5. gyakorlat (okt. 8)

1. Time-evolution pictures:

(a) Schrédinger-picture:

Wave functions are time-evolved by the Hamiltonian

T (0) = (D) )
[9(0) = U 0)9(0)) = U (1 0)(0)) = ¢} (0)) 2

L [tde H(t")

where the time-evolution operator takes a simple form of Te # Jo in case of time-

independent Hamiltonians.
(b) Heisenberg-picture:
Wave-function remains in its initial state and instead operators are "rotated"/time-evolved

according to

[p(1) = UM (5, 0)[0(t)) = [4(0)) (3)
AH (¢t ) U'(t,0)AU(t,0) (4)
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One can easily verify that so the time evolution of matrix elements of operators are unchanged!
d(AH (¢ i i
WA )1 (11, 4] + D, AW(0) = (6OIU (1.0) & [H, AU (,0) + 0,47 (1)](0)) o
i
= (¥(0)] [H™ (1), A" (1)] + 0, A" ()](0))
(c) Interaction/Dirac-picture:
Now wave-functions are time-evolved only by the potential part of the Hamiltonian H(t) =

Hy + V(t), while operators evolve in time with respect to the free Hamiltonian, Hy with the

time-evolution operator, U(t,0) = e~ #Hot:
(WP () = UT(t,0)|4(t)) (7)
AP (t) = UT(0,t) AU (t,0) (8)
WP (6) = VPO (1) )

Similarly matrix-elements’ time-evolution again remains unchanged in the Dirac-picture, as it

should!

(d) Time-dependent perturbation theory:
Let us first approximate the time-ordered exponential up to first order in the perturbation
operator in Dirac-picture, in V() and compute the wave- function up to first order in Dirac
picture again:
i
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Now let us transform back to Schrodinger picture:
WS (6)) = e I PD() = e #)g) — ekt [apedry(@)e i) (12)
0

Now let us choose |¢) = |k) some eigenstate of Hy = ) e,|n)(n| with e, being the eigenen-
ergies and |n) the eigenstates and with this we have e*# 0t = S~ e ient|n)(n| inserting the

identity, as I = )", |n)(n|

5O (1)) = e # ot k) hze #Hot / dt'e R [n) (n|V (1)~ #10|)

_ —7skt|k hze—zsntln / dt/e%wlkt/Vnk(t/)

with w,, = 222 and Vi (t) = (n|V(t)|k). From this one can immediately read out the

(13)

expansion coefficients:

D) =3 el (t)e 7 ) (14)

n

with the coefficients given thus by:
=1 [ v (15)
ch( Z—*/ dt' eV, (1) (16)

2. Determine the mean displacement, (¢(t)|z|¢(t)), in case of a free particle moving in
constant electric field using the Heisenberg picture description in case of an initial
Gaussian wave-packet:

P2

H=-——E&8qx, ihdypp = HyY (17)
2m

Wave packet in electric field, ¥(0,z) = \/%eiﬁ. Knowing the solution of the eigenvalue equa-
o\ T

tion Hy,, = E,p, we can expand the wave-function started from the initial wave packet as:

Y(t) =Y ene T o, en = (al(0) (18)

n
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Let us introduce the length scale z¢p = (%) * with which we can write the Schrédinger equation

as

d2y
e =0 (19)
with & = ;—0 + ngjaq The solutions of this equation are the Airy functions, ¢ = Ai ($0 + mb;q).

These solutions form a continuous basis, with continuously many eigenvalues, as there is no potential
gap just a potential with constant slope, with infinitely many possible eigenenergies, or with other
words no periodic orbits classically. So the time-dependent solution is given by the integral, i.e.: the
summation over the continuously many energy eigenstates, reads

¢(t,x)=/oo dE ¢(E)e~ %Pt Aj (;Jr E ) (20)
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with the expansion coefficients defined as:

o a E 1 a2
E)= [m dx Ai (évo + xoé’q) 773\/%6 270 (21)
Now we see that in terms of these complicated wave functions we can tell, in theory, in terms of
horribly complicated integrals the average displacement, (1 (t)|z|¢(t)). Nevertheless we come around
the problem by the Heisenberg time-evolution picture, considering the operators rather than the
wave functions evolving in time, that is it is satisfactory only to consider the initial wave-packet

and calculate the time-evolved/transformed operator with the time-evolution operator:
a(t) = en Hlge= wHt (22)

the expectation value of which in the initial state gives the same result as the "usual" coordinate

operator with the time-evolved states, which in an operator language reads as |1()) = e~ #H[4(0))
((0)er T fle™ £ (0)) = ((0)]eh Hhae #1145 0)) (23)

Now the only thing to calculate is the transformed coordinate operator, then we only need to
calculate a Gaussian integral with this transformed coordinate operator, which can be calculated

via the Haussdorf expansion:
: : i i\’
enfltpe=ntt — o 4 7 [H,x]t+ <h) [H,[H,z]]t*/2+ ... (24)

Now fortunately the series terminates at the quadratic term as [H,z] = 22 [H, [H,z]] = L [H,p] =

K3
(%) %, which is just a number, commuting with H and making vanish the fourth term!
So now we are in the position to evaluate the emerging integrals:
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In fact we were facig a very easy case of Gaussian integrals as both ~ ze

are odd functions integrated over a symmetrical region, yielding zero.

. Determine the ladder operators in Heisenberg picture for the one-dimensional har-
monic oscillator and show that in coherent states the AzAp prdouct is a constant!

The Hamiltonian, as usual, H = hw (a’a + ), which being time-independent yields the e~ R
time-evolution operator. For this we make use of the usual commutation relations of the ladder
operators, [a, aT] =1— [H,a| = —fwa, [H, aT] = Jwa', by which we can again conclude that the

Haussdorff series goes as:
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e~ wHtgehHE _ o 1 %(—hw)at + (;) ( 5 ) at? 4+ ... = qge” Wt (26)
Similarly for a':
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Coherent states: eigenstates of ladder operators:
ala) = ala) (28)

Now let us calculate the variances’ time-evolution (Az)2 = (a|z?(t)|a) — (a]z(t)|a)? and (Ap)2 =

{a]p?(t)]|a) — (a|p(t)|a)?, with = = = Zla+ al) = z(t) = =% (ae=™! 4+ afe®t) | zq
i%(cﬂ —a) = p(t) = ip—\/% (aTemt — ae Wt) . po = Vmhw
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From where we can conclude that time-independently the product of the deviations reads as:

(Az)o(Ap)a = % = g (29)

Homework:

Consider the Hamiltonian of a particle moving in constant electric field:

p?
H=——E&qx (30)
2m
Repeat the calculation of the 2. exercise but with a particle starting from a coherent state of a

harmonic oscillator:
_lel? et
[¥(0)) = e” 2T |0) (31)
with the usual relations, x = f (a + aT) T = \/% and p = i% (aJr - a) , po = Vmwh. There

are two ways to do that:

_em)? e
(a) First expand the exponent to get ¢ (z,0) = 1/g”\f 223 " where (p) = /™“Rea

in a coherent state with « eigenvalue. And with this calculate the above integral (25) with
z(t) = enHige=mHt transformed into Heisenberg picture!

(b) Or in a more sofisticated way use our knowledge about the ladder operators in Heisenberg
picture, a(t) = ae™™*, af(t) = ale™t.
Hints: Use the Heisenberg picture form of x(¢), derived in the 2. exercise, and write it in terms
of the ladder operators, then calculate tha action of @ and a' on a coherent state, as dictated

by its definition.



