Problem solving class 9 (19th Nov)

1. Dirac equation
(’y“pu - M) =0

gives back the Klein-Gordon equation after acting with (y*p, + M), if the y-matrices satisfy the

following anticommutation relations:
{v" 9"} = 29"
and M = mec. In terms of differential operators,

(V"0 — k)Y =0,

with k = ¢ being the Compton wavelength.

Trivially, we have (70)2 =1, (vi)2 = —I, while the traces are zero:
(1) = =T (2°(+)") = Tr(r1*) = Tr(5°(+)°) = ~Tx(+°) =0 1)
Tr(q/i) = Tr(vi 70)2> = —Tr(’yofyivo) = —Tr(wi ('yo)z) = —Tr(’yi) =0 (2)
Furthermore the Dirac matrices’ dimension is even. Since (70)2 =1 and(’yi)2 = —I, the eigenvalues

are £1 and =i, respectively. Thus, the multiplicity of the eigenvalues +1 and -1 (or +¢ and —i)
should be the same in order to get a zero trace, meaning that we have an even number of eigenval-
ues, which equals the dimension of the matrix!

The Dirac group has 32 elements and 17 conjugate classes implying that either we have 16 one
dimensional and 1 four dimensional or 12 one dimensional and 5 two dimensional irreducible rep-

resentations .

2. Let us show that we cannot find four independent 2 dimensional matrices that satisfy the an-
ticommutation relations. Let us take the three Pauli matrices as multiplied by i, satisfying the
anticommutation relations:

7 =0, {iaj,iak} = —247* (3)

Now if we could find a fourth matrix satisfying the relations in the same way as %, there would
be a faithful representation also for 2 x 2 matrices. Using the fact that the Pauli matrices together

with the unit matrix ¢° = I, form a basis in the space of 2 x 2 matrice, we write
'yo = coao + ckak
and investigate the anticommutators with o7,

{cocro —|—ckak,crj} = 2¢p0? — 2c;,=0&¢=0,¢;=0,Vj=1,2,3, (4)

meaning that there cannot exist a fourth 2 x 2 matrix.



3. The 7° matrix

Dirac matrices in standard representation:

I o 0 o
0 __ k _ k

0 o o 0
_ _ 0k _ k _ k
B_fYOv Oék_’y,y_(o.k 0)’ Ek_<0 Uk)

Important observation is that v° = 4°y'4243 anticommutes with all the Dirac matrices:

5 (I 0 0 o 0 o9 0 o3

T=\o -1)\=0y 0)\=0p 0)\=03 0O
o 0 g1 —iO’l 0 . 0 I
“\oy 0 0  —ioy) “\1 0/

(75)2 =-I4.

We can prove this based on the anticommutation relations only,

Consequently,

(75) _ 7071727370717273 _ 707172,}/073717273 _ 707170727371,}/273 _ 717273717273

=727’ =% = -1y

and also that v° anticommutes e.g. with ~?

Y72 =739 = %% = 09218 = =209 yR = =R

where we used Y#4¥ = —y"y* for p # v, v99° =1 and ~v'y* = —1 for i = 1,2,3.

4. Dirac Hamiltonian
Multiplying the Dirac equation,
('pu —me) Y =0,
with ¢y? and separating the ih0; part, we obtain an equation formally similar to the Schrédinger
equation,
ihdyp = Hy (cap + Bmc?) ¢, (5)
with the Dirac-Hamiltonian,

H = cap + fmc? .

In the presence of electromagnetic field, A, = (®/c,—A), we have to substitute the canonical four

momentum p,, with the kinetic momentum p,, — ¢4,

(Y*(pp — qAp)—me)p =0, (6)

4

ihdyp = (ca(p — gA) + q® + Bmc?) b, (7)



thus the Dirac Hamiltonian reads as
H = ca(p — qA) + q® + pmc?. (8)

In case of time independent potentials, the time dependence can be separated from the wavefunction,

Y(r,t) — e%Etz/J(r), leading to the eigenvalue equation of the Dirac Hamiltonian,
HY = (ca(p — gA) + ¢® + BmCQ) = E.
For free particles, this simplifies to
Hy = (cap + BmCQ) Y= Evy
4
2 _
( mcca'p " —(Ecj-I;nCQ) ) ¥=0
where we separated the Hamiltonian into 2 x 2 blocks.

Conserved quantity: ¥p = [H,Xp] =0
mc®  cop op O
[H, Xp] = < cop —mc? 0 op
(0’]) 0><mc2 ca’p)
— 9 — 0
0 op cop —mc
A little o gymnastic:
0jok = 0k +icjror, (o)’ = 0opiorpe = (165 + i€juo)pjpr = prprl = p°1

Let us look for the solution in the planewave form

__ _ikr u
o= (0)
Substituing it into the Dirac equation:
me* — FE chok u
( chok  —(mc® + E) ) (v) =0 (9)
which has nontrivial solutions if

det me? — E chok
¢ chok —(mc®+FE

) ) = E? —m?c - h’k* =0
I

E = +vm2ct + c2h2k?2
Expressing v from the second row of (9):

chok
= ———u
mec2 + F



For the positive energy solutions the denominator is greater than 2mc?, that is why v is called

"small component":

hok)?
(chak)®

2 2
—-F hokv = - FE =
(mc Ju+ chokv = (mc )u+m02—|—Eu

Substituing it to the previous equation, we get indeed
m2ct — E? + Pr%k? =0, E = +vm2c* + c2h2k2 .

k
Let w be an arbitrary two component vector, then the orthogonal eigenvectors of the o helicity

ug = (H:I:aZ)w

matrix can be contructed as

since

eigenvector

k k
uiu_ =w' (]I:to-k> (]I:Fak)w:o.

So the free solution takes the form for the positive energy sector

ut o k
/\f( imchE+ui ) , Uy = (]H:O'k>w.

It goes in an analogous wway for the negative nergy solutions, where we employ the second row of

mc? — E chok u)
chok  —(mc® + E) v/

Expressing now u from the first row:

the eigenvalue equation:

chok
u= ———v
E_ —mc?
with E_ = —/(pc)? + (mc?)?, then by similar considerations and choosing the eigenbasis according

to the eigenvectors of the helicity matrix we obtain

chk
v - (10

Vi

. Time derivative of L=r x p

dL

— =—-[H,L
For simplicity, let’s consider zero magnetic field B = 0, thus we can take A = 0. Making use that
L; acts simultaneously on the four components of the wavefunction, in fact it shouldbe written as

I ® L;, it commutes with a and S,

[H7 LZ] = [ca]pj + qq) + Bm027 LZ]

= Cay [pja LZ] + [q(I)’LZ} :



Thus, only the following commutators have to be calculated,

h h
[pj7L¢] = Eikl [pjaxkpl] = Eikl [pjﬂ«"k]pl = gfikl(sjkpl = ggijlpl

U
a;lpj, Li] = 5 EiPL = ;(a X Pp);
and
h
[a®, L] = —€ijk [25p0, 4®] = —ij 25 [Pk, ¢P] = —~€ijr 25 [0, 4®]
h
= —-€in i (¢P)
I

4, 1) = - (r < ¥ (q®)

giving the total time-derivative of L,

%* axp+rxF
a P

where

F=-V(q®).

Homework: Prove that the time-derivative of J = L + S with S = %E is

%:%[HJ]:er
Dirac group
The four v* as generators of the Dirac group give the following group elements when using the anticom-
mutation relations:

+1, £9°, £9%, £9%, +9°

£ 7091 4092, 47093 £ala2 4qla3 414243 o)

e B e o e T A T P 2o o B

409192,
altogether 32 elements. Now we show that there are 17 conjugate classes:
By definition if h='gh = f, then g and f are in the same conjugate class. Now it is easy to see that by
conjugation only the sign of the group elements can be changed, but not the v* matrices in them, that is
why each term containing v* matrices are in 2 element conjugate classes with a group element that are
—1 times itself. For example using the anticommutaion relations 7%727° = —42, (70)71 =+°. So the 30
group elements with y# matrices form 15 conjugate classes:

+7°0, £41 £42 443

£9%9, 2997 29097, £ By, 92

£ 409102 0yl yly2y3 4y 0y243

091923,



while the —I and I cannot be transformed into each other by conjugation, as all group elements commute
with them and by definition h=!(&I) h = h~th(£I) = =£1, so they form 2 additional one element conjugate

classes, altogether giving a total of 17 conjugate classes.



