
4. gyakorlat (okt. 1)

1. Determine the total cross-section for the following potential:

V (r) =

{
∞, if r ≤ R
0, if r > R

(1)

As a quick revision of the theoretical lecture we brie�y summarize:

We search for the solution in case of spherically symmetric potentials, so we can write up the radial

Schrödinger equation

ψlm(E, r) =
Rl(E, r)

r
Y ml (ϑ, ϕ)(

− ~2

2m

d2

dr2
+

~2

2m

l(l + 1)

r2
+ V (r)− E

)
Rl(E, r) = 0

We can further expand every solution in terms of these radial solutions:

ψ(E, r) =

∞∑
l=0

l∑
m=−l

clm
Rl(E, r)

r
Y ml (ϑ, ϕ)

Starting from the solution of the free case(
d2

dr2
− l(l + 1)

r2
+ k2

)
Rl(r) = 0, k2 =

2mE

~2

Rreg
l (r) = rjl(kr)

Rirreg
l (r) = rnl(kr)

With which we get the linear combination for V = 0, i.e.: corresponding to the investigation far

from the target:

ψ(r) =
∑
lm

[Almjl(kr)−Blmnl(kr)]Y ml (ϑ, ϕ)

ψ(r) =
∑
lm

1

kr
[Alm sin(kr − lπ/2) +Blm cos(kr − lπ/2)]Y ml (ϑ, ϕ)

Writing the coe�cients as Alm = Clm cos δlm , Alm = Clm sin δlm and again assuming the approxi-

mating form valid far from the target we write the trial wave-function:

ψ(r) =
∑
lm

Clm
kr

sin(kr − lπ/2 + δlm)Y ml (ϑ, ϕ)

ψ(r) = A(eikz + ψs(r)) =
∑
l

A

kr

√
4π(2l + 1)il sin(kr − lπ/2)Y 0

l (ϑ) +Af(ϑ, ϕ)
eikr

r

Where the δlm-s are the phase shifts induced by the target! After some calculation we get:

Clm = δm,0e
iδl,0il

√
4π(2l + 1)

f(ϑ) =
∑
l

√
4π(2l + 1)

k
eiδl sin δlY

0
l (ϑ)

σtot =
4π

k2

∑
l

(2l + 1) sin2 δl



Now in the case of the "hard ball" we show how the phase shifts can be determined using the our

knowledge of the form of the potential V (r).

First write the asymptotic expansion of the radial solution of Schrödinger equation

Rl(r →∞) = Al(k)rjl(kr)−Bl(k)rnl(kr) ≈
Al(k)

k
sin(kr−lπ/2)+Bl(k)

k
cos(kr−lπ/2) = Cl(k)

k
sin(kr−lπ/2+δl(k))

Or generally with the Bessel and Neumann functions:

Rl(r) =
Cl(k)

k
[cos δl(k)jl(kr)− sin δl(k)nl(kr)]

Now we are in the position of exploiting the fact that the potential enters the system with only a

boudnary condition, that is the ball cannot be penetrated by the wave-function:

ψ(R) = 0→ Rl(R) = 0→ cos δl(k)jl(kR) = sin δl(k)nl(kR)→ tan δl(k) =
jl(kR)

nl(kR)

We have an easy case for l = 0, as j0(x) =
sin x
x , n0(x) =

cos x
x :

tan δ0(k) = tan(kR)→ δ0(k) = kR

Nevertheless, things gets less compact, as the general expression δl(k) = arctg
(
jl(kR)
nl(kR)

)
is in general

a hopelessly complicated function of k and so will be the case for the �nal expressin for σtot as well!

So consider limiting cases!

a.) Investigate the low energy limit and

b.) the high energy limit

Solution:

In the low energy regime we have k2 = 2mE
~2 � 1 as small parameter. So let us expand the

spherical functions:

jl(kR) =
(kR)l

(2l + 1)!!
+ o

(
(kR)l+2

)
nl(kR) =

2l − 1)!!

(kR)l+1
+ o

(
(kR)−l+1

)
tan δl(k) =

(kR)2l+1

(2l − 1)!!(2l + 1)!!
+ o

(
(kR)2l+3

)
From here we can again compute up to leading order the sin δl(k) appearing in the calculation

of the total cross-section:

sin2 δl(k) =
tan2 δl(k)

1 + tan2 δl(k)
=

(kR)4l+2

((2l − 1)!!(2l + 1)!!)2
+ o

(
(kR4l+6)

)
Now the total cross section in leading order, �rst comptuting the contributions for each l:

σl(k) =
4π

k2
(2l + 1) sin2 δl(k) =

4π(2l + 1)

((2l + 1)!!(2l − 1)!!)2
k4lR4l+2 + o

(
(kR)4l+4

)
→ 4πR2δl,0

→ σtot(k) =
∑
l

σl(k) ≈ 4πR2



Similarly to the above discussion we consider the high energy limit, where k � 1, i.e.: with

small parameter 1
k :

jl(kr) ≈
sin(kr − lπ/2)

kr

nl(kr) ≈ −
cos(kr − lπ/2)

kr

Using this it is easy to express the tangent function

tan δl(k) = − tan(kR− lπ/2)→ δl(k) = −kR+ lπ/2

Now using the formula for the total cross section, where we can tell an upper boundary on

the summation on physically motivated grounds, that is classically the scattering of a particle

is parametrized with the impact parameter a and so with an angular momentum L = pa

and so with energy E = L2/2ma2, qunatum mechanics enters via the possbile values of L we

get E = ~2l(l + 1)/2ma2, now again classically arguing, partial waves' contributions are only

relevant if a < R giving the bound l(l + 1) < 2mER2/~2 = R2k2, which reads for large k,

l < kR

σtot(k) =
4π

k2

kR∑
l=0

(2l + 1) sin2(lπ/2− kR)

We can group all 2 successive terms in the sum giving 2 cos2(lπ/2− kR) + (2l + 1) giving for

the summation in total, where now summation will be understood for only every even l

4π

k2

kR∑
l=0

cos2(kR) + (2l + 1)/2 =
4πR

k
cos2(kR) +

2π

k2
(kR+ 1)kR+

2πR

k
→ 2πR2

Determine the total cross-section for the following potential (soft ball/ sphere)

V (r) =

{
V0, if r ≤ R
0, if r > R

(2)

Let us �rst discuss the V0 < 0 case! Inside the ball we can only have the regular solution,

Rl(r < R) = rjl(κr), κ
2 = k2 − 2mV0

~2 , k2 = 2mE
~2 , while outside we can have a general

superposition, Rl(r > R) = alrjl(kr) + blrnl(kr)→ tan δl = bl/al.

Now we exploit boundary conditions

jl(κR) = ajl(kR) + bnl(kR)

κj′l(κR) = kaj′l(kR) + bkj′l(kR)

Which can be cast into a matrix equation:(
jl(kR) nl(kR)
kj′l(kR) kn′l(kR)

)(
a
b

)
=

(
jl(κR)
κj′l(κR)

)

Using the general inversion of a 2× 2 matrix we have

((
a b
c d

))−1
= 1

ad−bc

(
d −b
−c a

)
with

the trivial substitutions we get that:

tan δl =
jl(kR)κj

′
l(κR)− kj′l(kR)jl(κR)

kn′l(kR)jl(κR)− nl(kR)κj′l(κR)



Now consider the l = 0 case with j0(x) =
sin x
x and n0(x) =

cos x
x

tan δ0 = − sin(kR) cos(κR)/k − cos(kR) sin(κR)/κ

sin(kR) sin(κR)/κ+ cos(kR) cos(κR)/k
=
k tan(κR)− κ tan(kR)
k tan(kR) tan(κR) + κ

Now "as usual" let us investigate the low energy limit, with k � 1 and introduce q2 = − 2mV0

~2 ,

we have for the terms k tan(κR) ≈ −k tan(qR) ,−κ tan(kR) ≈ −κkR , k tan(kR) tan(κR) ∼

k2 ≈ 0, so in total we have

tan δ0 ≈ kR
(

1

qR
tan(qR)− 1

)
for which the corresponding cross section:

σ0(k) =
4π

k2
tan2 δ0

tan2 δ0 + 1
≈ 4π

k2
tan2 δ0 = 4πR2

(
1

qR
tan(qR)− 1

)2

We have a resonance if this expression diverges, that is
√
−2mV0/~2R = (2n+ 1)π/2→ V0 =

− ~2π2

8mR2 (2n+ 1)2.

Now we turn to the case of V0 > 0, in this case we should write instead of all κ-s, iκ as the

expression under the square root becomes negative if V0 > E → 2m
~2 (E − V0) < 0 and we

get instead of the tangents tan(iκR)
iκR = tanh(κR)

κR . Now substituing it back to the leading order

expression of σ0(k) we have

σ0(k) ≈ 4πR2

(
1

qR
tanh(qR)− 1

)2

which visibly do not have any resonance, as tanh(x) is a bounded function! Nevertheless now

we are in the position to recover the result obtained for the hard sphere via the limit V0 → −∞

for which κ → ∞, that is tanh(κR) → 1 but this gets annullated by the denominator so we

are left only with the second term in the bracket

lim
V0→−∞

σ0(k) = 4πR2

HW:

1. Determine the total cross section in case of a Dirac-delta potential

V (r) = Kδ(r −R)

Hints: Divide the space into two parts, r < R and r ≥ R and use that the solution cannot be

singular at r = 0 as we did for the soft ball, then exploit boundary conditions at r = R, that is the

continuity of the wave function and the jump of its derivative due to the Dirac-delta (The radial

equation is an e�ectice one-dimensional Schrödinger equation, so the jump is described in the same

way as in the one-dimensional case)!

2. Consider an arbitrary scattering, spherically symmetric potential, V (r) with a compact support of

radius R and suppose that we know the solutions of the corresponding radial Schrödinger equation(
d2

dr2
− l(l + 1)

r2
+ k2 − 2mV (r)

~2

)
Rl(r) = 0, k2 =

2mE

~2
. (3)



That is, we know Rl(r) = alrαl(r) + blrβ(r) with the properties, αl(r → 0) ∼ rl, being regular in

the origin and with βl(r → 0) ∼ r−(l+1), being singular in the origin, for r < R. While for r > R,

with V (r) = 0,y we have the "usual" free radial solutions, Rl(r > R) = clrjl(kr) + dlrnl(kr).

Use the boudnary conditions and the fact that the wave-fucntion cannot be singular at r = 0 for

determining the al, bl, cl, dl, coe�cients and so the δl(k) phase shifts!


