Addition of angular momentum

September 7, 2021

Revision of basic properties

- $\left[L_{i}, L_{j}\right]=i \hbar \epsilon_{i j k} L_{k}, \quad\left[\mathbf{L}^{2}, L_{i}\right]=0$
- $\mathbf{L}^{2}|l, m\rangle=\hbar^{2} l(l+1)|l, m\rangle, \quad L_{z}|l, m\rangle=\hbar m|l, m\rangle$ $l=0,1 / 2,1,3 / 2 \ldots m=-l, \ldots l$,
- $L_{ \pm}|l, m\rangle=\hbar \sqrt{l(l+1)-m(m \pm 1)}|l, m \pm 1\rangle$

Addition of angular momentum

$$
\mathbf{J}=\mathbf{L}_{1}+\mathbf{L}_{2}, \quad \mathbf{J}^{2}=\left(\mathbf{L}_{1}+\mathbf{L}_{2}\right)^{2}
$$

Cartesian/Tensor product space: $\left\{\left|l_{1}, m_{1}\right\rangle\left|l_{2}, m_{2}\right\rangle\right\}$ of $\left(2 l_{1}+1\right) \times\left(2 l_{2}+1\right)$ dimension

$$
J_{z}\left|l_{1}, m_{1}\right\rangle\left|l_{2}, m_{2}\right\rangle=\left(L_{1 z}+L_{2 z}\left|l_{1}, m_{1}\right\rangle\left|l_{2}, m_{2}\right\rangle=\hbar\left(m_{1}+m_{2}\right)\left|l_{1}, m_{1}\right\rangle\left|l_{1}, m_{1}\right\rangle\right.
$$

The state $\left|l_{1}, m_{1}\right\rangle\left|l_{2}, m_{2}\right\rangle$ is an eigenstate of the operator $J_{z}=L_{1 z}+L_{2 z}$ with eigenvalue $m_{1}+m_{2}$.

$$
\mathbf{J}^{2}\left|l_{1}, m_{1}\right\rangle\left|l_{2}, m_{2}\right\rangle=\left(\mathbf{L}_{1}+\mathbf{L}_{2}\right)^{2}\left|l_{1}, m_{1}\right\rangle\left|l_{2}, m_{2}\right\rangle \neq \alpha\left|l_{1}, m_{1}\right\rangle\left|l_{2}, m_{2}\right\rangle
$$

The product $\left|l_{1}, m_{1}\right\rangle\left|l_{2}, m_{2}\right\rangle$ is not necessarily an eigenstate of $\mathbf{J}^{2}=\left(\mathbf{L}_{1}+\mathbf{L}_{2}\right)^{2}$, nevertheless its eigenstate can be constructed as linear combinations of the product states:

$$
\mathbf{J}^{2}|j, m\rangle=\left(\mathbf{L}_{1}+\mathbf{L}_{2}\right)^{2} \sum_{m_{1}, m_{2}} c_{j, m ; l_{1}, m_{1}, l_{2}, m_{2}}\left|l_{1}, m_{1}\right\rangle\left|l_{2}, m_{2}\right\rangle=\hbar^{2} j(j+1)|j, m\rangle
$$

Where the coefficients are called Clebsch-Gordan coefficients.

Spin-1/2 (Spin one-half) particles

An He atom posseses of two spin one-half electrons. The Hamiltonian commutes with the operators $S_{z}=S_{1 z}+S_{2 z}$ and $\mathbf{S}^{2}=\left(\mathbf{S}_{1}+\mathbf{S}_{2}\right)^{2}$.
Possible values for $S: 1 / 2-1 / 2=0$ and $1 / 2+1 / 2=1$. There is only one way to construct the sates $\left|S, S_{z}\right\rangle=|1,1\rangle$ and $\left|S, S_{z}\right\rangle=|1,-1\rangle$:

$$
|1,1\rangle=|1 / 2,1 / 2\rangle|1 / 2,1 / 2\rangle, \quad|1,-1\rangle=|1 / 2,-1 / 2\rangle|1 / 2,-1 / 2\rangle
$$

Acting with the spin lowering operator S_{-}on $|1,1\rangle=|1 / 2,1 / 2\rangle|1 / 2,1 / 2\rangle$:

$$
\begin{aligned}
S_{-}|1,1\rangle & =\left(S_{1-}+S_{2-}\right)|1 / 2,1 / 2\rangle|1 / 2,1 / 2\rangle \\
\sqrt{1(1+1)-1(1-1)}|1,0\rangle & =\sqrt{1 / 2(1 / 2+1)-(1 / 2(1 / 2-1)}|1 / 2,-1 / 2\rangle|1 / 2,1 / 2\rangle \\
& +\sqrt{1 / 2(1 / 2+1)-(1 / 2(1 / 2-1)}|1 / 2,1 / 2\rangle|1 / 2,-1 / 2\rangle \\
\sqrt{2}|1,0\rangle & =|1 / 2,-1 / 2\rangle|1 / 2,1 / 2\rangle+|1 / 2,1 / 2\rangle|1 / 2,-1 / 2\rangle
\end{aligned}
$$

From here:

$$
|1,0\rangle=\frac{1}{\sqrt{2}}|1 / 2,-1 / 2\rangle|1 / 2,1 / 2\rangle+\frac{1}{\sqrt{2}}|1 / 2,1 / 2\rangle|1 / 2,-1 / 2\rangle
$$

So both of the Clebsh-Gordan coefficients are $\frac{1}{\sqrt{2}}$.

Singlet and triplet states

Two spin one-half particles can be in four different states:

$S=13$-fold degenerate triplet

$$
\begin{aligned}
|1,1\rangle & =|1 / 2,1 / 2\rangle|1 / 2,1 / 2\rangle \\
|1,0\rangle & =\frac{1}{\sqrt{2}}|1 / 2,-1 / 2\rangle|1 / 2,1 / 2\rangle+\frac{1}{\sqrt{2}}|1 / 2,1 / 2\rangle|1 / 2,-1 / 2\rangle \\
|1,-1\rangle & =|1 / 2,-1 / 2\rangle|1 / 2,-1 / 2\rangle
\end{aligned}
$$

$S=0$ non-degenerate singlet

$$
|0,0\rangle=\frac{1}{\sqrt{2}}|1 / 2,-1 / 2\rangle|1 / 2,1 / 2\rangle-\frac{1}{\sqrt{2}}|1 / 2,1 / 2\rangle|1 / 2,-1 / 2\rangle
$$

$|1,0\rangle$ and $|0,0\rangle$ contain the same states, but they must be orthogonal!

$\mathbf{J}=\mathbf{L}+\mathbf{S}, \quad l_{1}=1, \quad l_{2}=1 / 2$

Possible values for j : $1-1 / 2=1 / 2,1+1 / 2=3 / 2$. States $\left|j_{\max }, j_{\max }\right\rangle$ and $\left|j_{\max },-j_{\max }\right\rangle$ are always uniquely determined by the products:
$\left|j_{\max }, j_{\max }\right\rangle=\left|l_{1}, l_{1}\right\rangle\left|l_{2}, l_{2}\right\rangle$ and $\left|j_{\max },-j_{\max }\right\rangle=\left|l_{1},-l_{1}\right\rangle\left|l_{2},-l_{2}\right\rangle$. In our case

$$
|3 / 2,3 / 2\rangle=|1,1\rangle|1 / 2,1 / 2\rangle, \quad|3 / 2,-3 / 2\rangle=|1,-1\rangle|1 / 2,-1 / 2\rangle
$$

Similarly to what we have done before we act with the lowering ladder operators

$$
\begin{gathered}
J_{-}|3 / 2,3 / 2\rangle=\left(L_{-}+S_{-}\right)|1,1\rangle|1 / 2,1 / 2\rangle \\
\sqrt{3 / 2(3 / 2+1)-3 / 2(3 / 2-1)}|3 / 2,1 / 2\rangle=\sqrt{1(1+1)-1(1-1)}|1,0\rangle|1 / 2,1 / 2\rangle \\
+\sqrt{1 / 2(1 / 2+1)-1 / 2(1 / 2-1)}|1,1\rangle|1 / 2,-1 / 2\rangle \\
\sqrt{3}|3 / 2,1 / 2\rangle=\sqrt{2}|1,0\rangle|1 / 2,1 / 2\rangle+|1,1\rangle|1 / 2,-1 / 2\rangle \\
|3 / 2,1 / 2\rangle=\sqrt{\frac{2}{3}}|1,0\rangle|1 / 2,1 / 2\rangle+\frac{1}{\sqrt{3}}|1,1\rangle|1 / 2,-1 / 2\rangle
\end{gathered}
$$

$$
\mathbf{J}=\mathbf{L}+\mathbf{S}, \quad l_{1}=1, \quad l_{2}=1 / 2
$$

$$
|3 / 2,1 / 2\rangle=\sqrt{\frac{2}{3}}|1,0\rangle|1 / 2,1 / 2\rangle+\frac{1}{\sqrt{3}}|1,1\rangle|1 / 2,-1 / 2\rangle
$$

The state $|1 / 2,1 / 2\rangle$ must contain the same products. Now make use of the orthogonality of the two states to get:

$$
|1 / 2,1 / 2\rangle=\frac{1}{\sqrt{3}}|1,0\rangle|1 / 2,1 / 2\rangle-\sqrt{\frac{2}{3}}|1,1\rangle|1 / 2,-1 / 2\rangle
$$

Algorithm

Exercises

(1) Calculate the expectation value of $S_{2 z}$ in the state $|1,1\rangle$ generated by two spin one-half particles, \mathbf{S}_{1} and \mathbf{S}_{2}.
(2) Determine the Clebsh-Gordan coefficients for the total angular momentum of a particle with $\mathbf{L}, l=1$ and $\mathbf{S}, s=1 / 2$.
(3) Two particles with angular momentum $l=1$ move in spherical potential. The total angular momentum is conserved. What is the expectation value of the operator $L_{1 z}$ in the state $|J, M\rangle=|1,1\rangle$?

Homework

(1) What is the total angular momentum of two particles with spin one-half and angular momentum l, respectively? Determine the Clebsh-Gordan coefficients! Use the binomial theorem to determine the powers of $J_{-}=L_{-}+S_{-}$! Show that for spin one-half particles $S_{-}{ }^{n}=0$, if $n>1$ holds!
Further hints: Then show that
$\left(L_{-}+S_{-}\right)^{n}=L_{-}^{n}+n L_{-}^{n-1} S_{-}$. Act with J_{-}^{n} on the state $|l+1 / 2, l+1 / 2\rangle$ and with $L_{-}^{n}+n L_{-}^{n-1} S_{-}$on $|l, l\rangle|1 / 2,1 / 2\rangle$. For the latter it is worth first calculating the action of L_{-}on $|l, l-k\rangle$, from which one can recursively find the coefficient for the action of L_{-}^{n}. Finally use the orthogonality relation for the coefficients of $|l-1 / 2, l-1 / 2-n\rangle, n=0,1, \ldots, 2 l$.

Solutions

(1) Knowing from the solution of the first exercise, $|1,1\rangle=|1 / 2,1 / 2\rangle|1 / 2,1 / 2\rangle$ and that $S_{2 z}$ acts only on the second part of the product state,

$$
S_{2 z}|1 / 2,1 / 2\rangle=\hbar / 2|1 / 2,1 / 2\rangle \text { we get: }
$$

$$
\begin{equation*}
\langle 1 / 2,1 / 2| S_{2 z}|1 / 2,1 / 2\rangle=\hbar / 2\langle 1 / 2,1 / 2 \mid 1 / 2,1 / 2\rangle=\hbar / 2 . \tag{1}
\end{equation*}
$$

(2) Find the solution in Quantum mechanical exercise collection, $4.10 / a$

Solutions

(1) Find the solution of the decomposition of the state $|1,1\rangle$ in exercise $4.10 / b$. Using this result, that is
$|1,1\rangle=\frac{1}{\sqrt{2}}|1,0\rangle|1,1\rangle-\frac{1}{\sqrt{2}}|1,1\rangle|1,0\rangle$ and knowing that the L_{z} operator only acts on the first states of the product state, $L_{z}|1,1\rangle|1,0\rangle=\hbar|1,1\rangle|1,0\rangle, L_{z}|1,0\rangle|1,1\rangle=0$:

$$
\begin{aligned}
& \langle 1,1| L_{z}|1,1\rangle=\left(\frac{1}{\sqrt{2}}\langle 1,0|\langle 1,1|-\frac{1}{\sqrt{2}}\langle 1,1|\langle 1,0|\right) L_{z} \\
& \left(\frac{1}{\sqrt{2}}|1,0\rangle|1,1\rangle-\frac{1}{\sqrt{2}}|1,1\rangle|1,0\rangle\right)
\end{aligned}
$$

Only the terms with same quantum numbers survive, $\langle 1,0 \mid 1,1\rangle=0$, as L_{z} do not change these numbers:

$$
\langle 1,1| L_{z}|1,1\rangle=\frac{1}{2} 0 \hbar+\frac{1}{2} \hbar=\frac{\hbar}{2}
$$

