5. gyakorlat (okt. 8)

1. Time-evolution pictures:

(a) Schrödinger-picture:

Wave functions are time-evolved by the Hamiltonian

$$
\begin{align*}
& i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=H|\psi(t)\rangle \tag{1}\\
& |\psi(t)\rangle=U(t, 0)|\psi(0)\rangle=U(t, 0)|\psi(0)\rangle=e^{-\frac{i}{\hbar} H t}|\psi(0)\rangle \tag{2}
\end{align*}
$$

where the time-evolution operator takes a simple form of $\mathcal{T} e^{-\frac{i}{\hbar} \int_{0}^{t} \mathrm{~d} t^{\prime} H\left(t^{\prime}\right)}$ in case of timeindependent Hamiltonians.

(b) Heisenberg-picture:

Wave-function remains in its initial state and instead operators are "rotated"/time-evolved according to

$$
\begin{align*}
& \left|\psi^{H}(t)\right\rangle=U^{\dagger}(t, 0)|\psi(t)\rangle=|\psi(0)\rangle \tag{3}\\
& A^{H}(t)=U^{\dagger}(t, 0) A U(t, 0) \tag{4}\\
& \frac{\mathrm{d} A^{H}(t)}{\mathrm{d} t}=\frac{i}{\hbar}\left[H^{H}(t), A^{H}(t)\right]+\frac{\partial A^{H}(t)}{\partial t} \tag{5}
\end{align*}
$$

One can easily verify that so the time evolution of matrix elements of operators are unchanged!

$$
\begin{align*}
& \frac{\mathrm{d}\left\langle A^{H}(t)\right\rangle}{\mathrm{d} t}=\langle\psi(t)| \frac{i}{\hbar}[H, A]+\partial_{t} A|\psi(t)\rangle=\langle\psi(0)| U^{\dagger}(t, 0) \frac{i}{\hbar}[H, A] U(t, 0)+\partial_{t} A^{H}(t)|\psi(0)\rangle \tag{6}\\
& =\langle\psi(0)| \frac{i}{\hbar}\left[H^{H}(t), A^{H}(t)\right]+\partial_{t} A^{H}(t)|\psi(0)\rangle
\end{align*}
$$

(c) Interaction/Dirac-picture:

Now wave-functions are time-evolved only by the potential part of the Hamiltonian $H(t)=$ $H_{0}+V(t)$, while operators evolve in time with respect to the free Hamiltonian, H_{0} with the time-evolution operator, $U(t, 0)=e^{-\frac{i}{\hbar} H_{0} t}$:

$$
\begin{align*}
& \left|\psi^{D}(t)\right\rangle=U^{\dagger}(t, 0)|\psi(t)\rangle \tag{7}\\
& A^{D}(t)=U^{\dagger}(0, t) A U(t, 0) \tag{8}\\
& i \hbar \frac{\partial}{\partial t}\left|\psi^{D}(t)\right\rangle=V^{D}(t)\left|\psi^{D}(t)\right\rangle \tag{9}
\end{align*}
$$

Similarly matrix-elements' time-evolution again remains unchanged in the Dirac-picture, as it should!

(d) Time-dependent perturbation theory:

Let us first approximate the time-ordered exponential up to first order in the perturbation operator in Dirac-picture, in $V^{D}(t)$ and compute the wave- function up to first order in Dirac picture again:

$$
\begin{align*}
& U^{D}(t, 0)=\mathcal{T} e^{-\frac{i}{\hbar} \int_{0}^{t} \mathrm{~d} t^{\prime} H\left(t^{\prime}\right)} \approx I-\frac{i}{\hbar} \int_{0}^{t} \mathrm{~d} t^{\prime} V^{D}\left(t^{\prime}\right)=I-\frac{i}{\hbar} \int_{0}^{t} \mathrm{~d} t^{\prime} e^{\frac{i}{\hbar} H_{0} t^{\prime}} V\left(t^{\prime}\right) e^{-\frac{i}{\hbar} H_{0} t^{\prime}} \tag{10}\\
& \left|\psi^{D(1)}(t)\right\rangle=|\varphi\rangle-\frac{i}{\hbar} \int_{0}^{t} \mathrm{~d} t^{\prime} e^{\frac{i}{\hbar} H_{0} t^{\prime}} V\left(t^{\prime}\right) e^{-\frac{i}{\hbar} H_{0} t^{\prime}}|\varphi\rangle \tag{11}
\end{align*}
$$

Now let us transform back to Schrödinger picture:

$$
\begin{equation*}
\left|\psi^{S(1)}(t)\right\rangle=e^{-\frac{i}{\hbar} H_{0} t}\left|\psi^{D(1)}(t)\right\rangle=e^{-\frac{i}{\hbar} H_{0} t}|\varphi\rangle-\frac{i}{\hbar} e^{-\frac{i}{\hbar} H_{0} t} \int_{0}^{t} \mathrm{~d} t^{\prime} e^{\frac{i}{\hbar} H_{0} t^{\prime}} V\left(t^{\prime}\right) e^{-\frac{i}{\hbar} H_{0} t^{\prime}}|\varphi\rangle \tag{12}
\end{equation*}
$$

Now let us choose $|\varphi\rangle \equiv|k\rangle$ some eigenstate of $H_{0}=\sum_{n} \varepsilon_{n}|n\rangle\langle n|$ with ε_{n} being the eigenenergies and $|n\rangle$ the eigenstates and with this we have $e^{ \pm \frac{i}{\hbar} H_{0} t}=\sum_{n} e^{ \pm \frac{i}{\hbar} \varepsilon_{n} t}|n\rangle\langle n|$, inserting the identity, as $I=\sum_{n}|n\rangle\langle n|$

$$
\begin{align*}
& \left|\psi^{S(1)}(t)\right\rangle=e^{-\frac{i}{\hbar} H_{0} t}|k\rangle-\frac{i}{\hbar} \sum_{n} e^{-\frac{i}{\hbar} H_{0} t} \int_{0}^{t} \mathrm{~d} t^{\prime} e^{\frac{i}{\hbar} H_{0} t^{\prime}}|n\rangle\langle n| V\left(t^{\prime}\right) e^{-\frac{i}{\hbar} H_{0} t^{\prime}}|k\rangle \\
& =e^{-\frac{i}{\hbar} \varepsilon_{k} t}|k\rangle-\frac{i}{\hbar} \sum_{n} e^{-i \varepsilon_{n} t}|n\rangle \int_{0}^{t} \mathrm{~d} t^{\prime} e^{\frac{i}{\hbar} \omega_{n k} t^{\prime}} V_{n k}\left(t^{\prime}\right) \tag{13}
\end{align*}
$$

with $\omega_{n k}=\frac{\varepsilon_{n}-\varepsilon_{k}}{\hbar}$ and $V_{n k}(t)=\langle n| V(t)|k\rangle$. From this one can immediately read out the expansion coefficients:

$$
\begin{equation*}
\left|\psi^{S(1)}(t)\right\rangle=\sum_{n} c_{n}^{(1)}(t) e^{-\frac{i}{\hbar} \varepsilon_{n} t}|n\rangle \tag{14}
\end{equation*}
$$

with the coefficients given thus by:

$$
\begin{align*}
& c_{k}^{(1)}(t)=1-\frac{i}{\hbar} \int_{0}^{t} \mathrm{~d} t^{\prime} V_{k k}\left(t^{\prime}\right) \tag{15}\\
& c_{n \neq k}^{(1)}(t)=-\frac{i}{\hbar} \int_{0}^{t} \mathrm{~d} t^{\prime} e^{i \omega_{n k} t^{\prime}} V_{n k}\left(t^{\prime}\right) \tag{16}
\end{align*}
$$

2. Determine the mean displacement, $\langle\psi(t)| x|\psi(t)\rangle$, in case of a free particle moving in constant electric field using the Heisenberg picture description in case of an initial Gaussian wave-packet:

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}-\mathcal{E} q x, \quad i \hbar \partial_{t} \psi=H \psi \tag{17}
\end{equation*}
$$

Wave packet in electric field, $\psi(0, x)=\frac{1}{\sqrt{x_{0} \sqrt{\pi}}} e^{-\frac{x^{2}}{2 x_{0}^{2}}}$. Knowing the solution of the eigenvalue equation $H \varphi_{n}=E_{n} \varphi_{n}$ we can expand the wave-function started from the initial wave packet as:

$$
\begin{equation*}
\psi(t)=\sum_{n} c_{n} e^{-\frac{i}{\hbar} E t} \varphi_{n}, \quad c_{n}=\left\langle\varphi_{n} \mid \psi(0)\right\rangle \tag{18}
\end{equation*}
$$

Let us introduce the length scale $x_{0}=\left(\frac{\hbar^{2}}{2 m \mathcal{E} q}\right)^{\frac{1}{3}}$ with which we can write the Schrödinger equation as

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \psi}{\mathrm{~d} \xi^{2}}-\xi \psi=0 \tag{19}
\end{equation*}
$$

with $\xi=\frac{x}{x_{0}}+\frac{E}{x_{0} \mathcal{E} q}$. The solutions of this equation are the Airy functions, $\psi=\operatorname{Ai}\left(\frac{x}{x_{0}}+\frac{E}{x_{0} \mathcal{E} q}\right)$. These solutions form a continuous basis, with continuously many eigenvalues, as there is no potential gap just a potential with constant slope, with infinitely many possible eigenenergies, or with other words no periodic orbits classically. So the time-dependent solution is given by the integral, i.e.: the summation over the continuously many energy eigenstates, reads

$$
\begin{equation*}
\psi(t, x)=\int_{-\infty}^{\infty} \mathrm{d} E c(E) e^{-\frac{i}{\hbar} E t} \mathrm{Ai}\left(\frac{x}{x_{0}}+\frac{E}{x_{0} \mathcal{E} q}\right) \tag{20}
\end{equation*}
$$

with the expansion coefficients defined as:

$$
\begin{equation*}
c(E)=\int_{-\infty}^{\infty} \mathrm{d} x \operatorname{Ai}\left(\frac{x}{x_{0}}+\frac{E}{x_{0} \mathcal{E} q}\right) \frac{1}{\sqrt{x_{0} \sqrt{\pi}}} e^{-\frac{x^{2}}{2 x_{0}^{2}}} \tag{21}
\end{equation*}
$$

Now we see that in terms of these complicated wave functions we can tell, in theory, in terms of horribly complicated integrals the average displacement, $\langle\psi(t)| x|\psi(t)\rangle$. Nevertheless we come around the problem by the Heisenberg time-evolution picture, considering the operators rather than the wave functions evolving in time, that is it is satisfactory only to consider the initial wave-packet and calculate the time-evolved/transformed operator with the time-evolution operator:

$$
\begin{equation*}
x(t)=e^{\frac{i}{\hbar} H t} x e^{-\frac{i}{\hbar} H t} \tag{22}
\end{equation*}
$$

the expectation value of which in the initial state gives the same result as the "usual" coordinate operator with the time-evolved states, which in an operator language reads as $|\psi(t)\rangle=e^{-\frac{i}{\hbar} H t}|\psi(0)\rangle$

$$
\begin{equation*}
\left\langle\psi(0) e^{\frac{i}{\hbar} H t}\right| x\left|e^{-\frac{i}{\hbar} H t} \psi(0)\right\rangle=\langle\psi(0)| e^{\frac{i}{\hbar} H t} x e^{-\frac{i}{\hbar} H t}|\psi(0)\rangle \tag{23}
\end{equation*}
$$

Now the only thing to calculate is the transformed coordinate operator, then we only need to calculate a Gaussian integral with this transformed coordinate operator, which can be calculated via the Haussdorf expansion:

$$
\begin{equation*}
e^{\frac{i}{\hbar} H t} x e^{-\frac{i}{\hbar} H t}=x+\frac{i}{\hbar}[H, x] t+\left(\frac{i}{\hbar}\right)^{2}[H,[H, x]] t^{2} / 2+\ldots \tag{24}
\end{equation*}
$$

Now fortunately the series terminates at the quadratic term as $[H, x]=\frac{\hbar}{i} \frac{p}{m},[H,[H, x]]=\frac{\hbar}{i m}[H, p]=$ $\left(\frac{\hbar}{i}\right)^{2} \frac{\mathcal{E q}}{m}$, which is just a number, commuting with H and making vanish the fourth term!
So now we are in the position to evaluate the emerging integrals:

$$
\begin{equation*}
\langle\psi(0)| e^{\frac{i}{\hbar} H t} x e^{-\frac{i}{\hbar} H t}|\psi(0)\rangle=\frac{1}{x_{0} \sqrt{\pi}} \int_{-\infty}^{\infty} \mathrm{d} x e^{-\frac{x^{2}}{2 x_{0}^{2}}}\left(x+\frac{p}{m} t+\frac{\mathcal{E} q}{2 m} t^{2}\right) e^{-\frac{x^{2}}{2 x_{0}^{2}}}=\frac{\mathcal{E} q}{2 m} t^{2} \tag{25}
\end{equation*}
$$

In fact we were facig a very easy case of Gaussian integrals as both $\sim x e^{-\frac{x^{2}}{x_{0}^{2}}}$ and $\sim e^{-\frac{x^{2}}{2 x_{0}^{2}}} \partial_{x} e^{-\frac{x^{2}}{2 x_{0}^{2}}}$ are odd functions integrated over a symmetrical region, yielding zero.
3. Determine the ladder operators in Heisenberg picture for the one-dimensional harmonic oscillator and show that in coherent states the $\Delta x \Delta p$ prdouct is a constant!
The Hamiltonian, as usual, $H=\hbar \omega\left(a^{\dagger} a+\frac{1}{2}\right)$, which being time-independent yields the $e^{-\frac{i}{\hbar} H t}$ time-evolution operator. For this we make use of the usual commutation relations of the ladder operators, $\left[a, a^{\dagger}\right]=1 \rightarrow[H, a]=-\hbar \omega a,\left[H, a^{\dagger}\right]=\hbar \omega a^{\dagger}$, by which we can again conclude that the Haussdorff series goes as:

$$
\begin{equation*}
e^{-\frac{i}{\hbar} H t} a e^{\frac{i}{\hbar} H t}=a+\frac{i}{\hbar}(-\hbar \omega) a t+\left(\frac{i}{\hbar}\right)^{2} \frac{(-\hbar \omega)^{2}}{2!} a t^{2}+\cdots=a e^{-i \omega t} \tag{26}
\end{equation*}
$$

Similarly for a^{\dagger} :

$$
\begin{equation*}
e^{-\frac{i}{\hbar} H t} a e^{\frac{i}{\hbar} H t}=a^{\dagger}+\frac{i}{\hbar}(\hbar \omega) a^{\dagger} t+\left(\frac{i}{\hbar}\right)^{2} \frac{(\hbar \omega)^{2}}{2!} a^{\dagger} t^{2}+\cdots=a^{\dagger} e^{i \omega t} \tag{27}
\end{equation*}
$$

Coherent states: eigenstates of ladder operators:

$$
\begin{equation*}
a|\alpha\rangle=\alpha|\alpha\rangle \tag{28}
\end{equation*}
$$

Now let us calculate the variances' time-evolution $\langle\Delta x\rangle_{\alpha}^{2}=\langle\alpha| x^{2}(t)|\alpha\rangle-\langle\alpha| x(t)|\alpha\rangle^{2}$ and $\langle\Delta p\rangle_{\alpha}^{2}=$

$$
\begin{aligned}
& \langle\alpha| p^{2}(t)|\alpha\rangle-\langle\alpha| p(t)|\alpha\rangle^{2}, \text { with } x=\frac{x_{0}}{\sqrt{2}}\left(a+a^{\dagger}\right) \rightarrow x(t)=\frac{x_{0}}{\sqrt{2}}\left(a e^{-i \omega t}+a^{\dagger} e^{i \omega t}\right), x_{0}=\sqrt{\frac{\hbar}{m \omega}}, p= \\
& i \frac{p_{0}}{\sqrt{2}}\left(a^{\dagger}-a\right) \rightarrow p(t)=i \frac{p_{0}}{\sqrt{2}}\left(a^{\dagger} e^{i \omega t}-a e^{-i \omega t}\right), p_{0}=\sqrt{m \hbar \omega} \\
& \langle\alpha| x(t)|\alpha\rangle^{2}=\frac{x_{0}^{2}}{2}\langle\alpha|\left(a e^{-i \omega t}+a^{\dagger} e^{i \omega t}\right)|\alpha\rangle^{2}=2 x_{0}^{2} \operatorname{Re}\left(\alpha e^{-i \omega t}\right)^{2} \\
& \langle\alpha| p(t)|\alpha\rangle^{2}=-\frac{p_{0}^{2}}{2}\langle\alpha|\left(a^{\dagger} e^{i \omega t}-a e^{-i \omega t}\right)|\alpha\rangle^{2}=2 p_{0}^{2} \operatorname{Im}\left(\alpha e^{-i \omega t}\right)^{2} \\
& \langle\alpha| x^{2}(t)|\alpha\rangle=\frac{x_{0}^{2}}{2}\langle\alpha| 1+2 a^{\dagger} a+a^{2} e^{-2 i \omega t}+\left(a^{\dagger}\right)^{2} e^{2 i \omega t}|\alpha\rangle=\frac{x_{0}^{2}}{2}\left(1+2|\alpha|^{2}+2 \operatorname{Re}\left(\alpha^{2} e^{-i 2 \omega t}\right)\right) \\
& \langle\alpha| p^{2}(t)|\alpha\rangle=-\frac{p_{0}^{2}}{2}\langle\alpha|-1-2 a^{\dagger} a+a^{2} e^{-2 i \omega t}+\left(a^{\dagger}\right)^{2} e^{2 i \omega t}|\alpha\rangle=\frac{p_{0}^{2}}{2}\left(1+2|\alpha|^{2}-2 \operatorname{Re}\left(\alpha^{2} e^{-i 2 \omega t}\right)\right) \\
& \langle\alpha| \delta x^{2}(t)|\alpha\rangle=\langle\alpha| x^{2}(t)|\alpha\rangle-\langle\alpha| x(t)|\alpha\rangle^{2}=\frac{x_{0}^{2}}{2}+x_{0}^{2}\left(|\alpha|^{2}+\operatorname{Re}\left(\alpha^{2} e^{-i 2 \omega t}\right)-2 \operatorname{Re}\left(\alpha e^{-i \omega t}\right)^{2}\right) \\
& =\frac{x_{0}^{2}}{2}+x_{0}^{2}\left(|\alpha|^{2}-\operatorname{Re}\left(\alpha e^{-i \omega t}\right)^{2}-\operatorname{Im}\left(\alpha e^{-i \omega t}\right)^{2}\right)=\frac{x_{0}^{2}}{2}-x_{0}^{2}\left(|\alpha|^{2}-\left|\alpha e^{-i \omega t}\right|^{2}\right)=\frac{x_{0}^{2}}{2} \\
& \langle\alpha| \delta p^{2}(t)|\alpha\rangle=\langle\alpha| p^{2}(t)|\alpha\rangle-\langle\alpha| p(t)|\alpha\rangle^{2}=\frac{p_{0}^{2}}{2}+p_{0}^{2}\left(|\alpha|^{2}-\operatorname{Re}\left(\alpha^{2} e^{-i 2 \omega t}\right)-2 \operatorname{Im}\left(\alpha e^{-i \omega t}\right)^{2}\right) \\
& =\frac{p_{0}^{2}}{2}+p_{0}^{2}\left(|\alpha|^{2}-\operatorname{Im}\left(\alpha e^{-i \omega t}\right)^{2}-\operatorname{Re}\left(\alpha e^{-i \omega t}\right)^{2}\right)=\frac{p_{0}^{2}}{2}
\end{aligned}
$$

From where we can conclude that time-independently the product of the deviations reads as:

$$
\begin{equation*}
\langle\Delta x\rangle_{\alpha}\langle\Delta p\rangle_{\alpha}=\frac{x_{0} p_{0}}{2}=\frac{\hbar}{2} \tag{29}
\end{equation*}
$$

Homework:

Consider the Hamiltonian of a particle moving in constant electric field:

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}-\mathcal{E} q x \tag{30}
\end{equation*}
$$

Repeat the calculation of the 2 . exercise but with a particle starting from a coherent state of a harmonic oscillator:

$$
\begin{equation*}
|\psi(0)\rangle=e^{-\frac{|\alpha|^{2}}{2}+\alpha a^{\dagger}}|0\rangle \tag{31}
\end{equation*}
$$

with the usual relations, $x=\frac{x_{0}}{\sqrt{2}}\left(a+a^{\dagger}\right), x_{0}=\sqrt{\frac{\hbar}{m \omega}}$ and $p=i \frac{p_{0}}{\sqrt{2}}\left(a^{\dagger}-a\right), p_{0}=\sqrt{m \omega \hbar}$. There are two ways to do that:
(a) First expand the exponent to get $\psi(x, 0)=\sqrt{\frac{m \omega}{\hbar \sqrt{\pi}}} e^{-\frac{(x-\langle x\rangle)^{2}}{2 x_{0}^{2}}+i \frac{\langle p\rangle x}{\hbar}}$ where $\langle p\rangle=\sqrt{\frac{m \hbar \omega}{2}} \operatorname{Re} \alpha$ in a coherent state with α eigenvalue. And with this calculate the above integral (25) with $x(t)=e^{\frac{i}{\hbar} H t} x e^{-\frac{i}{\hbar} H t}$ transformed into Heisenberg picture!
(b) Or in a more sofisticated way use our knowledge about the ladder operators in Heisenberg picture, $a(t)=a e^{-i \omega t}, \quad a^{\dagger}(t)=a^{\dagger} e^{i \omega t}$.

Hints: Use the Heisenberg picture form of $x(t)$, derived in the 2. exercise, and write it in terms of the ladder operators, then calculate tha action of a and a^{\dagger} on a coherent state, as dictated by its definition.

