
10. Practice, Nov. 29.

1. Relativistic Landau niveaus

The Dirac equation for a charged particle in uniform magnetic �eld can be written as(
mc2 − E cσ(p− qA)

cσ(p− qA) −(mc2 + E)

)(
ϕl
ϕs

)
= 0 ,

where ϕl and ϕs are two-component spinors termed, which in the case of E ≥ mc2 are called the

large and small components of the wavefunction, respectively, σ is the vector of the Pauli matrices.

Let us consider the case. The small component can be expressed from the second line of Dirac

equation,

ϕs =
cσ(p− qA)

mc2 + E
ϕl ,

and substituting it into the �rst line of the Dirac equation we get

(m2c4 − E2 + c2 (σ(p− qA))2)ϕl = 0 .

Let us examine the last term of the previous equation:

(σ(p− qA))2 = σiσj(pi − qAi)(pj − qAj) = δij1l(pi − qAi)(pj − qAj) + iεijkσk(pi − qAi)(pj − qAj)
= (p− qA)2 + iεijkσk

(
pipj + q2AiAj − q(piAj +Aipj)

)
,

iεijkσk
(
(pipj + q2AiAj − q(piAj +Aipj)

)
= iεijkσk

(
pipj + q2AiAj − q(Ajpi + [pi, Aj ] +Aipj)

)
Since εijk is antisymmetric and pipj + q2AiAj − q(Ajpi + Aipj) is symmetric their product will

disappear. The only term which survives the summation is

iεijkσkq[pi, Aj ] = ~qεijkσk
∂Aj
∂ri

= −~qσrotA = −~qσB

⇓

(σ(p− qA))2 = (p− qA)2 − ~qσB .

Therefore, the Dirac equation for the large component is given by

(m2c4 − E2 + c2(p− qA)2 − ~c2qσB)ϕl = 0 . (1)

In case of B‖z, Tthe solutions can be searched in the form,

ϕn+ = ϕn

(
1
0

)
, ϕn− = ϕn

(
0
1

)
.

where ϕn is eigenstate of the nonrelativistic Hamiltonian,

1

2m
(p− qA)2 ϕn = εnϕn .

As we learned, the energy eigenvalues correspond to the Landau levels, εn = ~ωL
(
n+ 1

2

)
, where

ωL = |q|B
m . The energy can be obtained from Eq. (1) as,

En± =

√
m2c4 + 2mc2~ωL(n+

1

2
)∓ ~mc2ωL = mc2

√
1 +

2~ωL
mc2

(
n+

1

2

)
∓ ~ωL
mc2

. (2)



Expanding Eq. (2) to �rst order we obtain the well-known norelativistic limit,

En± = mc2 + ~ωL
(
n+

1

2

)
∓ ~ωL

2
,

We further have to take care of the normalization of the bi-spinors,

〈ψnσ|ψnσ〉 = 1 + 〈ϕnσ|
(cσ(p− qA))2

(mc2 + Enσ)
2 |ϕnσ〉 = 1 + 〈ϕnσ|c2

(p− qA)2 − ~qσB
(mc2 + Enσ)

2 |ϕnσ〉

= 1 +
2mc2~ωL(n+ 1

2)− σmc
2~ωL

(mc2 + Enσ)
2 , (σ = ±)

So when ϕn is the eigenfunction of the Harmonic oscillator with energy En = ~ωL
(
n+ 1

2

)
, the

properly normalized bi-spinor wavefunction is given by

|ψnσ〉 =
(
ϕl
ϕs

)
=

1√
1 +

2mc2~ωL(n+ 1
2
)−σmc2~ωL

(mc2+Enσ)
2

(
ϕnσ

cσ(p−qA)
mc2+Enσ

ϕn,σ

)
. (3)

2. Spatial rotation and the total angular momentum operator

As we have seen at the lecture class, the transformation of the wavefunction under a spatial rotation

R (ϕ,~n) is given by

ψ′ (R (ϕ,~n)~r, t) = exp

(
− i
~
~n~Sϕ

)
ψ (~r, t) . (4)

This can be rewritten in terms of the inversely rotated spacelike coordinates,

ψ′ (~r, t) = exp

(
− i
~
~n~Sϕ

)
ψ (R (−ϕ,~n)~r, t) . (5)

Let us express ψ (R (−ϕ,~n)~r, t) for an in�nitesimal rotation:

R (−ϕ,~n)~r = (~r · ~n)~n+ (~r − (~r · ~n)~n) cosϕ− (~n× ~r) sinϕ ≈ ~r − (~n× ~r)ϕ

⇓

ψ (R (−ϕ,~n)~r, t) = ψ (~r − (~n× ~r)ϕ, t) (6)

' ψ (~r, t)− ϕ (~n× ~r) ~∇ψ (~r, t)

= ψ (~r, t)− ϕ~n
(
~r × ~∇

)
ψ (~r, t)

= ψ (~r, t)− i

~
ϕ~n (~r × ~p)ψ (~r, t)

=

[
I − i

~
ϕ~n ~L

]
ψ (~r, t) , (7)

consequently, for �nite rotations,

ψ (R (−ϕ,~n)~r, t) = exp

(
− i
~
~n~Lϕ

)
ψ (~r, t) . (8)

The complete transformation of the four component wavefunction under spatial rotations, ψ (~r, t)→
ψ′ (~r, t) , can then be written as,

ψ′ (~r, t) = exp

(
− i
~
~n~Sϕ

)
ψ (R (−ϕ,~n)~r, t) = exp

(
− i
~
~n~Sϕ

)
exp

(
− i
~
~n~Lϕ

)
ψ (~r, t)

= exp

(
− i
~
~n ~Jϕ

)
ψ (~r, t) ,

(9)



thus in relativistic quantum theory the in�nitesimal generator of the spatial rotations is the total

angular momentum operator,
~J = ~L+ ~S .

3. Klein paradox Consider a free particle scattering on an in�nitely wide potential well with height

V0:

V (z) =

{
0, if z < 0

V0, if z > 0
,

where for convenience we consider the potential step along the z direction. Let us look for the

solution of the scattering problem for wave functions of the form,

ψ ∼ ei
pz
~


1
0
pc

E+mc2

0

 .

Let us consider E > mc2. Then for z < 0 the scattering solution of the one-dimensional Dirac

equation, (
cα3pz + βmc2

)
ψ = Eψ,

is

ψ (z) = Aei
pz
~


1
0
pc

E+mc2

0

+Be−i
pz
~


1
0
−pc

E+mc2

0

 ,

with E2 = p2 +m2c4. For z > 0,

z > 0 :
(
cα3pz + βmc2

)
ψ = (E − V0)ψ ,

ψ (z) = Cei
p′z
~


1
0
p′c

E−V0+mc2
0

 ,

with (E − V0)2 = (p′)2 +m2c4. Note that for E −mc2 < V0 < E +mc2 p′ is purely imaginary.

At z = 0 the continuity of the bi-spinor wavefunction yields

A+B = C

pc

E +mc2
A− pc

E +mc2
B =

p′c

E − V0 +mc2
C

⇓

A−B = −p
′

p

E +mc2

V0 − E −mc2
C ≡ −rC

⇓

A =
1− r
2

C

B =
1 + r

2
C

⇓



B

A
=

1 + r

1− r
C

A
=

2

1− r
.

Exploiting the standard representation of α3 =

[
0 σ3
σ3 0

]
≡


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 we obtain for the

incoming, re�ected and transmitted current densities (j = cψ+α3ψ),

ji = |A|2
2pc2

E +mc2

jr = |B|2
−2pc2

E +mc2

jt = |C|2
2c2Imp′

E − V0 +mc2
,

respectively. From here one can easily get the re�ection and transmission coe�cients:

R = −jr
ji

= −|B|
2

|A|2
=
|1 + r|2

|1− r|2

T =
jt
ji

= −|C|
2

|A|2
Imp′

p

E +mc2

V0 − E −mc2
= − 4Im r

|1− r|2
.

So we get

ji + jr = ji

(
1− |1 + r|2

|1− r|2

)
= ji
−4Im r

|1 + r|2
= jt

or

R+ T =
|1 + r|2

|1− r|2
− 4Im r

|1− r|2
= 1

as required by the continuity equation!

Now for determining the possible values of r, R and T we rewrite r as follows:

r =
p′

p

E +mc2

V0 − E −mc2
=

√
(V0 − E)2 −m2c4

E2 −m2c4
E +mc2

V0 − E −mc2
= ±

√
[V0 − (E −mc2)] (E +mc2)

[V0 − (E +mc2)] (E −mc2)

We can distinguish between the following cases :

V0 = 0⇒ r = −1, R = 0, T = 1, no scattering occurs

V0 > E −mc2 ⇒ −1 < r < 0, 0 < R < 1, 0 < T < 1, normal scattering

V0 = E −mc2 ⇒ r = 0, r = 0, R = 1, T = 0, total re�ection

E −mc2 < V0 < E +mc2 ⇒ r = ir0, r0 > 0, R = 1, T = 0, total re�ection

V0 = E +mc2 ⇒ r = 0, r = 0, R = 1, T = 0, total re�ection

V0 > E +mc2 ⇒ r >

√
E +mc2

E −mc2
, R > 1, T < 0, high potential step

V0 →∞⇒ r =
E +mc2

E −mc2
, R =

(√
E +mc2 +

√
E −mc2√

E +mc2 −
√
E −mc2

)
, T = −4

√
(E +mc2)(E −mc2)(√
E +mc2 −

√
E −mc2

)



For E − mc2 < V0 < E + mc2 the wavefunction is exponentially decaying for z > 0, thus there

is no transmitted current density. However, for V0 > E + mc2 we get R > 1 and T < 0. This

can be interperted as the potential creates electron-positron (particle-antiparticle) pairs: the excess

re�ection corresponds to electrons travelling back in the −z direction, while T < 0 corresponds to

positrons going to the +z direction.

4. Homework: Spatial re�ection


