
8. gyakorlat (nov. 12)

1. Klein-Gordon equation in external electromagnetic �eld and continuity equation

Four component vector potential:

Aµ =


Φ
c
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A3

 ≡ (Φ
c
A

)
(1)

Klein Gordon equation for a free particle:(
pµpµ −m2c2

)
ψ(xµ) = 0 (2)

where pµ =
(
i~
c
∂
∂t ,p

)
, p = ~

i∇. Now in the same way as in the case of magnetic �eld and 3

dimensional vectorpotential the Aµ enters the equation in the following way:(
(pµ − qAµ)(pµ − qAµ)−m2c2

)
ψ = 0 (3)

In the "usual way" one can take the conjugate equation and multiply it with ψ while the original

one with ψ∗ and substracting them from each other we obtain a continuity equation. That is, �rst

we write out the derivatives with respect to the spatial and temporal parts and expand the squares:

1

c2
(i~∂t − qV )

2
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(
(p− qA)

2
+m2c2

)
ψ

⇔
(
−~2

c2
∂2
t −

2iq~V
c2
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q2V 2

c2

)
ψ =

(
−~2∇2 + 2iq~A∇+ q2A2 +m2c2

)
ψ

(4)

Now taking the adjungate of this equation, that is just complex conjugating the wave-functions and

multiply the original equation with ψ∗ and the adjungate with ψ and substracting them from each

other the terms without di�erentiation operators drop trivially and we arrive at:

~2

c2
(
ψ∂2

t ψ
∗ − ψ∗∂2

t ψ
)
− 2i~V

c2
(ψ∂tψ

∗ + ψ∗∂tψ) = ~2
(
ψ∇2ψ∗ − ψ∗∇2ψ

)
+

2i~A
c2

(ψ∇ψ∗ + ψ∗∇ψ)

(5)

Now using the identity ψ∇2ψ∗−ψ∗∇2ψ = ∇ (ψ∇ψ∗ − ψ∗∇ψ) and similarly for the time derivatives

ψ∂2
t ψ
∗ − ψ∗∂2

t ψ = ∂t (ψ∂tψ
∗ − ψ∗∂tψ) while for the second term on both sides we trivially have

ψ∇ψ∗ + ψ∗∇ψ = ∇
(
|ψ|2

)
and similarly for the time-derivative! Then we only need to assign the

dimensionally properly the constants:

∇j+ ∂tρ = 0 (6)

ρ =
iqh

2mc
(ψ∗∂tψ − ψ∂tψ∗)−

qV

mc
ψ∗ψ (7)

j =
qh

2im
(ψ∗∇ψ − ψ∇ψ∗)− qA

m
ψ∗ψ (8)

Or writing it with the four current, jµ =
(
ρ/c, j

)
= iq~

2m (ψ∗∂µψ − ψ∂µψ∗)− qAµ

m ψ∗ψ we obtain:

∂µj
µ = 0 (9)

which can be derived straightfrowardly from the Klein-Gordon equation with the four component

notation, where we again take the adjungate equation and multiply it with ψ, while the original



equation is multiplied with ψ∗ and again substract them from each other:

ψ∗
(
(pµ − qAµ)(pµ − qAµ) +

m2c2

~2

)
ψ − ψ

(
(pµ − qAµ)(pµ − qAµ) +

m2c2

~2

)
ψ∗ =

ψ∗ (pµpµ − 2qAµpµ)ψ − ψ (pµpµ − 2qAµpµ)ψ
∗ = −q~2∂µ(ψ

∗∂µψ − ψ∂µψ∗)− ∂µ(i2q~Aµψ∗ψ)

= − i

2m~
∂µj

µ = 0⇔ ∂µj
µ = 0

(10)

Next we consider the free particle case with plane wave solutions ψ(r, t) = Ae
i
~pr− i

~Et. In the

continuity equation without magnetic and electric �eld the spatial derivatives can be replaced by

∇ ↔ i
~p while the temproal derivatives with ∂t ↔ − i

~E with which the current and density become:

j =
qh

2mi

2ip

~
= q

p

m
|ψ(r, t)|2 (11)

ρ = q
E

mc2
|ψ(r, t)|2 (12)

but that is not satisfying the positive de�niteness of the particle density as it can take negative

values as well, as E = ±
√
m2c4 + p2c2. The reason behind it is that we have a second order equation

with respect to time, meaning that we have an extra initial condition, namely for ∂tρ(r, t) which

has no physical meaning!



2. Klein-paradox:

Consider a potential of height V0 and width d for which the Klein-Gordon equation reads:

1

c2
(i~∂t − V )

2
ψ =

(
−~2∂2

x +m2c2
)
ψ

ψ = ei(kx−ωt)

k = ± 1

~c
√
(~ω − V0)2 −m2c4

V0
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ωAei(−kx−    t) ω

V(x)

I II III

dO x

De+ i(−kx−   t) 

I. domain

ei(kx−ωt) +Aei(−kx−ωt)

ikei(kx−ωt) − ikAei(−kx−ωt)

II. domain
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′x−ωt) − ik′Cei(−k
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)
=
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B
C
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)(
1
A

)
=
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II.-III. boundary
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′d + Ce−ik

′d = Deikd
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′d e−ik
′d

ik′eik
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)
, D̃ = 2k′eikdD

A =
(k′2 − k2) sin(k′d)

(k′2 + k2) sin(k′d) + ikk′ cos(k′d)

The re�ection coe�cient: R = |A|2 and the transition coe�cient T = |D|2. If k′d = nπ, then the

transition coe�cient T = 1.

k = ± 1

~c
√
~2ω2 −m2c4 , k′ = ± 1

~c
√

(~ω − V0)2 −m2c4 , E = ~ω

The wavenumber of the free particle (x < 0 , x > d) is real: E ≥ mc2, ψ = ei(kx−ωt)

ρ =
iq~
2mc2

(ψ∗∂tψ − ψ∂tψ∗)−
qV

mc2
ψ∗ψ = q

~ω − V
mc2

j =
q~
2im

(ψ∗∇ψ − ψ∇ψ∗)− qA

m
ψ∗ψ = q

~k−A

m

• V0 < E −mc2 k′ is real, T = 1, if k′d = nπ

• E −mc2 < V0 < E +mc2 k′ is imaginary, inside the well we have decaying solutions, T < 1,

yielding the familiar tunneling e�ect.

• V > E +mc2 k′ is real again, T = 1, if k′d = nπ, we have negative density, ρ = q
E − V
mc2

< 0.

Negative particle currents �owing from the right to the left are interpreted as currents of

anti-particles going from the left to the right!
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Klein-Gordon equation in homogenous magnetic �eld

Klein-Gordon equation:

1

c2
(i~∂t)2 ψ =

(
(p− qA)

2
+m2c2

)
ψ

Let us look for the solution in form of ψ = e−iωtϕ(r) and substitute it into the KG equation:

~2ω2

c2
ϕ =

E2

c2
ϕ =

(
(p− qA)

2
+m2c2

)
ϕ

Reordering the equation and multiplying by 1/2m:

1

2m

(
E2

c2
−m2c2

)
ϕ =

1

2m
(p− qA)

2
ϕ

The right hand side is the familiar, classical Hamiltonian of the Schrödinger equation with vector

potential A

1

2m
(p− qA)

2
ϕnm = Ẽnϕnm

where Ẽn = ~ωL(n+
1

2
) and ϕnm =

a+
1

n
a+

2

m

√
n!m!

|0, 0〉 eigenstates of the harmonic oscillator ,

ωL =
qB

m
.

Symmetric gauge: A = (−By/2, Bx/2, 0), ωL =
qB

m

H =
1

2m
(p− qA)

2
=

p2
x

2m
+

p2
y

2m
+

1

2
m
(ωL

2

)2

(x2 + y2)− ωL
2
Lz

introducing in the usual way the ladder operators ax =
1√
2

(
x

x0
+ i

px
p0

)
and

ay =
1√
2

(
y

x0
+ i

py
p0

)
:

H = ~
ωL
2

(
a+
x ax + a+

y ay + 1
)
− ~ωL

2i
(a+
x ay − a+

y ax)



H =
(a+
x , a

+
y ) ~

ωL
2

(
1 i
−i 1

)(
ax
ay

)
+ ~

ωL
2

= ~
ωL
2
A+(I− σy)A+ ~

ωL
2

where we introduced the notation A =

(
ax
ay

)
, A+ = (a+

x , a
+
y ).

H = ~
ωL
2
A+(I− σy)A+ ~

ωL
2

Diagonalizing the matrix I− σy we can separate the ladder operators in the Hamiltonian. The

eigenvalues are: 2 and 0. While only the 2 eigenvalue gives contribution to the Hamiltonian the

ladder operators corresponding to the 0 eigenvalue only change the degeneratev eigenstates. The

energy can be read out from the original operator, given that the relevant eigenvalue is 2:

En = ~ωL
(
n+

1

2

)
, a1 =

1√
2
(ax + iay) , a2 =

1√
2
(ax − iay)

ϕnm =
1√
n!m!

a+
1

n
a+

2

m|0, 0〉

Back to the Klein-Gordon equation:

1

2m

(
E2

c2
−m2c2

)
= ~ωL

(
n+

1

2

)

E = ±

√
2mc2~ωL

(
n+

1

2

)
+m2c4 = ±mc2

√
1 +

2~ωL
mc2

(
n+

1

2

)
In the low energy limit we get back the classical energies:

E −mc2 ≈ ~ωL
(
n+

1

2

)


