11. Practice, Dec. 10.

1. Zitterbewegung:

Velocity operator in Heisenberg picture:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} v_{k}=\frac{i}{\hbar}\left[H, v_{k}\right]=\frac{i c}{\hbar}\left[c \alpha_{l} p_{l}+\beta m c^{2}, \alpha_{k}\right]=\frac{i c}{\hbar}\left(c_{l}\left[\alpha_{l}, \alpha_{k}\right]+m c^{2}\left[\beta, \alpha_{k}\right]\right)
$$

where the emerging commutators:

$$
\left[\alpha_{l}, \alpha_{k}\right]=\alpha_{l} \alpha_{k}-\alpha_{k} \alpha_{l}=\alpha_{l} \alpha_{k}+\alpha_{k} \alpha_{l}-2 \alpha_{k} \alpha_{l}=2 \delta_{k l} I_{2}-2 \alpha_{k} \alpha_{l}
$$

and

$$
\left[\beta, \alpha_{k}\right]=\beta \alpha_{k}-\alpha_{k} \beta=\beta \alpha_{k}+\alpha_{k} \beta-2 \alpha_{k} \beta=-2 \alpha_{k} \beta
$$

Giving the derivative

$$
\frac{\mathrm{d}}{\mathrm{~d} t} v_{k}=\frac{i c}{\hbar} c\left(p_{l}\left(2 \delta_{k l} I_{2}-2 \alpha_{k} \alpha_{l}\right)-2 m c^{2} \alpha_{k} \beta\right)=\frac{2 i c}{\hbar}\left(c p_{k}-\alpha_{k}\left(c p_{l} \alpha_{l}+m c^{2} \beta\right)\right)=\frac{2 i c}{\hbar}\left(c p_{k}-\alpha_{k} H\right)
$$

Considering the realtivistic momentum and energy

$$
\mathbf{p}=\frac{m \mathbf{V}}{\sqrt{1-\frac{V^{2}}{c^{2}}}}, \quad E=\frac{m c^{2}}{\sqrt{1-\frac{V^{2}}{c^{2}}}}
$$

yielding

$$
\mathbf{V}=\frac{c^{2} \mathbf{p}}{E}
$$

Analogously to this let us introduce the relativistic velocity operator:

$$
\hat{V}_{k}=c^{2} \hat{p}_{k} \hat{H}^{-1}
$$

being a constant of motion as it only contains \hat{p} and \hat{H}, so

$$
\frac{\mathrm{d}}{\mathrm{~d} t} v_{k}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(v_{k}-V_{k}\right)=-\left(v_{k}-V_{k}\right) \frac{2 i}{\hbar} H
$$

From where the solution is

$$
v_{k}(t)-V_{k}(t)=\left(v_{k}(0)-V_{k}(0)\right) e^{-i \frac{2 H}{\hbar} t} \Rightarrow v_{k}(t)=V_{k}(t)+\left(v_{k}(0)-V_{k}(0)\right) e^{-i \Omega t}
$$

where $\Omega \equiv \frac{2 H}{\hbar}$ is the "frequency operator". From special relativity we would expect just $v_{k}=V_{k}$, but in quantum mechanics we have an extra oscillating term, that is the "Zitterbewegung" term. The coordiante operator then reads

$$
x_{k}(t)=x_{k}(0)+V_{k} t+\left(v_{k}(0)-V_{k}(0)\right) i \Omega^{-1}\left(e^{-i \Omega t}-1\right)
$$

giving a motion along a straight trajectory with constant velocity and with an interpolating oscillatory motion.
Approximating the electron energy for small velocity as, $m_{e} c^{2} \approx 511 \mathrm{keV}$, gives $\Omega \sim 10^{21} \mathrm{~Hz}$, unfortunately not measurable for the time being.
The amplitude of the motion is $\sim \frac{V}{\Omega} \sim \frac{\hbar}{m c}=\lambda_{c} \sim 10^{-13} \mathrm{~m}$, being thousand times shorter than the radius of the hydrogen atom.

