
5. gyakorlat (okt. 8)

1. Time-evolution pictures:

(a) Schrödinger-picture:

Wave functions are time-evolved by the Hamiltonian

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉 (1)

|ψ(t)〉 = U(t, 0)|ψ(0)〉 = U(t, 0)|ψ(0)〉 = e−
i
~Ht|ψ(0)〉 (2)

where the time-evolution operator takes a simple form of T e− i
~
∫ t
0
dt′H(t′) in case of time-

independent Hamiltonians.

(b) Heisenberg-picture:

Wave-function remains in its initial state and instead operators are "rotated"/time-evolved

according to

|ψH(t)〉 = U†(t, 0)|ψ(t)〉 = |ψ(0)〉 (3)

AH(t) = U†(t, 0)AU(t, 0) (4)

dAH(t)

dt
=
i

~
[
HH(t), AH(t)

]
+
∂AH(t)

∂t
(5)

One can easily verify that so the time evolution of matrix elements of operators are unchanged!

d〈AH(t)〉
dt

= 〈ψ(t)| i
~

[H,A] + ∂tA|ψ(t)〉 = 〈ψ(0)|U†(t, 0)
i

~
[H,A]U(t, 0) + ∂tA

H(t)|ψ(0)〉

= 〈ψ(0)| i
~
[
HH(t), AH(t)

]
+ ∂tA

H(t)|ψ(0)〉
(6)

(c) Interaction/Dirac-picture:

Now wave-functions are time-evolved only by the potential part of the Hamiltonian H(t) =

H0 + V (t), while operators evolve in time with respect to the free Hamiltonian, H0 with the

time-evolution operator, U(t, 0) = e−
i
~H0t:

|ψD(t)〉 = U†(t, 0)|ψ(t)〉 (7)

AD(t) = U†(0, t)AU(t, 0) (8)

i~
∂

∂t
|ψD(t)〉 = V D(t)|ψD(t)〉 (9)

Similarly matrix-elements' time-evolution again remains unchanged in the Dirac-picture, as it

should!

(d) Time-dependent perturbation theory:

Let us �rst approximate the time-ordered exponential up to �rst order in the perturbation

operator in Dirac-picture, in V D(t) and compute the wave- function up to �rst order in Dirac

picture again:

UD(t, 0) = T e− i
~
∫ t
0
dt′H(t′) ≈ I − i

~

∫ t

0

dt′V D(t′) = I − i

~

∫ t

0

dt′e
i
~H0t

′
V (t′)e−

i
~H0t

′
(10)

|ψD(1)(t)〉 = |ϕ〉 − i

~

∫ t

0

dt′e
i
~H0t

′
V (t′)e−

i
~H0t

′
|ϕ〉 (11)



Now let us transform back to Schrödinger picture:

|ψS(1)(t)〉 = e−
i
~H0t|ψD(1)(t)〉 = e−

i
~H0t|ϕ〉 − i

~
e−

i
~H0t

∫ t

0

dt′e
i
~H0t

′
V (t′)e−

i
~H0t

′
|ϕ〉 (12)

Now let us choose |ϕ〉 ≡ |k〉 some eigenstate of H0 =
∑
n εn|n〉〈n| with εn being the eigenen-

ergies and |n〉 the eigenstates and with this we have e±
i
~H0t =

∑
n e
± i

~ εnt|n〉〈n|, inserting the

identity, as I =
∑
n|n〉〈n|

|ψS(1)(t)〉 = e−
i
~H0t|k〉 − i

~
∑
n

e−
i
~H0t

∫ t

0

dt′e
i
~H0t

′
|n〉〈n|V (t′)e−

i
~H0t

′
|k〉

= e−
i
~ εkt|k〉 − i

~
∑
n

e−iεnt|n〉
∫ t

0

dt′e
i
~ωnkt

′
Vnk(t′)

(13)

with ωnk = εn−εk
~ and Vnk(t) = 〈n|V (t)|k〉. From this one can immediately read out the

expansion coe�cients:

|ψS(1)(t)〉 =
∑
n

c(1)n (t)e−
i
~ εnt|n〉 (14)

with the coe�cients given thus by:

c
(1)
k (t) = 1− i

~

∫ t

0

dt′Vkk(t′) (15)

c
(1)
n 6=k(t) = − i

~

∫ t

0

dt′eiωnkt
′
Vnk(t′) (16)

2. Determine the mean displacement, 〈ψ(t)|x|ψ(t)〉, in case of a free particle moving in

constant electric �eld using the Heisenberg picture description in case of an initial

Gaussian wave-packet:

H =
p2

2m
− Eqx, i~∂tψ = Hψ (17)

Wave packet in electric �eld, ψ(0, x) = 1√
x0
√
π
e
− x2

2x20 . Knowing the solution of the eigenvalue equa-

tion Hϕn = Enϕn we can expand the wave-function started from the initial wave packet as:

ψ(t) =
∑
n

cne
− i

~Etϕn, cn = 〈ϕn|ψ(0)〉 (18)

Let us introduce the length scale x0 =
(

~2

2mEq

) 1
3

with which we can write the Schrödinger equation

as
d2ψ

dξ2
− ξψ = 0 (19)

with ξ = x
x0

+ E
x0Eq . The solutions of this equation are the Airy functions, ψ = Ai

(
x
x0

+ E
x0Eq

)
.

These solutions form a continuous basis, with continuously many eigenvalues, as there is no potential

gap just a potential with constant slope, with in�nitely many possible eigenenergies, or with other

words no periodic orbits classically. So the time-dependent solution is given by the integral, i.e.: the

summation over the continuously many energy eigenstates, reads

ψ(t, x) =

∫ ∞
−∞

dE c(E)e−
i
~EtAi

(
x

x0
+

E

x0Eq

)
(20)



with the expansion coe�cients de�ned as:

c(E) =

∫ ∞
−∞

dxAi

(
x

x0
+

E

x0Eq

)
1√
x0
√
π
e
− x2

2x20 (21)

Now we see that in terms of these complicated wave functions we can tell, in theory, in terms of

horribly complicated integrals the average displacement, 〈ψ(t)|x|ψ(t)〉. Nevertheless we come around

the problem by the Heisenberg time-evolution picture, considering the operators rather than the

wave functions evolving in time, that is it is satisfactory only to consider the initial wave-packet

and calculate the time-evolved/transformed operator with the time-evolution operator:

x(t) = e
i
~Htxe−

i
~Ht (22)

the expectation value of which in the initial state gives the same result as the "usual" coordinate

operator with the time-evolved states, which in an operator language reads as |ψ(t)〉 = e−
i
~Ht|ψ(0)〉

〈ψ(0)e
i
~Ht|x|e− i

~Htψ(0)〉 = 〈ψ(0)|e i~Htxe− i
~Ht|ψ(0)〉 (23)

Now the only thing to calculate is the transformed coordinate operator, then we only need to

calculate a Gaussian integral with this transformed coordinate operator, which can be calculated

via the Haussdorf expansion:

e
i
~Htxe−

i
~Ht = x+

i

~
[H,x] t+

(
i

~

)2

[H, [H,x]] t2/2 + . . . (24)

Now fortunately the series terminates at the quadratic term as [H,x] = ~
i
p
m , [H, [H,x]] = ~

im [H, p] =(~
i

)2 Eq
m , which is just a number, commuting with H and making vanish the fourth term!

So now we are in the position to evaluate the emerging integrals:

〈ψ(0)|e i~Htxe− i
~Ht|ψ(0)〉 =

1

x0
√
π

∫ ∞
−∞

dx e
− x2

2x20

(
x+

p

m
t+
Eq
2m

t2
)
e
− x2

2x20 =
Eq
2m

t2 (25)

In fact we were facig a very easy case of Gaussian integrals as both ∼ xe
− x2
x20 and ∼ e

− x2

2x20 ∂xe
− x2

2x20

are odd functions integrated over a symmetrical region, yielding zero.

3. Determine the ladder operators in Heisenberg picture for the one-dimensional har-

monic oscillator and show that in coherent states the ∆x∆p prdouct is a constant!

The Hamiltonian, as usual, H = ~ω
(
a†a+ 1

2

)
, which being time-independent yields the e−

i
~Ht

time-evolution operator. For this we make use of the usual commutation relations of the ladder

operators,
[
a, a†

]
= 1→ [H, a] = −~ωa,

[
H, a†

]
= ~ωa†, by which we can again conclude that the

Haussdor� series goes as:

e−
i
~Htae

i
~Ht = a+

i

~
(−~ω)at+

(
i

~

)2
(−~ω)2

2!
at2 + · · · = ae−iωt (26)

Similarly for a†:

e−
i
~Htae

i
~Ht = a† +

i

~
(~ω)a†t+

(
i

~

)2
(~ω)2

2!
a†t2 + · · · = a†eiωt (27)



Coherent states: eigenstates of ladder operators:

a|α〉 = α|α〉 (28)

Now let us calculate the variances' time-evolution 〈∆x〉2α = 〈α|x2(t)|α〉 − 〈α|x(t)|α〉2 and 〈∆p〉2α =

〈α|p2(t)|α〉 − 〈α|p(t)|α〉2, with x = x0√
2
(a + a†) → x(t) = x0√

2

(
ae−iωt + a†eiωt

)
, x0 =

√
~
mω , p =

i p0√
2
(a† − a)→ p(t) = i p0√

2

(
a†eiωt − ae−iωt

)
, p0 =

√
m~ω

〈α |x(t)|α〉2 =
x20
2

〈
α
∣∣(ae−iωt + a†eiωt)

∣∣α〉2 = 2x20Re
(
αe−iωt

)2
〈α |p(t)|α〉2 = −p

2
0

2

〈
α
∣∣(a†eiωt − ae−iωt)∣∣α〉2 = 2p20Im

(
αe−iωt

)2
〈
α
∣∣x2(t)

∣∣α〉 =
x20
2

〈
α
∣∣∣1 + 2a†a+ a2e−2iωt +

(
a†
)2
e2iωt

∣∣∣α〉 =
x20
2

(
1 + 2|α|2 + 2Re

(
α2e−i2ωt

))
〈
α
∣∣p2(t)

∣∣α〉 = −p
2
0

2

〈
α
∣∣∣−1− 2a†a+ a2e−2iωt +

(
a†
)2
e2iωt

∣∣∣α〉 =
p20
2

(
1 + 2|α|2 − 2Re

(
α2e−i2ωt

))
〈
α
∣∣δx2(t)

∣∣α〉 = 〈α
∣∣x2(t)

∣∣α〉 − 〈α |x(t)|α〉2 =
x20
2

+ x20

(
|α|2 + Re

(
α2e−i2ωt

)
− 2Re

(
αe−iωt

)2)
=
x20
2

+ x20

(
|α|2 − Re

(
αe−iωt

)2 − Im
(
αe−iωt

)2)
=
x20
2
− x20

(
|α|2 − |αe−iωt|2

)
=
x20
2〈

α
∣∣δp2(t)

∣∣α〉 = 〈α
∣∣p2(t)

∣∣α〉 − 〈α |p(t)|α〉2 =
p20
2

+ p20

(
|α|2 − Re

(
α2e−i2ωt

)
− 2Im

(
αe−iωt

)2)
=
p20
2

+ p20

(
|α|2 − Im

(
αe−iωt

)2 − Re
(
αe−iωt

)2)
=
p20
2

From where we can conclude that time-independently the product of the deviations reads as:

〈∆x〉α〈∆p〉α =
x0p0

2
=

~
2

(29)

Homework:

Consider the Hamiltonian of a particle moving in constant electric �eld:

H =
p2

2m
− Eqx (30)

Repeat the calculation of the 2. exercise but with a particle starting from a coherent state of a

harmonic oscillator:

|ψ(0)〉 = e−
|α|2
2 +αa† |0〉 (31)

with the usual relations, x = x0√
2

(
a+ a†

)
, x0 =

√
~
mω and p = i p0√

2

(
a† − a

)
, p0 =

√
mω~. There

are two ways to do that:

(a) First expand the exponent to get ψ(x, 0) =
√

mω
~
√
π
e
− (x−〈x〉)2

2x20
+i
〈p〉x
~ where 〈p〉 =

√
m~ω
2 Reα

in a coherent state with α eigenvalue. And with this calculate the above integral (25) with

x(t) = e
i
~Htxe−

i
~Ht transformed into Heisenberg picture!

(b) Or in a more so�sticated way use our knowledge about the ladder operators in Heisenberg

picture, a(t) = ae−iωt, a†(t) = a†eiωt.

Hints: Use the Heisenberg picture form of x(t), derived in the 2. exercise, and write it in terms

of the ladder operators, then calculate tha action of a and a† on a coherent state, as dictated

by its de�nition.


