
Ritz variational principle Harmonic oscillator H atom He atom

Variational methods

September 17, 2021

Variational methods-He atom



Ritz variational principle Harmonic oscillator H atom He atom

Ritz variational principle

For Hamiltonians bounded from below (there exists a smallest
eigenvalue)

〈ϕ|H|ϕ〉
〈ϕ|ϕ〉

>
〈ψ|H|ψ〉
〈ψ|ψ〉

, ahol H|ψ〉 = E|ψ〉

Let |ϕ〉 depend on some α parameter and let α0 be the solution of

E(α) =
〈ϕ|H|ϕ〉
〈ϕ|ϕ〉

,
dE

dα
= 0.

Then E(α0) and |ϕ(α0)〉 is an approximation of the ground state
energy and wave-function.
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Harmonic oscillator

Hamiltonian of the harmonic oscillator with frequency ω

H = − ~2

2m
∆ +

1

2
mω2x2

Let us use the follwoing trial wave-function ϕ(x) = e−αx
2

The norm of which is the following:

〈ϕ|ϕ〉 =

∫ ∞
−∞

dxe−2αx
2

=

√
π

2α
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Harmonic oscillator

Effect of the Hamiltonian on the trial wave-function:

1 First the second derivative term

d

dx
e−αx

2
= −2αxe−αx

2
,

d2

dx2
e−αx

2
=
(
−2α+ 4αx2

)
e−αx

2

2 Now the energy integral:

〈ϕ|H|ϕ〉 =

∫ ∞
−∞

dx

(
− ~2

2m

(
−2α+ 4αx2

)
+

1

2
mω2x2

)
e−2αx

2

=
~2

m
α

∫ ∞
−∞

dxe−2αx
2

+

(
1

2
mω2 − 2~2α2

m

)∫ ∞
−∞

dxx2e−2αx
2
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Harmonic oscillator

Now the second integral is performed as∫ ∞
−∞

dxx2e−2αx
2

= − 1

4α
xe−2αx

2
∣∣∣∞
−∞

+
1

4α

∫ ∞
−∞

dxe−2αx
2

Where only the second term survives, tigether with the
normalization yielding a contribution of 1

4α

E(α) =
〈ϕ|H|ϕ〉
〈ϕ|ϕ〉

=
~2

m
α+

(
1

2
mω2 − 2~2α2

m

)
1

4α

=
~2

2m
α+

1

8
mω2 1

α
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Harmonic oscillator

Now find the optimal α that minimizes the energy integral,

dE(α)

dα
= 0→ ~2

2m
− 1

8
mω2 1

α2
= 0→ α0 =

mω

2~
, E =

1

2
~ω

Note that we just recovered the exact ground state function and
energy, this because we started from the form of the known
wave-function.
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H atom

Hamiltonian of the H atom

H = − ~2

2m
∆− ke2

r

By introducing the a0 =
~2

ke2m
, E0 =

ke2

a0
atomic units

H = −1

2
∆− 1

r
.

Distance is measured in Bohr units (a0 = 0.529 Å) while energy in Hartree

units (1 H = 27.2 eV ).
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H atom

We are looking for the ground state energy. Let the trial function be of the
form e−αr, l = 0.

H = −1

2

1

r2
∂

∂r
r2
∂

∂r
− 1

r

Norm of the trial function:

〈ϕ|ϕ〉 =

∫ ∞
0

e−2αr2dr =
2

(2α)3
=

1

4α3

Effect of the Hamiltonian on the trial wave-function:

H|ϕ〉 = −1

2

1

r2
∂

∂r
r2
∂

∂r
e−αr − 1

r
e−αr =

1

2

1

r2
∂

∂r
r2αe−αr − 1

r
e−αr

=
1

2

1

r2
(
2rα− r2α2) e−αr − 1

r
e−αr
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H atom

Expectation value of the Hamiltonian:

〈ϕ|H|ϕ〉 =

∫ ∞
0

1

2

1

r2
(
2rα− r2α2) e−2αrr2dr−

∫ ∞
0

−1

r
e−2αrr2dr =

1

8α
− 1

4α2

E(α) =
〈ϕ|H|ϕ〉
〈ϕ|ϕ〉 =

(
1

8α
− 1

4α2

)
4α3 =

1

2
α2 − α

In the case of lowest possible value the derivative with respect to the parameter
the epectation value vanishes:

∂E

∂α
= α− 1 = 0 , α = 1

If we choose this optimal value of α, the energy of the H atom will be exactly

E = − 1
2

in atomic units, i.e. Hartree units. The equivalene with the exact

value is the consequence of the fact that the trial function was exactly of the

same form as the real ground state wave-function.
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He atom S = 0 ground state

We can look for the wave-function of the He atom in a form of the product of
the H atomic wave-functions:

Φ(r1, r2) = ϕ(r1)ϕ(r2)
1√
2

(|1/2, 1/2〉|1/2,−1/2〉 − |1/2,−1/2〉|1/2, 1/2〉)

=

∣∣∣∣ ϕ(r1)|1/2, 1/2〉 ϕ(r1)|1/2,−1/2〉
ϕ(r2)|1/2, 1/2〉 ϕ(r2)|1/2,−1/2〉

∣∣∣∣︸ ︷︷ ︸
Slater determináns

Hamiltonian of the He atom:

H = −1

2
∆1 −

2

r1
− 1

2
∆2 −

2

r2
+

1

|r1 − r2|
= H(1) +H(2) +

1

|r1 − r2|

〈Φ|H|Φ〉 = 〈ϕ(1)|H(1)|ϕ(1)〉+〈ϕ(2)|H(2)|ϕ(2)〉+〈ϕ(r1)ϕ(r2)| 1

|r1 − r2|
|ϕ(r1)ϕ(r2)〉

〈Φ|Φ〉 = 〈ϕ|ϕ〉〈ϕ|ϕ〉
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He atom S = 0 ground state

Let the trial wave-function be of the form ϕ(r) = 4α3e−αr , similarly to the
case of the H atom:

〈ϕ|ϕ〉 = 1, 〈ϕ|H|ϕ〉 =
1

2
α2 − 2α

However the integral 〈ϕ(r1)ϕ(r2)| 1
|r1−r2|

|ϕ(r1)ϕ(r2)〉 is far from trivial to
compute:

Multipole expansion:

1

|r − r′| =

∞∑
l=0

rl<

rl+1
>

4π

2l + 1

l∑
m=−l

Y ml (ϑ, ϕ)Y ml (ϑ′, ϕ′)

Bring it to the form of a Poisson equation:

Let’s choose another strategy!
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He atom S = 0 ground state

〈ϕ(r1)ϕ(r2)| 1

|r1 − r2|
|ϕ(r1)ϕ(r2)〉 =

∫
dr31ϕ

∗(r1)

∫
dr32
|ϕ(r2)|2

|r1 − r2|︸ ︷︷ ︸
electric potential

of
a

charge
density

ϕ(r1)

Hartree potential:

VH(r1) =

∫
dr32
|ϕ(r2)|2

|r1 − r2|
, ∆VH = −|ϕ|2 (Poisson equation)

∆VH = −4α3e−2αr

Poisson equation in spherical coordinates:

1

r

∂2rVH
∂r2

= −4α3e−2αr .

Partial derivatives can substituted by total derivatives

1

r

d2rVH
dr2

= −4α3e−2αr,
d2U

dr2
= −4α3re−2αr , U(r) = rVH(r)
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He atom S = 0 ground state

WE can easily solve the differential equation by two successive integration:

dU

dr
= −4α3

∫
re−2αrdr = α(2αr + 1)e−2αr + C

U =

∫
α(2αr + 1)e−2αrdr + Cr = −(rα+ 1)e−2αr + Cr +B

Nevertheless, we are left with two free parameters, fixed by boundary
conditions. At infinite distance one should feel a point charge implying a decay
of the potential ∼ 1/r , i.e.: lim

r→∞
U(r) = 1, while we can always choose the

origo as the zero-point of the potential : C = 0 és B = 1.

VH =
1

r
− 1 + αr

r
e−2αr

Now we can calculate the matrix element of the Hartrre potential:

EC = 〈ϕ|VH |ϕ〉 = 4α3

∫ ∞
0

(
1

r
− 1 + αr

r
e−2αr)e−2αrr2dr =

5

8
α
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He atom S = 0 ground state

E(α) = α2 − 4α+
5

8
α ,

dE

dα
= 2α− 27

8
. (1)

The optimal α parameter α = 27
16

and the corresponding energy

E = −
(
27
16

)2
= −2.847. The exact ground state energy is −2.903 Hartree,

being smaller only by some hundredth Hartree as the one given by the
variational method with independent H atomic wave-function, but keep in
mind, that 0.056 Hartree measured in electron-volts is ∆E = 1.52eV
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Homework

Consider the Hamiltonian of the so called Moshinsky atom describing 2 spin
one-half particles:

H =
p21
2m

+
p22
2m

+
1

2
mΩ2(x21 + x22) +

1

2
mω2(x1 − x2)2 .

Introduce the variables X = x1 + x2 and x = x1 − x2 and solve the
time-independent Schrödinger-equation. What are the symmetries of the
spatial parts of the S = 0 singlet and S = 1 triplet solutions?

Using the variational method derive the equation for the S = 0 ground
state wave-function and solve it (Hartree-Fock equation)! Hint:
Variate/differentiate with respect to ϕ∗ the expression
〈ϕ(x1)ϕ(x2)|H|ϕ(x1)ϕ(x2)〉) taking into account, with the usual
Lagrange multiplicator method, the costraint 〈ϕ|ϕ〉 = 1
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