10. Practice, Nov. 29.

1. Relativistic Landau niveaus
The Dirac equation for a charged particle in uniform magnetic field can be written as

mc? —E  co(p—qA) N
co(p—qA) —(m*+E) )\ ¢ ’
where ¢; and ¢, are two-component spinors termed, which in the case of E > mc? are called the
large and small components of the wavefunction, respectively, o is the vector of the Pauli matrices.
Let us consider the case. The small component can be expressed from the second line of Dirac

equation, ( A)
co(p—q
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mc? + E
and substituting it into the first line of the Dirac equation we get
(m*ct = E* + ¢ (o(p — ¢A) )1 =0 .
Let us examine the last term of the previous equation:
(0(p— qA))* = 0i0j(pi — qAi)(pj — 4 A;) = S50(pi — qA)(pj — qA)) + ieijuok(pi — ¢ Ai) (D — 44;)
= (p — qA)? +iekor (pip; + P AiA; — q(piAj + Aipj))
ieijkor ((pipj + P AiA; — a(piAj + Aipj)) = ieijior (pipj + @ AiAj — q(Ajpi + [pi, Aj] + Aip;))

Since €5, is antisymmetric and p;p; + ¢*A;A; — q(A;jp; + A;p;) is symmetric their product will
disappear. The only term which survives the summation is

1

I
(0(p—qA))* = (p — ¢A)* — hgoB.
Therefore, the Dirac equation for the large component is given by

(m*ct — E? + A(p — qA)? — hc*qoB)gp; = 0. (1)

In case of BJ|z, Tthe solutions can be searched in the form,

_ 1 _ 0
Pn+ = Pn 0 y Pn— = Pn 1 .

where ¢, is eigenstate of the nonrelativistic Hamiltonian,

1
5, (P- qA)? On = Enipn .

As we learned, the energy eigenvalues correspond to the Landau levels, &, = hwr, (n + %), where
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wr, . The energy can be obtained from Eq. (1) as,
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Expanding Eq. (2) to first order we obtain the well-known norelativistic limit,
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We further have to take care of the normalization of the bi-spinors,
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So when ¢, is the eigenfunction of the Harmonic oscillator with energy F, = hwr, (n + %) , the
properly normalized bi-spinor wavefunction is given by
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. Spatial rotation and the total angular momentum operator
As we have seen at the lecture class, the transformation of the wavefunction under a spatial rotation
R (p, 1) is given by

i

o (R 7t) = exp (350 ) 0 (70 (@

This can be rewritten in terms of the inversely rotated spacelike coordinates,
S U g L
o (70 =exp (3750 ) v (R(-p ) 720) 5)
Let us express ¢ (R (—¢, ) 7, t) for an infinitesimal rotation:

R(—p,n)7=(F-n)n+ (F —
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consequently, for finite rotations,
B (R (i) 70) =exp (~ 3L ) 0 (70 )

The complete transformation of the four component wavefunction under spatial rotations, ¥ (7,t) —
Y/ (7,t), can then be written as,

W' (7,) = exp (—iﬁéso) U (R(—p, i) F,t) = exp (—iﬁ&o) exp (—iﬁiw> ¥ (7,1)
h h h (9)
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thus in relativistic quantum theory the infinitesimal generator of the spatial rotations is the total
angular momentum operator,

-

J=L+5.
. Klein paradox Consider a free particle scattering on an infinitely wide potential well with height

Vo:
0,if 2 <0
v =4 0N
Vo,if 2z >0

where for convenience we consider the potential step along the z direction. Let us look for the
solution of the scattering problem for wave functions of the form,
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2. Then for z < 0 the scattering solution of the one-dimensional Dirac

Let us consider £ > mc
equation,
(casp. + Bme?) 1 = B,
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with E? = p? + m?¢*. For z > 0,
2> 0: (casp, + fmc?) ¢ = (B — Vo)1),
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with (E —Vp)? = (p’)2 + m?2c*. Note that for E — mc? < Vo < E +mc? p/ is purely imaginary.

At z = 0 the continuity of the bi-spinor wavefunction yields
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Exploiting the standard representation of ag = 0 o3 = 0 00—l we obtain for the
o3 0 1 0 0 O
0 -1 0 0
incoming, reflected and transmitted current densities (j = et as),
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respectively. From here one can easily get the reflection and transmission coefficients:
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So we get
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as required by the continuity equation!
Now for determining the possible values of r, R and T we rewrite r as follows:

r

7 E + mc? _\/(VO—E)Q—mQC4 E 4+ mc? _ . Vo — (E —mc?)] (E + mc?)
T pVo—E—me? E?2 —m2ct  Vog—E—me? Vo — (E +mc?)] (E — mc?)

We can distinguish between the following cases :
Vo=0=r=—-1, R=0, T =1, no scattering occurs
Vo>E-m®?=-1<r<0,0<R<1,0<T< 1, normal scattering
Vo=FE—mc?=r=0,r=0, R=1, T =0, total reflection

E—mc® <Voy<E+mc®=r=irg, ro >0, R=1, T =0, total reflection
Vo=E+m?=r=0,r=0, R=1, T =0, total reflection

B 2
Vo> E+me®=r> \/%, R > 1, T <0, high potential step
—mc

V()—>oo:>7“:E+7mc2 R= vE+me + VE - me? , T'=—4 V(E +mc?)(E —mc?)
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E —mc?’



For E — mc®> < Vi < E 4+ mc? the wavefunction is exponentially decaying for z > 0, thus there
is no transmitted current density. However, for Vo > E 4+ mc? we get R > 1 and T < 0. This
can be interperted as the potential creates electron-positron (particle-antiparticle) pairs: the excess
reflection corresponds to electrons travelling back in the —z direction, while T" < 0 corresponds to
positrons going to the 4z direction.

4. Homework: Spatial reflection



