
6. gyakorlat (okt. 22)

1. Consider the Hamiltonian of a spin 1/2 particle in a magnetic �eld parallel to the z axis:

H = H0I−
qBz
m

Sz (1)

The systems stays in its ground state until a homogenous magnetic �eld is turned on along the x

direction, W (t) = − qBx

m Sx cos(ωt)

(a) Express the perturbation in interaction picture!

Time-evolution of operators are generated by the initial Hamiltonian, that is:

U(t, 0) = e−
i
~Ht = e−

i
~H0e

i
~

qBz
m Sz (2)

From here we can calculate the e�ect of the time-evolution on W (t), using the commutation

relation, [Sz, Sx] = i~Sy and [Sz, Sy] = −i~Sx. Further more also exploiting that spin-diagonal

part e−
i
~H0It commutes with Sx we get by applying the Haussdorf expansion, eABe−A =

B + [A,B] + 1
2! [A, [A,B]] + . . . : Now take the Schrödinger-equation in interaction picture:

i~∂t|ψD(t)〉 = WD(t)|ψD(t)〉 (3)

Introducing the time-evolution operator, UD(t, 0)|ψ(0)〉 = |ψD(t)〉 we have the following equa-

tion for it:

i~∂tUD(t, 0) = WD(t)UD(t, 0) (4)

⇒ UD(1)(t, 0) = I− i

~

∫ t

0

dt′WD(t′) (5)

Starting from one of the system's eigenstates, |ϕi〉⊗χα we have for the occupation amplitudes:

c(1)n (t) = δni −
i

~

∫ t

0

dt′〈ϕn|WD(t′)|ϕi〉 (6)

The eigenstates of the inital Hamiltonians are the eigenstates of the H0 Hamiltonians in the

tensor product with the spinor Hilber space, that is |ϕn,+〉 = |n〉 ⊗ χ+ and |ϕn,−〉 = |n〉 ⊗ χ−
with χ− =

(
0
1

)
and χ+ =

(
1
0

)
spin up and down states. Now exploiting the fact that W (t)

is diagonal in the spatial Hilbert space and o� diagonal in the spinor space:

〈ϕm,β |WD(t)|ϕn,α〉 = 0, for n 6= m, and α = ±, β = ± (7)

〈ϕn,+|WD(t)|ϕn,+〉 = 〈ϕn,−|WD(t)|ϕn,−〉 = 0 (8)

〈ϕn,+|WD(t)|ϕn,−〉 = 〈ϕn,+|WD(t)|ϕn,−〉∗ = −qBx
m

e−iωt (9)

→WD(t) = −qBx
m

I⊗
[

0 e−iωt

eiωt 0

]
(10)

→ c
(1)
n,±(t) = δni

(
δ±,α +

i

~
qBx
m

∫ t

0

dt′e∓iωt
′
δα,∓

)
= δni

(
δ±,α ∓

i

~
qBx
mω

(
e∓iωt − 1

)
δα,∓

)
(11)



Where the eigenstate was denoted by |ϕi,+〉 and the �rst annullation was obtained by the

orthogonality of the spatial parts of the wave-functions, which are left invariant up to a mul-

tiplying factor as H0 is spatial diagonal, so transitions are only allowed to the down spin state

but with the same spatial eigenstate.

2. Diamagnetic susceptibility of the Hydrogen atom

Determine the diamagnetic susceptibility of the ground state of the hydrogen atom by �rst order

time-independent perturbation theory. Suppose that energy can be written as E = E0 + BM ,

leading us to the conclusion that ∂E/∂B = M and ∂2E/∂B2 = χ. We work in a symmetric gauge:

A =
1

2

−ByBx
0

 (12)

by which the Hamiltonian takes the form:

H =
1

2m
(p− qA)

2 − ke2

r
=

1

2m

(
px +

1

2
qBy

)2

+
1

2m

(
py − 1

2
qBx

)2

+
1

2m
p2z −

ke2

r
(13)

H =
p2

2m
+

1

2
m
(ωL

2

)2(
x2 + y2

)
− ωL

2
(xpy − ypx)− ke2

r
(14)

H =
p2

2m
+

1

2
m
(ωL

2

)2(
x2 + y2

)
− ωL

2
Lz −

ke2

r
(15)

with ωL = qB
m the Larmor frequency. In the ground state l = 0 we simply have H0 = p2

2m −
ke2

r

with perturbation W = 1
2m
(
ωl

2

)2(
x2 + y2

)
with the wave function of H0 ϕ100 = 1√

πa0
e−r/a0 . This

e�ective Hamiltonian arises as for l = 0 we only have m = 0 for which Lz = 0!

Now the energy correction induced by the perturbation, writing the perturbation in spherical co-

ordiantes, W =
mω2

L

8 sin2 θr2

δE1(B) = 〈ϕ100|W |ϕ100〉 =
1

8

q2

m
B2

∫ 2π

0

dϕ

∫ π

0

dθ

∫ ∞
0

dr r2
1

πa20
e−2r/r0r2 sin3 θ (16)

The θ integral gives
∫ 1

−1 dx 1− x2 = 2− 2/3 = 4/3, then the radial integral yields∫ ∞
0

dr e2r/a0r4 =
3a50
4

(17)

yielding altogether for the energy correction δE(1)(B) =
q2a30
4m B2, from which the susceptibiltiy reads

χ =
q2a30
2m . We can see that we could have dropped from the expectation value of W the −ωL

2 Lz

term for any l > 0 quantum number as it is only proportional to −ωL

2 Lz ∝ B, giving zeros in the

susceptibility. For getting the proper diamagnetic susceptibility contribution from the −ωL

2 Lz term

one should rather consider second order perturbation theory in this term to tget teh coe�cient of

the quadratic magnetic �eld term.

3. Harmonic oscillator in magnetic �eld:

The Hamiltonian takes the form:

H =
p2

2m
+

1

2
m
(
ω2 + ω2

L

) (
x2 + y2

)
+

1

2
mω2z2 − ωL

2
Lz (18)



The z part is already diagonal in terms of the ladder operators, that is they appear as a†zaz

in the Hamiltonian while the (x, y) parts needs to be diagonalized as the Lz = pxy − pyx =

ix0p0
2

[(
a†x − ax

) (
a†y + ay

)
−
(
a†y − ay

) (
a†x + ax

)]
≡ i~

2

(
a†xay − a†yax

)
Hxy = ~Ω

(
a†xax + a†yay + 1

)
− i~ωL

2

(
a†xay − a†yax

)
(19)

withe Ω2 = ω2 + ω2
L.

Now let us diagonalize the (x, y) part by writing the corresponding Hamiltonian as

Hxy = ~
[
a†x
a†y

] [
Ω iωL/2

−iωL/2 Ω

] [
ax
ay

]
+ ~Ω (20)

So the task is to diagonalize the matrix connecting the ladder operators of di�erent directions,

giving: [
Ω iωL/2

−iωL/2 Ω

]
=

[
u11 u12
u21 u22

] [
ω̃1 0
0 ω̃2

] [
u11 u∗21
u∗12 u22

]
(21)

where the eigenvalues are the new frequencies of the diagonalized Hamiltonian and the u matrix

elements determine the roation of the new directions along which we have the new oscillating modes:

ω̃1,2 = Ω±
√

Ω2 − Ω2 + ω2
L/4 = Ω± ωL/2 (22)

ω̃1 = Ω +
ωL
2
, ω̃2 = Ω− ωL

2
(23)

u1 =

[
1
−i

]
, u2 =

[
1
i

]
(24)

⇒ Hxy = ~
[
a†x
a†y

] [
u11 u12
u21 u22

] [
ω̃1 0
0 ω̃2

] [
u11 u∗21
u∗12 u22

] [
ax
ay

]
= ~

[
a · u1

a · u2

] [
ω̃1 0
0 ω̃2

] [
a · u∗1
a · u∗2

]
+ ~Ω (25)

ã1 = ax + iay, ã2 = ax − iay (26)

yielding the digaonal total Hamiltonian:

H = ~ω̃1ã
†
1ã1 + ~ω̃2ã

†
2ã2 + ~ω

(
a†zaz +

1

2

)
+ ~Ω (27)

So the energy spectrum is

Enml = ~ω̃1n+ ~ω̃2m+ ~ω
(
l +

1

2

)
+ ~Ω (28)

This is similar to the so called Bogolyubov transformation, common in e.g.: superconductivity or

low temeprature Bose-Einstein condensates.

Note further that here we have in�nitely many degeneracies FOR ω = 0 with energies Enm =

~ωL

2 (n−m) + ~ωL ⇒ Enn = ~ωL ∀n.


