4. gyakorlat (okt. 1)

1. Determine the total cross-section for the following potential:

$$
V(r)=\left\{\begin{array}{l}
\infty, \text { if } r \leq R \tag{1}\\
0, \text { if } r>R
\end{array}\right.
$$

As a quick revision of the theoretical lecture we briefly summarize:
We search for the solution in case of spherically symmetric potentials, so we can write up the radial Schrödinger equation

$$
\begin{aligned}
& \psi_{l m}(E, \mathbf{r})=\frac{R_{l}(E, r)}{r} Y_{l}^{m}(\vartheta, \varphi) \\
& \left(-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}+V(r)-E\right) R_{l}(E, r)=0
\end{aligned}
$$

We can further expand every solution in terms of these radial solutions:

$$
\psi(E, \mathbf{r})=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{l m} \frac{R_{l}(E, r)}{r} Y_{l}^{m}(\vartheta, \varphi)
$$

Starting from the solution of the free case

$$
\begin{aligned}
& \left(\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}-\frac{l(l+1)}{r^{2}}+k^{2}\right) R_{l}(r)=0, k^{2}=\frac{2 m E}{\hbar^{2}} \\
& R_{l}^{\text {reg }}(r)=r j_{l}(k r) \\
& R_{l}^{\text {irreg }}(r)=r n_{l}(k r)
\end{aligned}
$$

With which we get the linear combination for $V=0$, i.e.: corresponding to the investigation far from the target:

$$
\begin{aligned}
\psi(\mathbf{r}) & =\sum_{l m}\left[A_{l m} j_{l}(k r)-B_{l m} n_{l}(k r)\right] Y_{l}^{m}(\vartheta, \varphi) \\
\psi(\mathbf{r}) & =\sum_{l m} \frac{1}{k r}\left[A_{l m} \sin (k r-l \pi / 2)+B_{l m} \cos (k r-l \pi / 2)\right] Y_{l}^{m}(\vartheta, \varphi)
\end{aligned}
$$

Writing the coefficients as $A_{l m}=C_{l m} \cos \delta_{l m}, A_{l m}=C_{l m} \sin \delta_{l m}$ and again assuming the approximating form valid far from the target we write the trial wave-function:

$$
\begin{aligned}
& \psi(\mathbf{r})=\sum_{l m} \frac{C_{l m}}{k r} \sin \left(k r-l \pi / 2+\delta_{l m}\right) Y_{l}^{m}(\vartheta, \varphi) \\
& \psi(\mathbf{r})=A\left(e^{i k z}+\psi_{s}(\mathbf{r})\right)=\sum_{l} \frac{A}{k r} \sqrt{4 \pi(2 l+1)} i^{l} \sin (k r-l \pi / 2) Y_{l}^{0}(\vartheta)+A f(\vartheta, \varphi) \frac{e^{i k r}}{r}
\end{aligned}
$$

Where the $\delta_{l m}$-s are the phase shifts induced by the target! After some calculation we get:

$$
\begin{aligned}
C_{l m} & =\delta_{m, 0} e^{i \delta_{l, 0}} i^{l} \sqrt{4 \pi(2 l+1)} \\
f(\vartheta) & =\sum_{l} \frac{\sqrt{4 \pi(2 l+1)}}{k} e^{i \delta_{l}} \sin \delta_{l} Y_{l}^{0}(\vartheta) \\
\sigma_{\mathrm{tot}} & =\frac{4 \pi}{k^{2}} \sum_{l}(2 l+1) \sin ^{2} \delta_{l}
\end{aligned}
$$

Now in the case of the "hard ball" we show how the phase shifts can be determined using the our knowledge of the form of the potential $V(r)$.
First write the asymptotic expansion of the radial solution of Schrödinger equation

$$
R_{l}(r \rightarrow \infty)=A_{l}(k) r j_{l}(k r)-B_{l}(k) r n_{l}(k r) \approx \frac{A_{l}(k)}{k} \sin (k r-l \pi / 2)+\frac{B_{l}(k)}{k} \cos (k r-l \pi / 2)=\frac{C_{l}(k)}{k} \sin \left(k r-l \pi / 2+\delta_{l}(k)\right)
$$

Or generally with the Bessel and Neumann functions:

$$
R_{l}(r)=\frac{C_{l}(k)}{k}\left[\cos \delta_{l}(k) j_{l}(k r)-\sin \delta_{l}(k) n_{l}(k r)\right]
$$

Now we are in the position of exploiting the fact that the potential enters the system with only a boudnary condition, that is the ball cannot be penetrated by the wave-function:

$$
\psi(R)=0 \rightarrow R_{l}(R)=0 \rightarrow \cos \delta_{l}(k) j_{l}(k R)=\sin \delta_{l}(k) n_{l}(k R) \rightarrow \tan \delta_{l}(k)=\frac{j_{l}(k R)}{n_{l}(k R)}
$$

We have an easy case for $l=0$, as $j_{0}(x)=\frac{\sin x}{x}, n_{0}(x)=\frac{\cos x}{x}$:

$$
\tan \delta_{0}(k)=\tan (k R) \rightarrow \delta_{0}(k)=k R
$$

Nevertheless, things gets less compact, as the general expression $\delta_{l}(k)=\operatorname{arctg}\left(\frac{j_{l}(k R)}{n_{l}(k R)}\right)$ is in general a hopelessly complicated function of k and so will be the case for the final expressin for $\sigma_{\text {tot }}$ as well! So consider limiting cases!
a.) Investigate the low energy limit and
b.) the high energy limit

Solution:

In the low energy regime we have $k^{2}=\frac{2 m E}{\hbar^{2}} \ll 1$ as small parameter. So let us expand the spherical functions:

$$
\begin{aligned}
& j_{l}(k R)=\frac{(k R)^{l}}{(2 l+1)!!}+\mathrm{o}\left((k R)^{l+2}\right) \\
& n_{l}(k R)=\frac{2 l-1)!!}{(k R)^{l+1}}+\mathrm{o}\left((k R)^{-l+1}\right) \\
& \tan \delta_{l}(k)=\frac{(k R)^{2 l+1}}{(2 l-1)!!(2 l+1)!!}+\mathrm{o}\left((k R)^{2 l+3}\right)
\end{aligned}
$$

From here we can again compute up to leading order the $\sin \delta_{l}(k)$ appearing in the calculation of the total cross-section:

$$
\sin ^{2} \delta_{l}(k)=\frac{\tan ^{2} \delta_{l}(k)}{1+\tan ^{2} \delta_{l}(k)}=\frac{(k R)^{4 l+2}}{((2 l-1)!!(2 l+1)!!)^{2}}+\mathrm{o}\left(\left(k R^{4 l+6}\right)\right)
$$

Now the total cross section in leading order, first comptuting the contributions for each l :

$$
\begin{aligned}
& \sigma_{l}(k)=\frac{4 \pi}{k^{2}}(2 l+1) \sin ^{2} \delta_{l}(k)=\frac{4 \pi(2 l+1)}{((2 l+1)!!(2 l-1)!!)^{2}} k^{4 l} R^{4 l+2}+\mathrm{o}\left((k R)^{4 l+4}\right) \rightarrow 4 \pi R^{2} \delta_{l, 0} \\
& \rightarrow \sigma_{\mathrm{tot}}(k)=\sum_{l} \sigma_{l}(k) \approx 4 \pi R^{2}
\end{aligned}
$$

Similarly to the above discussion we consider the high energy limit, where $k \gg 1$, i.e.: with small parameter $\frac{1}{k}$:

$$
\begin{aligned}
& j_{l}(k r) \approx \frac{\sin (k r-l \pi / 2)}{k r} \\
& n_{l}(k r) \approx-\frac{\cos (k r-l \pi / 2)}{k r}
\end{aligned}
$$

Using this it is easy to express the tangent function

$$
\tan \delta_{l}(k)=-\tan (k R-l \pi / 2) \rightarrow \delta_{l}(k)=-k R+l \pi / 2
$$

Now using the formula for the total cross section, where we can tell an upper boundary on the summation on physically motivated grounds, that is classically the scattering of a particle is parametrized with the impact parameter a and so with an angular momentum $L=p a$ and so with energy $E=L^{2} / 2 m a^{2}$, qunatum mechanics enters via the possbile values of L we get $E=\hbar^{2} l(l+1) / 2 m a^{2}$, now again classically arguing, partial waves' contributions are only relevant if $a<R$ giving the bound $l(l+1)<2 m E R^{2} / \hbar^{2}=R^{2} k^{2}$, which reads for large k, $l<k R$

$$
\sigma_{\mathrm{tot}}(k)=\frac{4 \pi}{k^{2}} \sum_{l=0}^{k R}(2 l+1) \sin ^{2}(l \pi / 2-k R)
$$

We can group all 2 successive terms in the sum giving $2 \cos ^{2}(l \pi / 2-k R)+(2 l+1)$ giving for the summation in total, where now summation will be understood for only every even l

$$
\frac{4 \pi}{k^{2}} \sum_{l=0}^{k R} \cos ^{2}(k R)+(2 l+1) / 2=\frac{4 \pi R}{k} \cos ^{2}(k R)+\frac{2 \pi}{k^{2}}(k R+1) k R+\frac{2 \pi R}{k} \rightarrow 2 \pi R^{2}
$$

Determine the total cross-section for the following potential (soft ball/ sphere)

$$
V(r)=\left\{\begin{array}{l}
V_{0}, \text { if } r \leq R \tag{2}\\
0, \text { if } r>R
\end{array}\right.
$$

Let us first discuss the $V_{0}<0$ case! Inside the ball we can only have the regular solution, $R_{l}(r<R)=r j_{l}(\kappa r), \kappa^{2}=k^{2}-\frac{2 m V_{0}}{\hbar^{2}}, k^{2}=\frac{2 m E}{\hbar^{2}}$, while outside we can have a general superposition, $R_{l}(r>R)=a_{l} r j_{l}(k r)+b_{l} r n_{l}(k r) \rightarrow \tan \delta_{l}=b_{l} / a_{l}$.

Now we exploit boundary conditions

$$
\begin{aligned}
& j_{l}(\kappa R)=a j_{l}(k R)+b n_{l}(k R) \\
& \kappa j_{l}^{\prime}(\kappa R)=k a j_{l}^{\prime}(k R)+b k j_{l}^{\prime}(k R)
\end{aligned}
$$

Which can be cast into a matrix equation:

$$
\left(\begin{array}{cc}
j_{l}(k R) & n_{l}(k R) \\
k j_{l}^{\prime}(k R) & k n_{l}^{\prime}(k R)
\end{array}\right)\binom{a}{b}=\binom{j_{l}(\kappa R)}{\kappa j_{l}^{\prime}(\kappa R)}
$$

Using the general inversion of a 2×2 matrix we have $\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$ with the trivial substitutions we get that:

$$
\tan \delta_{l}=\frac{j_{l}(k R) \kappa j_{l}^{\prime}(\kappa R)-k j_{l}^{\prime}(k R) j_{l}(\kappa R)}{k n_{l}^{\prime}(k R) j_{l}(\kappa R)-n_{l}(k R) \kappa j_{l}^{\prime}(\kappa R)}
$$

Now consider the $l=0$ case with $j_{0}(x)=\frac{\sin x}{x}$ and $n_{0}(x)=\frac{\cos x}{x}$

$$
\tan \delta_{0}=-\frac{\sin (k R) \cos (\kappa R) / k-\cos (k R) \sin (\kappa R) / \kappa}{\sin (k R) \sin (\kappa R) / \kappa+\cos (k R) \cos (\kappa R) / k}=\frac{k \tan (\kappa R)-\kappa \tan (k R)}{k \tan (k R) \tan (\kappa R)+\kappa}
$$

Now "as usual" let us investigate the low energy limit, with $k \ll 1$ and introduce $q^{2}=-\frac{2 m V_{0}}{\hbar^{2}}$, we have for the terms $k \tan (\kappa R) \approx-k \tan (q R),-\kappa \tan (k R) \approx-\kappa k R, k \tan (k R) \tan (\kappa R) \sim$ $k^{2} \approx 0$, so in total we have

$$
\tan \delta_{0} \approx k R\left(\frac{1}{q R} \tan (q R)-1\right)
$$

for which the corresponding cross section:

$$
\sigma_{0}(k)=\frac{4 \pi}{k^{2}} \frac{\tan ^{2} \delta_{0}}{\tan ^{2} \delta_{0}+1} \approx \frac{4 \pi}{k^{2}} \tan ^{2} \delta_{0}=4 \pi R^{2}\left(\frac{1}{q R} \tan (q R)-1\right)^{2}
$$

We have a resonance if this expression diverges, that is $\sqrt{-2 m V_{0} / \hbar^{2}} R=(2 n+1) \pi / 2 \rightarrow V_{0}=$ $-\frac{\hbar^{2} \pi^{2}}{8 m R^{2}}(2 n+1)^{2}$.
Now we turn to the case of $V_{0}>0$, in this case we should write instead of all κ-s, $i \kappa$ as the expression under the square root becomes negative if $V_{0}>E \rightarrow \frac{2 m}{\hbar^{2}}\left(E-V_{0}\right)<0$ and we get instead of the tangents $\frac{\tan (i \kappa R)}{i \kappa R}=\frac{\tanh (\kappa R)}{\kappa R}$. Now substituing it back to the leading order expression of $\sigma_{0}(k)$ we have

$$
\sigma_{0}(k) \approx 4 \pi R^{2}\left(\frac{1}{q R} \tanh (q R)-1\right)^{2}
$$

which visibly do not have any resonance, as $\tanh (x)$ is a bounded function! Nevertheless now we are in the position to recover the result obtained for the hard sphere via the limit $V_{0} \rightarrow-\infty$ for which $\kappa \rightarrow \infty$, that is $\tanh (\kappa R) \rightarrow 1$ but this gets annullated by the denominator so we are left only with the second term in the bracket

$$
\lim _{V_{0} \rightarrow-\infty} \sigma_{0}(k)=4 \pi R^{2}
$$

HW:

1. Determine the total cross section in case of a Dirac-delta potential

$$
V(r)=K \delta(r-R)
$$

Hints: Divide the space into two parts, $r<R$ and $r \geq R$ and use that the solution cannot be singular at $r=0$ as we did for the soft ball, then exploit boundary conditions at $r=R$, that is the continuity of the wave function and the jump of its derivative due to the Dirac-delta (The radial equation is an effectice one-dimensional Schrödinger equation, so the jump is described in the same way as in the one-dimensional case)!
2. Consider an arbitrary scattering, spherically symmetric potential, $V(r)$ with a compact support of radius R and suppose that we know the solutions of the corresponding radial Schrödinger equation

$$
\begin{equation*}
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}-\frac{l(l+1)}{r^{2}}+k^{2}-\frac{2 m V(r)}{\hbar^{2}}\right) R_{l}(r)=0, \quad k^{2}=\frac{2 m E}{\hbar^{2}} \tag{3}
\end{equation*}
$$

That is, we know $R_{l}(r)=a_{l} r \alpha_{l}(r)+b_{l} r \beta(r)$ with the properties, $\alpha_{l}(r \rightarrow 0) \sim r^{l}$, being regular in the origin and with $\beta_{l}(r \rightarrow 0) \sim r^{-(l+1)}$, being singular in the origin, for $r<R$. While for $r>R$, with $V(r)=0$,y we have the "usual" free radial solutions, $R_{l}(r>R)=c_{l} r j_{l}(k r)+d_{l} r n_{l}(k r)$.

Use the boudnary conditions and the fact that the wave-fucntion cannot be singular at $r=0$ for determining the $a_{l}, b_{l}, c_{l}, d_{l}$, coefficients and so the $\delta_{l}(k)$ phase shifts!

