Problem 1

We return to the Runge-Lenz vector and the Kepler problem.

$$
\begin{equation*}
H=\frac{\mathbf{p}^{2}}{2 m}-\frac{\alpha}{r} \tag{1}
\end{equation*}
$$

(a) Consider the following vector (it is called the Runge-Lenz vector)

$$
\begin{equation*}
\mathbf{A}=\mathbf{p} \times \mathbf{L}-m \alpha \mathbf{e}_{r} \tag{2}
\end{equation*}
$$

Express the components of that vector so, that only the components of the canonical momentum and position vectors are used.
(b) Determine the Poisson bracket $\left[A_{j}, H\right]$. What does it tell about the vector \mathbf{A} ?
(c) Using the conservation of \mathbf{A}, derive the particle's orbital.

To do so consider an orbital that is in the $\mathrm{x}-\mathrm{y}$ plane and the vector A points in the x direction. (We can always choose a coordinate system where this is true.) Express the scalar product A•r using polar coordinates and then using trivial algebra express the orbital.
(d) What does the direction of A mean? What is its length?

Problem 2

A particle of mass m can move in the $x-y$ plane where a conservative $V(x, y)$ potential is also present.
(a) Write down the Lagrangian of the system and determine the Hamiltonian as a function of p_{x}, p_{y}, x and y.
(b) We would like to transform to the rotating frame. The transformation is described by

$$
\begin{align*}
& x(t)=X(t) \cos (\omega t)-Y(t) \sin (\omega t) \\
& y(t)=X(t) \sin (\omega t)+Y(t) \cos (\omega t) \tag{3}
\end{align*}
$$

Write down the Lagrangian in the X, Y variables.
(c) Determine the "new" Hamiltonian K as a function of X, Y, P_{X} and P_{Y}. What is the connection between the "new" and the "old" Hamiltonian?
(d) Show that the Poisson brackets between the variables x, y, p_{x}, p_{y} don't change if we calculate them using the new canonical coordinates X, Y, P_{X}, P_{Y}.

Problem 3

The Hamiltonian of a two-dimensional isotropic harmonic oscillator reads as

$$
\begin{equation*}
H=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}\right)+\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}\right) \tag{4}
\end{equation*}
$$

(a) Show that the elements of the following 2×2 matrix are conserved quantities:

$$
\begin{equation*}
A_{i j}=\frac{1}{2}\left(\frac{1}{m} p_{i} p_{j}+m \omega^{2} x_{i} x_{j}\right) \tag{5}
\end{equation*}
$$

(b) What kind of symmetry is generated by the elements of the matrix A ?
(c) Introduce the following quantites:

$$
\begin{equation*}
S_{1}=\frac{A_{12}}{\omega} \quad S_{2}=\frac{A_{22}-A_{11}}{2 \omega} \quad S_{3}=\frac{L}{2}=\frac{1}{2}\left(x p_{y}-y p_{x}\right) \tag{6}
\end{equation*}
$$

Show that their Poisson brackets are $\left\{S_{i}, S_{j}\right\}=\varepsilon_{i j k} S_{k}$.
(d) Show that $H^{2}=4 \omega^{2}\left(S_{1}^{2}+S_{2}^{2}+S_{3}^{2}\right)$! (we did not treat this in class)

