10. Practice, Nov. 29.

1. Relativistic Landau niveaus

The Dirac equation for a charged particle in uniform magnetic field can be written as

$$
\left(\begin{array}{cc}
m c^{2}-E & c \boldsymbol{\sigma}(\mathbf{p}-q \mathbf{A}) \\
c \boldsymbol{\sigma}(\mathbf{p}-q \mathbf{A}) & -\left(m c^{2}+E\right)
\end{array}\right)\binom{\varphi_{l}}{\varphi_{s}}=0,
$$

where φ_{l} and φ_{s} are two-component spinors termed, which in the case of $E \geq m c^{2}$ are called the large and small components of the wavefunction, respectively, $\boldsymbol{\sigma}$ is the vector of the Pauli matrices. Let us consider the case. The small component can be expressed from the second line of Dirac equation,

$$
\varphi_{s}=\frac{c \boldsymbol{\sigma}(\mathbf{p}-q \mathbf{A})}{m c^{2}+E} \varphi_{l}
$$

and substituting it into the first line of the Dirac equation we get

$$
\left(m^{2} c^{4}-E^{2}+c^{2}(\boldsymbol{\sigma}(\mathbf{p}-q \mathbf{A}))^{2}\right) \varphi_{l}=0 .
$$

Let us examine the last term of the previous equation:

$$
\begin{aligned}
(\boldsymbol{\sigma}(\mathbf{p}-q \mathbf{A}))^{2} & =\sigma_{i} \sigma_{j}\left(p_{i}-q A_{i}\right)\left(p_{j}-q A_{j}\right)=\delta_{i j} \mathbb{1}\left(p_{i}-q A_{i}\right)\left(p_{j}-q A_{j}\right)+i \epsilon_{i j k} \sigma_{k}\left(p_{i}-q A_{i}\right)\left(p_{j}-q A_{j}\right) \\
& =(\mathbf{p}-q \mathbf{A})^{2}+i \epsilon_{i j k} \sigma_{k}\left(p_{i} p_{j}+q^{2} A_{i} A_{j}-q\left(p_{i} A_{j}+A_{i} p_{j}\right)\right), \\
i \epsilon_{i j k} \sigma_{k}\left(\left(p_{i} p_{j}\right.\right. & \left.+q^{2} A_{i} A_{j}-q\left(p_{i} A_{j}+A_{i} p_{j}\right)\right)=i \epsilon_{i j k} \sigma_{k}\left(p_{i} p_{j}+q^{2} A_{i} A_{j}-q\left(A_{j} p_{i}+\left[p_{i}, A_{j}\right]+A_{i} p_{j}\right)\right)
\end{aligned}
$$

Since $\epsilon_{i j k}$ is antisymmetric and $p_{i} p_{j}+q^{2} A_{i} A_{j}-q\left(A_{j} p_{i}+A_{i} p_{j}\right)$ is symmetric their product will disappear. The only term which survives the summation is

$$
\begin{gathered}
i \epsilon_{i j k} \sigma_{k} q\left[p_{i}, A_{j}\right]=\hbar q \epsilon_{i j k} \sigma_{k} \frac{\partial A_{j}}{\partial r_{i}}=-\hbar q \boldsymbol{\sigma} \operatorname{rot} \mathbf{A}=-\hbar q \boldsymbol{\sigma} \mathbf{B} \\
\\
\Downarrow \\
(\boldsymbol{\sigma}(\mathbf{p}-q \mathbf{A}))^{2}=(\mathbf{p}-q \mathbf{A})^{2}-\hbar q \boldsymbol{\sigma} \mathbf{B} .
\end{gathered}
$$

Therefore, the Dirac equation for the large component is given by

$$
\begin{equation*}
\left(m^{2} c^{4}-E^{2}+c^{2}(\mathbf{p}-q \mathbf{A})^{2}-\hbar c^{2} q \boldsymbol{\sigma} \mathbf{B}\right) \varphi_{l}=0 \tag{1}
\end{equation*}
$$

In case of $\mathbf{B} \| \mathbf{z}$, Tthe solutions can be searched in the form,

$$
\varphi_{n+}=\varphi_{n}\binom{1}{0}, \quad \varphi_{n-}=\varphi_{n}\binom{0}{1} .
$$

where φ_{n} is eigenstate of the nonrelativistic Hamiltonian,

$$
\frac{1}{2 m}(\mathbf{p}-q \mathbf{A})^{2} \varphi_{n}=\varepsilon_{n} \varphi_{n} .
$$

As we learned, the energy eigenvalues correspond to the Landau levels, $\varepsilon_{n}=\hbar \omega_{L}\left(n+\frac{1}{2}\right)$, where $\omega_{L}=\frac{|q| B}{m}$. The energy can be obtained from Eq. (1) as,

$$
\begin{equation*}
E_{n \pm}=\sqrt{m^{2} c^{4}+2 m c^{2} \hbar \omega_{L}\left(n+\frac{1}{2}\right) \mp \hbar m c^{2} \omega_{L}}=m c^{2} \sqrt{1+\frac{2 \hbar \omega_{L}}{m c^{2}}\left(n+\frac{1}{2}\right) \mp \frac{\hbar \omega_{L}}{m c^{2}}} . \tag{2}
\end{equation*}
$$

Expanding Eq. (2) to first order we obtain the well-known norelativistic limit,

$$
E_{n \pm}=m c^{2}+\hbar \omega_{L}\left(n+\frac{1}{2}\right) \mp \frac{\hbar \omega_{L}}{2}
$$

We further have to take care of the normalization of the bi-spinors,

$$
\begin{aligned}
& \left\langle\psi_{n \sigma} \mid \psi_{n \sigma}\right\rangle=1+\left\langle\varphi_{n \sigma}\right| \frac{(c \boldsymbol{\sigma}(\mathbf{p}-q \mathbf{A}))^{2}}{\left(m c^{2}+E_{n \sigma}\right)^{2}}\left|\varphi_{n \sigma}\right\rangle=1+\left\langle\varphi_{n \sigma}\right| c^{2} \frac{(\mathbf{p}-q \mathbf{A})^{2}-\hbar q \boldsymbol{\sigma} \mathbf{B}}{\left(m c^{2}+E_{n \sigma}\right)^{2}}\left|\varphi_{n \sigma}\right\rangle \\
& =1+\frac{2 m c^{2} \hbar \omega_{L}\left(n+\frac{1}{2}\right)-\sigma m c^{2} \hbar \omega_{L}}{\left(m c^{2}+E_{n \sigma}\right)^{2}},(\sigma= \pm)
\end{aligned}
$$

So when φ_{n} is the eigenfunction of the Harmonic oscillator with energy $E_{n}=\hbar \omega_{L}\left(n+\frac{1}{2}\right)$, the properly normalized bi-spinor wavefunction is given by

$$
\begin{equation*}
\left|\psi_{n \sigma}\right\rangle=\binom{\varphi_{l}}{\varphi_{s}}=\frac{1}{\sqrt{1+\frac{2 m c^{2} \hbar \omega_{L}\left(n+\frac{1}{2}\right)-\sigma m c^{2} \hbar \omega_{L}}{\left(m c^{2}+E_{n \sigma}\right)^{2}}}}\binom{\varphi_{n \sigma}}{\frac{c \boldsymbol{\sigma}(\mathbf{p}-q \mathbf{A})}{m c^{2}+E_{n \sigma}} \varphi_{n, \sigma}} \tag{3}
\end{equation*}
$$

2. Spatial rotation and the total angular momentum operator

As we have seen at the lecture class, the transformation of the wavefunction under a spatial rotation $R(\varphi, \vec{n})$ is given by

$$
\begin{equation*}
\psi^{\prime}(R(\varphi, \vec{n}) \vec{r}, t)=\exp \left(-\frac{i}{\hbar} \vec{n} \vec{S} \varphi\right) \psi(\vec{r}, t) \tag{4}
\end{equation*}
$$

This can be rewritten in terms of the inversely rotated spacelike coordinates,

$$
\begin{equation*}
\psi^{\prime}(\vec{r}, t)=\exp \left(-\frac{i}{\hbar} \vec{n} \vec{S} \varphi\right) \psi(R(-\varphi, \vec{n}) \vec{r}, t) \tag{5}
\end{equation*}
$$

Let us express $\psi(R(-\varphi, \vec{n}) \vec{r}, t)$ for an infinitesimal rotation:

$$
\begin{align*}
& R(-\varphi, \vec{n}) \vec{r}=(\vec{r} \cdot \vec{n}) \vec{n}+(\vec{r}-(\vec{r} \cdot \vec{n}) \vec{n}) \cos \varphi-(\vec{n} \times \vec{r}) \sin \varphi \approx \vec{r}-(\vec{n} \times \vec{r}) \varphi \\
& \Downarrow \\
& \psi(R(-\varphi, \vec{n}) \vec{r}, t)=\psi(\vec{r}-(\vec{n} \times \vec{r}) \varphi, t) \tag{6}\\
& \simeq \psi(\vec{r}, t)-\varphi(\vec{n} \times \vec{r}) \vec{\nabla} \psi(\vec{r}, t) \\
&=\psi(\vec{r}, t)-\varphi \vec{n}(\vec{r} \times \vec{\nabla}) \psi(\vec{r}, t) \\
&=\psi(\vec{r}, t)-\frac{i}{\hbar} \varphi \vec{n}(\vec{r} \times \vec{p}) \psi(\vec{r}, t) \\
&=\left[I-\frac{i}{\hbar} \varphi \vec{n} \vec{L}\right] \psi(\vec{r}, t) \tag{7}
\end{align*}
$$

consequently, for finite rotations,

$$
\begin{equation*}
\psi(R(-\varphi, \vec{n}) \vec{r}, t)=\exp \left(-\frac{i}{\hbar} \vec{n} \vec{L} \varphi\right) \psi(\vec{r}, t) \tag{8}
\end{equation*}
$$

The complete transformation of the four component wavefunction under spatial rotations, $\psi(\vec{r}, t) \rightarrow$ $\psi^{\prime}(\vec{r}, t)$, can then be written as,

$$
\begin{align*}
& \psi^{\prime}(\vec{r}, t)=\exp \left(-\frac{i}{\hbar} \vec{n} \vec{S} \varphi\right) \psi(R(-\varphi, \vec{n}) \vec{r}, t)=\exp \left(-\frac{i}{\hbar} \vec{n} \vec{S} \varphi\right) \exp \left(-\frac{i}{\hbar} \vec{n} \vec{L} \varphi\right) \psi(\vec{r}, t) \\
& =\exp \left(-\frac{i}{\hbar} \vec{n} \vec{J} \varphi\right) \psi(\vec{r}, t) \tag{9}
\end{align*}
$$

thus in relativistic quantum theory the infinitesimal generator of the spatial rotations is the total angular momentum operator,

$$
\vec{J}=\vec{L}+\vec{S}
$$

3. Klein paradox Consider a free particle scattering on an infinitely wide potential well with height V_{0} :

$$
V(z)=\left\{\begin{array}{l}
0, \text { if } z<0 \\
V_{0}, \text { if } z>0
\end{array}\right.
$$

where for convenience we consider the potential step along the z direction. Let us look for the solution of the scattering problem for wave functions of the form,

$$
\psi \sim e^{i \frac{p z}{\hbar}}\left(\begin{array}{c}
1 \\
0 \\
\frac{p c}{E+m c^{2}} \\
0
\end{array}\right)
$$

Let us consider $E>m c^{2}$. Then for $z<0$ the scattering solution of the one-dimensional Dirac equation,

$$
\left(c \alpha_{3} p_{z}+\beta m c^{2}\right) \psi=E \psi
$$

is

$$
\psi(z)=A e^{i \frac{p z}{\hbar}}\left(\begin{array}{c}
1 \\
0 \\
\frac{p c}{E+m c^{2}} \\
0
\end{array}\right)+B e^{-i \frac{p z}{\hbar}}\left(\begin{array}{c}
1 \\
0 \\
\frac{-p c}{E+m c^{2}} \\
0
\end{array}\right)
$$

with $E^{2}=p^{2}+m^{2} c^{4}$. For $z>0$,

$$
\begin{gathered}
z>0:\left(c \alpha_{3} p_{z}+\beta m c^{2}\right) \psi=\left(E-V_{0}\right) \psi, \\
\psi(z)=C e^{i \frac{p^{\prime} z}{\hbar}}\left(\begin{array}{c}
1 \\
0 \\
\frac{p^{\prime} c}{E-V_{0}+m c^{2}} \\
0
\end{array}\right)
\end{gathered}
$$

with $\left(E-V_{0}\right)^{2}=\left(p^{\prime}\right)^{2}+m^{2} c^{4}$. Note that for $E-m c^{2}<V_{0}<E+m c^{2} p^{\prime}$ is purely imaginary. At $z=0$ the continuity of the bi-spinor wavefunction yields

$$
\begin{gathered}
A+B=C \\
\frac{p c}{E+m c^{2}} A-\frac{p c}{E+m c^{2}} B=\frac{p^{\prime} c}{E-V_{0}+m c^{2}} C \\
\Downarrow \\
A-B=-\frac{p^{\prime}}{p} \frac{E+m c^{2}}{V_{0}-E-m c^{2}} C \equiv-r C \\
\Downarrow \\
A=\frac{1-r}{2} C \\
B=\frac{1+r}{2} C \\
\Downarrow
\end{gathered}
$$

$$
\begin{aligned}
& \frac{B}{A}=\frac{1+r}{1-r} \\
& \frac{C}{A}=\frac{2}{1-r}
\end{aligned}
$$

Exploiting the standard representation of $\alpha_{3}=\left[\begin{array}{cc}0 & \sigma_{3} \\ \sigma_{3} & 0\end{array}\right] \equiv\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0\end{array}\right]$ we obtain for the incoming, reflected and transmitted current densities $\left(j=c \psi^{+} \alpha_{3} \psi\right)$,

$$
\begin{aligned}
j_{i} & =|A|^{2} \frac{2 p c^{2}}{E+m c^{2}} \\
j_{r} & =|B|^{2} \frac{-2 p c^{2}}{E+m c^{2}} \\
j_{t} & =|C|^{2} \frac{2 c^{2} I m p^{\prime}}{E-V_{0}+m c^{2}}
\end{aligned}
$$

respectively. From here one can easily get the reflection and transmission coefficients:

$$
\begin{aligned}
& R=-\frac{j_{r}}{j_{i}}=-\frac{|B|^{2}}{|A|^{2}}=\frac{|1+r|^{2}}{|1-r|^{2}} \\
& T=\frac{j_{t}}{j_{i}}=-\frac{|C|^{2}}{|A|^{2}} \frac{I m p^{\prime}}{p} \frac{E+m c^{2}}{V_{0}-E-m c^{2}}=-\frac{4 \operatorname{Im} r}{|1-r|^{2}}
\end{aligned}
$$

So we get

$$
j_{i}+j_{r}=j_{i}\left(1-\frac{|1+r|^{2}}{|1-r|^{2}}\right)=j_{i} \frac{-4 \operatorname{Im} r}{|1+r|^{2}}=j_{t}
$$

or

$$
R+T=\frac{|1+r|^{2}}{|1-r|^{2}}-\frac{4 \operatorname{Im} r}{|1-r|^{2}}=1
$$

as required by the continuity equation!
Now for determining the possible values of r, R and T we rewrite r as follows:

$$
r=\frac{p^{\prime}}{p} \frac{E+m c^{2}}{V_{0}-E-m c^{2}}=\sqrt{\frac{\left(V_{0}-E\right)^{2}-m^{2} c^{4}}{E^{2}-m^{2} c^{4}}} \frac{E+m c^{2}}{V_{0}-E-m c^{2}}= \pm \sqrt{\frac{\left[V_{0}-\left(E-m c^{2}\right)\right]\left(E+m c^{2}\right)}{\left[V_{0}-\left(E+m c^{2}\right)\right]\left(E-m c^{2}\right)}}
$$

We can distinguish between the following cases:

$$
V_{0}=0 \Rightarrow r=-1, R=0, T=1, \text { no scattering occurs }
$$

$V_{0}>E-m c^{2} \Rightarrow-1<r<0,0<R<1,0<T<1$, normal scattering

$$
\begin{aligned}
& V_{0}=E-m c^{2} \Rightarrow r=0, r=0, R=1, T=0, \text { total reflection } \\
& E-m c^{2}<V_{0}<E+m c^{2} \Rightarrow r=i r_{0}, r_{0}>0, R=1, T=0, \text { total reflection } \\
& V_{0}=E+m c^{2} \Rightarrow r=0, r=0, R=1, T=0, \text { total reflection }
\end{aligned}
$$

$V_{0}>E+m c^{2} \Rightarrow r>\sqrt{\frac{E+m c^{2}}{E-m c^{2}}}, \quad R>1, T<0$, high potential step
$V_{0} \rightarrow \infty \Rightarrow r=\frac{E+m c^{2}}{E-m c^{2}}, \quad R=\left(\frac{\sqrt{E+m c^{2}}+\sqrt{E-m c^{2}}}{\sqrt{E+m c^{2}}-\sqrt{E-m c^{2}}}\right), T=-4 \frac{\sqrt{\left(E+m c^{2}\right)\left(E-m c^{2}\right)}}{\left(\sqrt{E+m c^{2}}-\sqrt{E-m c^{2}}\right)}$

For $E-m c^{2}<V_{0}<E+m c^{2}$ the wavefunction is exponentially decaying for $z>0$, thus there is no transmitted current density. However, for $V_{0}>E+m c^{2}$ we get $R>1$ and $T<0$. This can be interperted as the potential creates electron-positron (particle-antiparticle) pairs: the excess reflection corresponds to electrons travelling back in the $-z$ direction, while $T<0$ corresponds to positrons going to the $+z$ direction.

4. Homework: Spatial reflection

