6. gyakorlat (okt. 22)

1. Consider the Hamiltonian of a spin $1 / 2$ particle in a magnetic field parallel to the z axis:

$$
\begin{equation*}
H=H_{0} \mathbb{I}-\frac{q B_{z}}{m} S_{z} \tag{1}
\end{equation*}
$$

The systems stays in its ground state until a homogenous magnetic field is turned on along the x direction, $W(t)=-\frac{q B_{x}}{m} S_{x} \cos (\omega t)$
(a) Express the perturbation in interaction picture!

Time-evolution of operators are generated by the initial Hamiltonian, that is:

$$
\begin{equation*}
U(t, 0)=e^{-\frac{i}{\hbar} H t}=e^{-\frac{i}{\hbar} H_{0}} e^{\frac{i}{\hbar} \frac{q B_{z}}{m} S_{z}} \tag{2}
\end{equation*}
$$

From here we can calculate the effect of the time-evolution on $W(t)$, using the commutation relation, $\left[S_{z}, S_{x}\right]=i \hbar S_{y}$ and $\left[S_{z}, S_{y}\right]=-i \hbar S_{x}$. Further more also exploiting that spin-diagonal part $e^{-\frac{i}{\hbar} H_{0} \mathbb{I} t}$ commutes with S_{x} we get by applying the Haussdorf expansion, $e^{A} B e^{-A}=$ $B+[A, B]+\frac{1}{2!}[A,[A, B]]+\ldots$: Now take the Schrödinger-equation in interaction picture:

$$
\begin{equation*}
i \hbar \partial_{t}\left|\psi^{D}(t)\right\rangle=W^{D}(t)\left|\psi^{D}(t)\right\rangle \tag{3}
\end{equation*}
$$

Introducing the time-evolution operator, $U^{D}(t, 0)|\psi(0)\rangle=\left|\psi^{D}(t)\right\rangle$ we have the following equation for it:

$$
\begin{align*}
& i \hbar \partial_{t} U^{D}(t, 0)=W^{D}(t) U^{D}(t, 0) \tag{4}\\
& \Rightarrow U^{D(1)}(t, 0)=\mathbb{I}-\frac{i}{\hbar} \int_{0}^{t} \mathrm{~d} t^{\prime} W^{D}\left(t^{\prime}\right) \tag{5}
\end{align*}
$$

Starting from one of the system's eigenstates, $\left|\varphi_{i}\right\rangle \otimes \chi_{\alpha}$ we have for the occupation amplitudes:

$$
\begin{equation*}
c_{n}^{(1)}(t)=\delta_{n i}-\frac{i}{\hbar} \int_{0}^{t} \mathrm{~d} t^{\prime}\left\langle\varphi_{n}\right| W^{D}\left(t^{\prime}\right)\left|\varphi_{i}\right\rangle \tag{6}
\end{equation*}
$$

The eigenstates of the inital Hamiltonians are the eigenstates of the H_{0} Hamiltonians in the tensor product with the spinor Hilber space, that is $\left|\varphi_{n,+}\right\rangle=|n\rangle \otimes \chi_{+}$and $\left|\varphi_{n,-}\right\rangle=|n\rangle \otimes \chi_{-}$ with $\chi_{-}=\binom{0}{1}$ and $\chi_{+}=\binom{1}{0}$ spin up and down states. Now exploiting the fact that $W(t)$ is diagonal in the spatial Hilbert space and off diagonal in the spinor space:

$$
\begin{align*}
& \left\langle\varphi_{m, \beta}\right| W^{D}(t)\left|\varphi_{n, \alpha}\right\rangle=0, \text { for } n \neq m, \text { and } \alpha= \pm, \beta= \pm \tag{7}\\
& \left\langle\varphi_{n,+}\right| W^{D}(t)\left|\varphi_{n,+}\right\rangle=\left\langle\varphi_{n,-}\right| W^{D}(t)\left|\varphi_{n,-}\right\rangle=0 \tag{8}\\
& \left\langle\varphi_{n,+}\right| W^{D}(t)\left|\varphi_{n,-}\right\rangle=\left\langle\varphi_{n,+}\right| W^{D}(t)\left|\varphi_{n,-}\right\rangle^{*}=-\frac{q B_{x}}{m} e^{-i \omega t} \tag{9}\\
& \rightarrow W^{D}(t)=-\frac{q B_{x}}{m} \mathbb{I} \otimes\left[\begin{array}{cc}
0 & e^{-i \omega t} \\
e^{i \omega t} & 0
\end{array}\right] \tag{10}\\
& \rightarrow c_{n, \pm}^{(1)}(t)=\delta_{n i}\left(\delta_{ \pm, \alpha}+\frac{i}{\hbar} \frac{q B_{x}}{m} \int_{0}^{t} \mathrm{~d} t^{\prime} e^{\mp i \omega t^{\prime}} \delta \alpha, \mp\right)=\delta_{n i}\left(\delta_{ \pm, \alpha} \mp \frac{i}{\hbar} \frac{q B_{x}}{m \omega}\left(e^{\mp i \omega t}-1\right) \delta \alpha, \mp\right) \tag{11}
\end{align*}
$$

Where the eigenstate was denoted by $\left|\varphi_{i,+}\right\rangle$ and the first annullation was obtained by the orthogonality of the spatial parts of the wave-functions, which are left invariant up to a multiplying factor as H_{0} is spatial diagonal, so transitions are only allowed to the down spin state but with the same spatial eigenstate.

2. Diamagnetic susceptibility of the Hydrogen atom

Determine the diamagnetic susceptibility of the ground state of the hydrogen atom by first order time-independent perturbation theory. Suppose that energy can be written as $E=E_{0}+B M$, leading us to the conclusion that $\partial E / \partial B=M$ and $\partial^{2} E / \partial B^{2}=\chi$. We work in a symmetric gauge:

$$
\mathbf{A}=\frac{1}{2}\left[\begin{array}{c}
-B y \tag{12}\\
B x \\
0
\end{array}\right]
$$

by which the Hamiltonian takes the form:

$$
\begin{align*}
H & =\frac{1}{2 m}(\mathbf{p}-q \mathbf{A})^{2}-\frac{k e^{2}}{r}=\frac{1}{2 m}\left(p_{x}+\frac{1}{2} q B y\right)^{2}+\frac{1}{2 m}\left(p y-\frac{1}{2} q B x\right)^{2}+\frac{1}{2 m} p_{z}^{2}-\frac{k e^{2}}{r} \tag{13}\\
H & =\frac{\mathbf{p}^{2}}{2 m}+\frac{1}{2} m\left(\frac{\omega_{L}}{2}\right)^{2}\left(x^{2}+y^{2}\right)-\frac{\omega_{L}}{2}\left(x p_{y}-y p_{x}\right)-\frac{k e^{2}}{r} \tag{14}\\
H & =\frac{\mathbf{p}^{2}}{2 m}+\frac{1}{2} m\left(\frac{\omega_{L}}{2}\right)^{2}\left(x^{2}+y^{2}\right)-\frac{\omega_{L}}{2} L_{z}-\frac{k e^{2}}{r} \tag{15}
\end{align*}
$$

with $\omega_{L}=\frac{q B}{m}$ the Larmor frequency. In the ground state $l=0$ we simply have $H_{0}=\frac{\mathbf{p}^{2}}{2 m}-\frac{k e^{2}}{r}$ with perturbation $W=\frac{1}{2} m\left(\frac{\omega_{l}}{2}\right)^{2}\left(x^{2}+y^{2}\right)$ with the wave function of $H_{0} \varphi_{100}=\frac{1}{\sqrt{\pi a_{0}}} e^{-r / a_{0}}$. This effective Hamiltonian arises as for $l=0$ we only have $m=0$ for which $L_{z}=0$!

Now the energy correction induced by the perturbation, writing the perturbation in spherical coordiantes, $W=\frac{m \omega_{L}^{2}}{8} \sin ^{2} \theta r^{2}$

$$
\begin{equation*}
\delta E^{1}(B)=\left\langle\varphi_{100}\right| W\left|\varphi_{100}\right\rangle=\frac{1}{8} \frac{q^{2}}{m} B^{2} \int_{0}^{2 \pi} \mathrm{~d} \varphi \int_{0}^{\pi} \mathrm{d} \theta \int_{0}^{\infty} \mathrm{d} r r^{2} \frac{1}{\pi a_{0}^{2}} e^{-2 r / r_{0}} r^{2} \sin ^{3} \theta \tag{16}
\end{equation*}
$$

The θ integral gives $\int_{-1}^{1} \mathrm{~d} x 1-x^{2}=2-2 / 3=4 / 3$, then the radial integral yields

$$
\begin{equation*}
\int_{0}^{\infty} \mathrm{d} r e^{2 r / a_{0}} r^{4}=\frac{3 a_{0}^{5}}{4} \tag{17}
\end{equation*}
$$

yielding altogether for the energy correction $\delta E^{(1)}(B)=\frac{q^{2} a_{0}^{3}}{4 m} B^{2}$, from which the susceptibiltiy reads $\chi=\frac{q^{2} a_{0}^{3}}{2 m}$. We can see that we could have dropped from the expectation value of W the $-\frac{\omega_{L}}{2} L_{z}$ term for any $l>0$ quantum number as it is only proportional to $-\frac{\omega_{L}}{2} L_{z} \propto B$, giving zeros in the susceptibility. For getting the proper diamagnetic susceptibility contribution from the $-\frac{\omega_{L}}{2} L_{z}$ term one should rather consider second order perturbation theory in this term to tget teh coefficient of the quadratic magnetic field term.

3. Harmonic oscillator in magnetic field:

The Hamiltonian takes the form:

$$
\begin{equation*}
H=\frac{\mathbf{p}^{2}}{2 m}+\frac{1}{2} m\left(\omega^{2}+\omega_{L}^{2}\right)\left(x^{2}+y^{2}\right)+\frac{1}{2} m \omega^{2} z^{2}-\frac{\omega_{L}}{2} L_{z} \tag{18}
\end{equation*}
$$

The z part is already diagonal in terms of the ladder operators, that is they appear as $a_{z}^{\dagger} a_{z}$ in the Hamiltonian while the (x, y) parts needs to be diagonalized as the $L_{z}=p_{x} y-p_{y} x=$ $\frac{i x_{0} p_{0}}{2}\left[\left(a_{x}^{\dagger}-a_{x}\right)\left(a_{y}^{\dagger}+a_{y}\right)-\left(a_{y}^{\dagger}-a_{y}\right)\left(a_{x}^{\dagger}+a_{x}\right)\right] \equiv \frac{i \hbar}{2}\left(a_{x}^{\dagger} a_{y}-a_{y}^{\dagger} a_{x}\right)$

$$
\begin{equation*}
H_{x y}=\hbar \Omega\left(a_{x}^{\dagger} a_{x}+a_{y}^{\dagger} a_{y}+1\right)-i \hbar \frac{\omega_{L}}{2}\left(a_{x}^{\dagger} a_{y}-a_{y}^{\dagger} a_{x}\right) \tag{19}
\end{equation*}
$$

withe $\Omega^{2}=\omega^{2}+\omega_{L}^{2}$.
Now let us diagonalize the (x, y) part by writing the corresponding Hamiltonian as

$$
H_{x y}=\hbar\left[\begin{array}{l}
a_{x}^{\dagger} \tag{20}\\
a_{y}^{\dagger}
\end{array}\right]\left[\begin{array}{cc}
\Omega & i \omega_{L} / 2 \\
-i \omega_{L} / 2 & \Omega
\end{array}\right]\left[\begin{array}{l}
a_{x} \\
a_{y}
\end{array}\right]+\hbar \Omega
$$

So the task is to diagonalize the matrix connecting the ladder operators of different directions, giving:

$$
\left[\begin{array}{cc}
\Omega & i \omega_{L} / 2 \tag{21}\\
-i \omega_{L} / 2 & \Omega
\end{array}\right]=\left[\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22}
\end{array}\right]\left[\begin{array}{cc}
\tilde{\omega}_{1} & 0 \\
0 & \tilde{\omega}_{2}
\end{array}\right]\left[\begin{array}{cc}
u_{11} & u_{21}^{*} \\
u_{12}^{*} & u_{22}
\end{array}\right]
$$

where the eigenvalues are the new frequencies of the diagonalized Hamiltonian and the u matrix elements determine the roation of the new directions along which we have the new oscillating modes:

$$
\begin{align*}
& \tilde{\omega}_{1,2}=\Omega \pm \sqrt{\Omega^{2}-\Omega^{2}+\omega_{L}^{2} / 4}=\Omega \pm \omega_{L} / 2 \tag{22}\\
& \tilde{\omega}_{1}=\Omega+\frac{\omega_{L}}{2}, \tilde{\omega}_{2}=\Omega-\frac{\omega_{L}}{2} \tag{23}\\
& \mathbf{u}_{1}=\left[\begin{array}{c}
1 \\
-i
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{c}
1 \\
i
\end{array}\right] \tag{24}\\
& \Rightarrow H_{x y}=\hbar\left[\begin{array}{c}
a_{x}^{\dagger} \\
a_{y}^{\dagger}
\end{array}\right]\left[\begin{array}{cc}
u_{11} & u_{12} \\
u_{21} & u_{22}
\end{array}\right]\left[\begin{array}{cc}
\tilde{\omega}_{1} & 0 \\
0 & \tilde{\omega}_{2}
\end{array}\right]\left[\begin{array}{cc}
u_{11} & u_{21}^{*} \\
u_{12}^{*} & u_{22}
\end{array}\right]\left[\begin{array}{c}
a_{x} \\
a_{y}
\end{array}\right]=\hbar\left[\begin{array}{c}
\mathbf{a} \cdot \mathbf{u}_{1} \\
\mathbf{a} \cdot \mathbf{u}_{2}
\end{array}\right]\left[\begin{array}{cc}
\tilde{\omega}_{1} & 0 \\
0 & \tilde{\omega}_{2}
\end{array}\right]\left[\begin{array}{c}
\mathbf{a} \cdot \mathbf{u}_{1}^{*} \\
\mathbf{a} \cdot \mathbf{u}_{2}^{*}
\end{array}\right]+\hbar \Omega \tag{25}\\
& \tilde{a}_{1}=a_{x}+i a_{y}, \tilde{a}_{2}=a_{x}-i a_{y} \tag{26}
\end{align*}
$$

yielding the digaonal total Hamiltonian:

$$
\begin{equation*}
H=\hbar \tilde{\omega}_{1} \tilde{a}_{1}^{\dagger} \tilde{a}_{1}+\hbar \tilde{\omega}_{2} \tilde{a}_{2}^{\dagger} \tilde{a}_{2}+\hbar \omega\left(a_{z}^{\dagger} a_{z}+\frac{1}{2}\right)+\hbar \Omega \tag{27}
\end{equation*}
$$

So the energy spectrum is

$$
\begin{equation*}
E_{n m l}=\hbar \tilde{\omega}_{1} n+\hbar \tilde{\omega}_{2} m+\hbar \omega\left(l+\frac{1}{2}\right)+\hbar \Omega \tag{28}
\end{equation*}
$$

This is similar to the so called Bogolyubov transformation, common in e.g.: superconductivity or low temeprature Bose-Einstein condensates.
Note further that here we have infinitely many degeneracies FOR $\omega=0$ with energies $E_{n m}=$ $\hbar \frac{\omega_{L}}{2}(n-m)+\hbar \omega_{L} \Rightarrow E_{n n}=\hbar \omega_{L} \forall n$.

