A simple statement about the period of periodic motions

May 7, 2019

Let us take a one dimensional Hamiltonian, for simplicity we assume that it is time independent:

$$
\begin{equation*}
H(x, p) \tag{0.1}
\end{equation*}
$$

We assume that the solutions are closed orbits $x(t)$ such that

$$
\begin{equation*}
x(t+T)=x(t), \quad \text { where } \quad T=T(E) \tag{0.2}
\end{equation*}
$$

We introduce the action angle variables (φ, I). Here

$$
\begin{equation*}
2 \pi I=\oint d q p \tag{0.3}
\end{equation*}
$$

The parameter I is time independent, because it is integrated over the full orbit. Therefore it only depends on the overall energy, which characterizes the orbits:

$$
\begin{equation*}
I=I(E) \tag{0.4}
\end{equation*}
$$

This relation can be understood also in the other direction: the energy is constant along the path, therefore after the canonical transformation $(x, p) \rightarrow(\varphi, I)$ the Hamiltonian only depends on the action variable:

$$
\begin{equation*}
H(\varphi, I)=H(I) \tag{0.5}
\end{equation*}
$$

The Hamilton equations are:

$$
\begin{equation*}
\dot{I}=0, \quad \dot{\varphi}=\frac{d H}{d I} \tag{0.6}
\end{equation*}
$$

The right hand side is a constant in time, therefore $\varphi(t)=\frac{d H}{d I} t+c$.
What is the change of φ during one period? In the lecture you learned that this is exactly 2π by definition. It follows that

$$
\begin{equation*}
T=\frac{2 \pi}{\frac{d H}{d I}}=2 \pi \frac{d I}{d E} \tag{0.7}
\end{equation*}
$$

Here we used again that the energy and thus H only depends on I and not on the angle. This is what we wanted to prove.

Proof of the statement that φ is changed by 2π over one period
Here we just provide this proof once again.
Let consider φ as a function of the action and the original position: $\varphi(I, q)$. We compute the change as the contour integral (integral back and forth)

$$
\begin{equation*}
\Delta \varphi=\oint d \varphi=\oint \frac{\partial \varphi}{\partial q} d q \tag{0.8}
\end{equation*}
$$

The φ, I pair is a canonical pair, which means that

$$
\begin{equation*}
\frac{\partial \varphi(I, q)}{\partial q}=\frac{\partial p(I, q)}{\partial I} \tag{0.9}
\end{equation*}
$$

This can be obtained from a generating function, or directly from the canonical transformation. Now we compute it directly from the canonical transformation.

The (φ, I) pair is canonical if

$$
\begin{equation*}
\{\varphi, I\}=\left.\left.\frac{\partial \varphi}{\partial q}\right|_{p} \frac{\partial I}{\partial p}\right|_{q}-\left.\left.\frac{\partial I}{\partial q}\right|_{p} \frac{\partial \varphi}{\partial p}\right|_{q}=1 \tag{0.10}
\end{equation*}
$$

Here both φ and I are understood as functions of (q, p), therefore we denoted the variable which is kept fixed in the subscript. The difference with (0.9) is that in the Poisson bracket the variables are the original (q, p), and we have to change to the mixed parametrization (q, I).

Let us consider changing p, q such that I is kept constant. Then

$$
\begin{equation*}
\left.\frac{\partial p}{\partial q}\right|_{I}=-\frac{\left.\frac{\partial I}{\partial q}\right|_{p}}{\left.\frac{\partial I}{\partial p}\right|_{q}} \tag{0.11}
\end{equation*}
$$

Substituting into (0.10)

$$
\begin{equation*}
\left.\left.\frac{\partial \varphi}{\partial q}\right|_{p} \frac{\partial I}{\partial p}\right|_{q}+\left.\left.\left.\frac{\partial p}{\partial q}\right|_{I} \frac{\partial I}{\partial p}\right|_{q} \frac{\partial \varphi}{\partial p}\right|_{q}=1 \tag{0.12}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\left.\frac{\partial I}{\partial p}\right|_{q}\left[\left.\frac{\partial \varphi}{\partial q}\right|_{p}+\left.\left.\frac{\partial p}{\partial q}\right|_{I} \frac{\partial \varphi}{\partial p}\right|_{q}\right]=1 \tag{0.13}
\end{equation*}
$$

or

$$
\begin{equation*}
\left.\frac{\partial p}{\partial I}\right|_{q}=\left(\left.\frac{\partial I}{\partial p}\right|_{q}\right)^{-1}=\left.\frac{\partial \varphi}{\partial q}\right|_{p}+\left.\left.\frac{\partial p}{\partial q}\right|_{I} \frac{\partial \varphi}{\partial p}\right|_{q}=\left.\frac{\partial \varphi}{\partial q}\right|_{I} \tag{0.14}
\end{equation*}
$$

and this is what we wanted to prove, see eq. (0.9). In any case, this relation is easier found using a generating function, when

$$
\begin{equation*}
\left.\frac{\partial \varphi}{\partial q}\right|_{I}=\frac{\partial^{2} W(q, I)}{\partial q \partial I}=\left.\frac{\partial p}{\partial I}\right|_{q} \tag{0.15}
\end{equation*}
$$

Returning to (0.8) we get

$$
\begin{equation*}
\Delta \varphi=\left.\oint \frac{\partial p}{\partial I}\right|_{q} d q=\frac{\partial}{\partial I} \oint p d q=2 \pi \frac{\partial I}{\partial I}=2 \pi \tag{0.16}
\end{equation*}
$$

