8. gyakorlat (nov. 12)

1. Klein-Gordon equation in external electromagnetic field and continuity equation

Four component vector potential:
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Klein Gordon equation for a free particle:
(PP —m*c®) Y(w,) =0 (2)
where p# = (%%,p), p = %V. Now in the same way as in the case of magnetic field and 3

dimensional vectorpotential the A, enters the equation in the following way:
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In the "usual way" one can take the conjugate equation and multiply it with @ while the original
one with ¥* and substracting them from each other we obtain a continuity equation. That is, first
we write out the derivatives with respect to the spatial and temporal parts and expand the squares:

= (00~ V)9 = (b~ gAY + m??)
(@

h? 2ighV 22

& (—Qaf -2+ ) ¥ = (—h>V? + 2ighAV + ¢* A% + m’c?)
c c c

Now taking the adjungate of this equation, that is just complex conjugating the wave-functions and

multiply the original equation with ¢¥* and the adjungate with v and substracting them from each

other the terms without differentiation operators drop trivially and we arrive at:
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Now using the identity 1/ V2y* —1*V?y) = V (1yVyp* — 1* V1)) and similarly for the time derivatives
YOPY* — 0% = Oy (YOub* — 1*Oyyp) while for the second term on both sides we trivially have
YVY* +*Vy = V (|¢]?) and similarly for the time-derivative! Then we only need to assign the
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dimensionally properly the constants:
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j= 5 (VY = vyt - Loy ®)

Or writing it with the four current, j* = (,o/c,j) = iq—ﬁ(d)*@”w — POHY*) — %@Zz*w we obtain:
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which can be derived straightfrowardly from the Klein-Gordon equation with the four component

notation, where we again take the adjungate equation and multiply it with ¢, while the original



equation is multiplied with ¢* and again substract them from each other:
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Next we consider the free particle case with plane wave solutions ¥(r,t) = AewPr=#Bt In the
continuity equation without magnetic and electric field the spatial derivatives can be replaced by

V «+ +p while the temproal derivatives with 9; <+ —# E with which the current and density become:

qgh 2ip _ p

TR S (1)
E
p= wW)(rvt)F (12)

but that is not satisfying the positive definiteness of the particle density as it can take negative
values as well, as £ = 41/m2c* + p2c2. The reason behind it is that we have a second order equation
with respect to time, meaning that we have an extra initial condition, namely for d;p(r,t) which

has no physical meaning!



2. Klein-paradox:

Consider a potential of height Vi and width d for which the Klein-Gordon equation reads:
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The reflection coefficient: R = |A|? and the transition coefficient T = |D|2. If k'd = n, then the

transition coefficient T = 1.
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The wavenumber of the free particle (z < 0, z > d) is real: E > mc?, ¢ = e'(kz=«t)
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e Vy<E—-mc® kK isreal, T =1,if k¥'d =nnr
o £ —mc®> < Vy < E+mc?® k' is imaginary, inside the well we have decaying solutions, 7' < 1,

yielding the familiar tunneling effect.

o V > E+mc? kK is real again, T = 1, if k'd = nm, we have negative density, p = ¢ 5 < 0.
me

Negative particle currents flowing from the right to the left are interpreted as currents of

anti-particles going from the left to the right!
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Klein-Gordon equation in homogenous magnetic field

Klein-Gordon equation:
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Let us look for the solution in form of ) = e ***p(r) and substitute it into the KG equation:
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Reordering the equation and multiplying by 1/2m:
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The right hand side is the familiar, classical Hamiltonian of the Schrédinger equation with vector

potential A
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where we introduced the notation A = ( Z”” ), AT = (af,a)).
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H= h%/ﬁ(n — o)A+ h%

Diagonalizing the matrix I — o, we can separate the ladder operators in the Hamiltonian. The
eigenvalues are: 2 and 0. While only the 2 eigenvalue gives contribution to the Hamiltonian the
ladder operators corresponding to the 0 eigenvalue only change the degeneratev eigenstates. The

energy can be read out from the original operator, given that the relevant eigenvalue is 2:
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Back to the Klein-Gordon equation:
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In the low energy limit we get back the classical energies:
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