Variational method

1 Variational principle

Requirement for the applicability of the variational principle: the Hamiltonian is bounded from below. It
means that exists a lowest eigenvalue of the Hamiltonian. Examples for bounded systems: harmonic oscillator,

Hydrogen atom. Examples for non-bounded systems: charged particle in uniform electric field, free particle.
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2 Application of the variational principle:
2.1 Schroédinger equation

Suppose the Hamiltonian of the problem is bounded from below. We are looking for a state of the Hilbert
space which minimize the energy with the requirement that it is normalized. The functional which should be

minimize is the following:
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At the minimum the first order variation of the functional with respect of ¥* should disappear for each d¢*:
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We get the time independent Schrédinger equation:
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3 Ritz variational method

¥(r,{a;}) is a function of a set of parameters {a;}. In order to find a variational solution the following

expression should be minimized:
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An example: harmonic oscillator in coordinate representation

F({ai}) =

0




The probe function is ¥(r, ) = e—az?,
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4 Problem: Ground state of a Hydrogen atom

Schrédinger equation:
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, where k is the Coulomb constant, e is the

Introducing the length scale ag and the energy scale: Ey
ao

elementary charge, the Schrodinger equation can be written as:
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Applying the new length scale 7 = " the Schrodinger equation can be rewritten as
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where ~is omitted. Schrédinger equation:
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Probe function: ¢y = ¢~%". Give an estimate of the ground state energy and ground state wave-function using

the Ritz variational principle! Compare them to the exact solution!



