−σ3 0

)
=

(
0 σ1
σ1 0

)(
−iσ1 0

0 −iσ1

)
= −i

(
0 I
I 0

)
.

Consequently, (
γ5
)2

= −I4 .

We can prove this based on the anticommutation relations only,

(
γ5
)2

= γ0γ1γ2γ3γ0γ1γ2γ3 = −γ0γ1γ2γ0γ3γ1γ2γ3 = γ0γ1γ0γ2γ3γ1γ2γ3 = −γ1γ2γ3γ1γ2γ3

= γ2γ3γ2γ3 = γ3γ3 = −I4

and also that γ5 anticommutes e.g. with γ2

γ5γ2 = γ0γ1γ2γ3γ2 = −γ0γ1γ2γ2γ3 = γ0γ2γ1γ2γ3 = −γ2γ0γ1γ2γ3 ≡ −γ2γ5

where we used γµγν = −γνγµ for µ 6= ν, γ0γ0 = I4 and γiγi = −I4 for i = 1, 2, 3.

4. Dirac Hamiltonian

Multiplying the Dirac equation,

(γµpµ −mc)ψ = 0 ,

with cγ0 and separating the i~∂t part, we obtain an equation formally similar to the Schrödinger

equation,

i~∂tψ = Hψ
(
cαp + βmc2

)
ψ , (5)

with the Dirac-Hamiltonian,

H = cαp + βmc2 .

In the presence of electromagnetic �eld, Aµ = (Φ/c,−A), we have to substitute the canonical four

momentum pµ with the kinetic momentum pµ − qAµ,

(γµ(pµ − qAµ)−mc)ψ = 0 , (6)

⇓

i~∂tψ =
(
cα(p− qA) + qΦ + βmc2

)
ψ , (7)



thus the Dirac Hamiltonian reads as

H = cα(p− qA) + qΦ + βmc2 . (8)

In case of time independent potentials, the time dependence can be separated from the wavefunction,

ψ(r, t)→ e
i
~Etψ(r), leading to the eigenvalue equation of the Dirac Hamiltonian,

Hψ =
(
cα(p− qA) + qΦ + βmc2

)
ψ = Eψ .

For free particles, this simpli�es to

Hψ =
(
cαp + βmc2

)
ψ = Eψ

⇓(
mc2 − E cσp
cσp −(E +mc2)

)
ψ = 0

where we separated the Hamiltonian into 2× 2 blocks.

Conserved quantity: Σp⇒ [H,Σp] = 0

[H,Σp] =

(
mc2 cσp
cσp −mc2

)(
σp 0
0 σp

)
−
(

σp 0
0 σp

)(
mc2 cσp
cσp −mc2

)
= 0

A little σ gymnastic:

σjσk = δjk + iεjklσl , (σp)2 = σjpjσkpk = (Iδjk + iεjklσl)pjpk = pkpkI = p2I

Let us look for the solution in the planewave form

ψ = eikr
(
u
v

)
Substituing it into the Dirac equation:(

mc2 − E c~σk
c~σk −(mc2 + E)

)(
u
v

)
= 0 (9)

which has nontrivial solutions if

det

(
mc2 − E c~σk
c~σk −(mc2 + E)

)
= E2 −m2c4 − c2}2k2 = 0

⇓

E = ±
√
m2c4 + c2~2k2

Expressing v from the second row of (9):

v =
c~σk

mc2 + E
u



For the positive energy solutions the denominator is greater than 2mc2, that is why v is called

"small component":

(mc2 − E)u + c~σk v = (mc2 − E)u +
(c~σk)2

mc2 + E
u = 0

Substituing it to the previous equation, we get indeed

m2c4 − E2 + c2~2k2 = 0 , E = ±
√
m2c4 + c2~2k2 .

Let w be an arbitrary two component vector, then the orthogonal eigenvectors of the σ
k

k
helicity

matrix can be contructed as

u± =

(
I± σ

k

k

)
w

since

σ
k

k

(
I± σ

k

k

)
w = ±

(
I± σ

k

k

)
w︸ ︷︷ ︸

eigenvector

,

u†+u− = w†
(
I± σ

k

k

)(
I∓ σ

k

k

)
w = 0 .

So the free solution takes the form for the positive energy sector

N
(

u±
± c~k
mc2+E+

u±

)
, u± =

(
I± σ

k

k

)
w .

It goes in an analogous wway for the negative nergy solutions, where we employ the second row of

the eigenvalue equation: (
mc2 − E c~σk
c~σk −(mc2 + E)

)(
u
v

)
= 0

Expressing now u from the �rst row:

u =
c~σk

E− −mc2
v

with E− = −
√

(pc)2 + (mc2)2, then by similar considerations and choosing the eigenbasis according

to the eigenvectors of the helicity matrix we obtain

N
(
± c~k
E−−mc2 v±

v±

)
, v± =

(
I± σ

k

k

)
w

5. Time derivative of L = r× p
dL

dt
=
i

~
[H,L]

For simplicity, let's consider zero magnetic �eld B = 0, thus we can take A = 0. Making use that

Li acts simultaneously on the four components of the wavefunction, in fact it shouldbe written as

I4 ⊗ Li, it commutes with α and β,

[H,Li] = [cαjpj + qΦ + βmc2, Li]

= cαj [pj , Li] + [qΦ, Li] .



Thus, only the following commutators have to be calculated,

[pj , Li] = εikl [pj , xkpl] = εikl [pj , xk] pl =
~
i
εiklδjkpl =

~
i
εijlpl

⇓

αj [pj , Li] =
~
i
εijlαjpl =

~
i

(α× p)i

and

[qΦ, Li] = −εijk [xjpk, qΦ] = −εijk xj [pk, qΦ] = −~
i
εijk xj [∂k, qΦ]

= −~
i
εijk xj∂k (qΦ)

⇓

[qΦ,L] = −~
i

(r×∇ (qΦ))

giving the total time-derivative of L,

dL

dt
= cα× p + r× F

where

F = −∇ (qΦ) .

Homework: Prove that the time-derivative of J = L + S with S = ~
2Σ is

dJ

dt
=
i

~
[H,J] = r× F

Dirac group

The four γµ as generators of the Dirac group give the following group elements when using the anticom-

mutation relations:

± I, ±γ0, ±γ1, ±γ2, ±γ3

± γ0γ1, ±γ0γ2, ±γ0γ3, ±γ1γ2, ±γ1γ3, ±γ2γ3

± γ0γ1γ2, ±γ0γ1γ3, ±γ1γ2γ3, ±γ0γ2γ3

± γ0γ1γ2γ3,

(10)

altogether 32 elements. Now we show that there are 17 conjugate classes:

By de�nition if h−1gh = f , then g and f are in the same conjugate class. Now it is easy to see that by

conjugation only the sign of the group elements can be changed, but not the γµ matrices in them, that is

why each term containing γµ matrices are in 2 element conjugate classes with a group element that are

−1 times itself. For example using the anticommutaion relations γ0γ2γ0 = −γ2,
(
γ0
)−1

= γ0. So the 30

group elements with γµ matrices form 15 conjugate classes:

± γ0, ±γ1, ±γ2, ±γ3

± γ0γ1, ±γ0γ2, ±γ0γ3, ±γ1γ2, ±γ1γ3, ±γ2γ3

± γ0γ1γ2, ±γ0γ1γ3, ±γ1γ2γ3, ±γ0γ2γ3

± γ0γ1γ2γ3,

(11)



while the −I and I cannot be transformed into each other by conjugation, as all group elements commute

with them and by de�nition h−1(±I)h = h−1h(±I) = ±I, so they form 2 additional one element conjugate

classes, altogether giving a total of 17 conjugate classes.


