4. gyakorlat (okt. 1)

1. Determine the total cross-section for the following potential:

oo, ifr<R
Vir) = ’ - 1
) { 0,ifr>R @

As a quick revision of the theoretical lecture we briefly summarize:
We search for the solution in case of spherically symmetric potentials, so we can write up the radial

Schrédinger equation

bim(E,x) = BE ymiy )

< R A2 R I(i+1)

omdr2 ' 2m 12

+Vr)— E) R/(E,r)=0

We can further expand every solution in terms of these radial solutions:
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Starting from the solution of the free case
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With which we get the linear combination for V' = 0, i.e.: corresponding to the investigation far
from the target:
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Writing the coefficients as A, = Cip, €08 0pp » Ay = Clm sin 0y, and again assuming the approxi-

mating form valid far from the target we write the trial wave-function:
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Where the d;,,-s are the phase shifts induced by the target! After some calculation we get:
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Now in the case of the "hard ball" we show how the phase shifts can be determined using the our
knowledge of the form of the potential V().
First write the asymptotic expansion of the radial solution of Schrédinger equation
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Or generally with the Bessel and Neumann functions:
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Now we are in the position of exploiting the fact that the potential enters the system with only a

boudnary condition, that is the ball cannot be penetrated by the wave-function:

PY(R) =0— Ry(R) =0 — cosdi(k)ji(kR) = sind;(k)ni(kR) — tan §;(k) = .

We have an easy case for | = 0, as jo(z) = 322 ng(z) =

cos .
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tando(k) = tan(kR) — do(k) = kR

Nevertheless, things gets less compact, as the general expression §;(k) = arctg ( 7]1 ’l ((ilé))) is in general

a hopelessly complicated function of k£ and so will be the case for the final expressin for oy as well!

So consider limiting cases!

a.) Investigate the low energy limit and

b.) the high energy limit

Solution:
In the low energy regime we have k% = QZ’TE < 1 as small parameter. So let us expand the
spherical functions:
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From here we can again compute up to leading order the sin d;(k) appearing in the calculation

of the total cross-section:

, tan? o,(k) (kR)4+2 .
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Now the total cross section in leading order, first comptuting the contributions for each I:
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Similarly to the above discussion we consider the high energy limit, where k > 1, i.e.: with
small parameter %:
sin(kr — Im/2)
kr
cos(kr — lm/2)
kr

Ji(kr) ~
ny(kr) ~

Using this it is easy to express the tangent function
tan0;(k) = —tan(kR — In/2) — §(k) = —kR + Im/2

Now using the formula for the total cross section, where we can tell an upper boundary on
the summation on physically motivated grounds, that is classically the scattering of a particle
is parametrized with the impact parameter ¢ and so with an angular momentum L = pa
and so with energy F = L?/2ma?, qunatum mechanics enters via the possbile values of L we
get B = h21(l + 1)/2ma?, now again classically arguing, partial waves’ contributions are only
relevant if a < R giving the bound (I + 1) < 2mER?/h* = R?k?, which reads for large k,

Il < kR
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We can group all 2 successive terms in the sum giving 2 cos?(In/2 — kR) + (21 + 1) giving for

the summation in total, where now summation will be understood for only every even [

A R 4R 21 2R
= cos? 20 +1)/2 = — cos? = 1 2 5 orR?
12 2 cos“(kR) + (21 +1)/ L Cos (kR) + 12 (kR+ 1D)kR + . TR

Determine the total cross-section for the following potential (soft ball/ sphere)

i <
Vi) = Vo,. ifr<R @)
0,if r >R

Let us first discuss the V5 < 0 case! Inside the ball we can only have the regular solution,

Ri(r < R) = rji(sr), k2 = k? — zrg—zv", k? = 25E while outside we can have a general
superposition, R;(r > R) = a;rj;(kr) 4+ byrni(kr) — tand; = b;/ay.
Now we exploit boundary conditions

Ji(kR) = aji(ER) + bny(kR)

kj(kR) = kaj,(kR) + bkj;(kR)

Which can be cast into a matrix equation:
]l(kR) nl(kR) a _ ]Z(I{R)
kjj(kR) knj(kR)) \b kj)(KR)

-1
Using the general inversion of a 2 x 2 matrix we have ((i Z)) = ﬁ < d _ab) with

the trivial substitutions we get that:

Ji(kR)kj|(kR) — kjj(kR)ji(kR)

tan d; = - -
"7 knj(kR)ji(kR) — ni(kR)rj](kR)




Now consider the [ = 0 case with jo(z) = 2% and ng(z) =

cos T
T

_sin(kR) cos(kR)/k — cos(kR)sin(kR)/k _ ktan(sR) — ktan(kR)

sin(kR)sin(kR)/k + cos(kR) cos(kR)/k ~ ktan(kR)tan(kR) + &

Now "as usual" let us investigate the low energy limit, with k& < 1 and introduce ¢> = — 2",;2‘/ o,

we have for the terms ktan(skR) ~ —ktan(qR),—rtan(kR) ~ —xkR,ktan(kR)tan(kR) ~

tandg =

k? =~ 0, so in total we have
1
tandg ~ kR <qR tan(¢R) — 1)

for which the corresponding cross section:

_Arm tan? &y U Am
T k2tan?d, + 1 k2
We have a resonance if this expression diverges, that is \/—2mVy/R2R = 2n+ 1)7/2 — Vo =

_755%22 (2n +1)2.

2
oo(k) tan? 5 = 47 R? (qu tan(qR) — 1)

Now we turn to the case of Vj > 0, in this case we should write instead of all x-s, ik as the

expression under the square root becomes negative if Vj > E — :;L—T(E — Vo) < 0 and we

tan(ikR) _ tanh(kR)
kR KR

get instead of the tangents . Now substituing it back to the leading order

expression of o(k) we have
1 2
oo(k) ~ 47 R? (qR tanh(qR) — 1)

which visibly do not have any resonance, as tanh(xz) is a bounded function! Nevertheless now
we are in the position to recover the result obtained for the hard sphere via the limit V) — —oo
for which k — oo, that is tanh(xR) — 1 but this gets annullated by the denominator so we

are left only with the second term in the bracket

lim  og(k) = 47 R?

Vo——o0

HW:

1. Determine the total cross section in case of a Dirac-delta potential

V(r)= Ké(r — R)

Hints: Divide the space into two parts, r < R and r > R and use that the solution cannot be
singular at » = 0 as we did for the soft ball, then exploit boundary conditions at » = R, that is the
continuity of the wave function and the jump of its derivative due to the Dirac-delta (The radial
equation is an effectice one-dimensional Schrodinger equation, so the jump is described in the same

way as in the one-dimensional case)!

Consider an arbitrary scattering, spherically symmetric potential, V(r) with a compact support of

radius R and suppose that we know the solutions of the corresponding radial Schrédinger equation
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That is, we know R;(r) = ajray(r) + byr3(r) with the properties, a;(r — 0) ~ r!, being regular in
the origin and with S8;(r — 0) ~ r~(+1) being singular in the origin, for » < R. While for r > R,
with V(r) = 0,y we have the "usual" free radial solutions, R;(r > R) = ¢;rji(kr) + dirn(kr).

Use the boudnary conditions and the fact that the wave-fucntion cannot be singular at » = 0 for

determining the a;, by, ¢, d;, coeflicients and so the §;(k) phase shifts!



