A1

In class we learned about the two dimensional harmonic oscillator, given by the Hamiltonian:

$$
\begin{equation*}
H=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}\right)+\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}\right) \tag{1}
\end{equation*}
$$

We constructed the 2×2 matrix $A_{j k}$ through

$$
\begin{equation*}
A_{j k}=\frac{1}{2}\left(\frac{1}{m} p_{i} p_{j}+m \omega^{2} x_{i} x_{j}\right) \tag{2}
\end{equation*}
$$

and the operators

$$
\begin{equation*}
S_{1}=\frac{A_{12}}{\omega} \quad S_{2}=\frac{A_{22}-A_{11}}{2 \omega} \quad S_{3}=\frac{L}{2}=\frac{1}{2}\left(x p_{y}-y p_{x}\right) \tag{3}
\end{equation*}
$$

In class we showed that $\left\{S_{1}, S_{2}\right\}=S_{3}$.
(a) Now show that

$$
\begin{equation*}
\left\{S_{3}, S_{1}\right\}=S_{2} \quad\left\{S_{2}, S_{3}\right\}=S_{1} \tag{4}
\end{equation*}
$$

You can use either the methods used in class (expressing the Poisson brackets using the Leibniz rule), or perhaps also the direct definition, which for two functions $f\left(x, y, p_{x}, p_{y}\right), g\left(x, y, p_{x}, p_{y}\right)$ with 2 degrees of freedom is

$$
\begin{equation*}
\{f, g\}=\frac{\partial f}{\partial x} \frac{\partial g}{\partial p_{x}}-\frac{\partial g}{\partial x} \frac{\partial f}{\partial p_{x}}+\frac{\partial f}{\partial y} \frac{\partial g}{\partial p_{y}}-\frac{\partial g}{\partial y} \frac{\partial f}{\partial p_{y}} \tag{5}
\end{equation*}
$$

(b) * Show that $H=4 \omega^{2}\left(S_{1}^{2}+S_{2}^{2}+S_{3}^{2}\right)$.

A2

A free particle can move along the x-axis. Its Hamiltonian is trivially

$$
\begin{equation*}
H=\frac{p^{2}}{2 m} \tag{6}
\end{equation*}
$$

Consider the following quantity, that depends explicitly on the time:

$$
\begin{equation*}
F(p, x, t)=x-\frac{t p}{m} \tag{7}
\end{equation*}
$$

- Calculate the Poisson bracket $\{F, H\}$ (warning: it is non-zero!), and show that it is a constant of motion, to be precise:

$$
\begin{equation*}
\frac{d F}{d t}=\{F, H\}+\frac{\partial F}{\partial t} \tag{8}
\end{equation*}
$$

- In class we learned that for a constant of motion there exists a corresponding symmetry, generated by the conserved quantity. In order to determine the symmetry generated by F, we have to analyze the following equations, where s is the continuous parameter of the transformation:

$$
\begin{equation*}
\frac{d x}{d s}=\{x, F\} \quad \frac{d p}{d s}=\{p, F\} \tag{9}
\end{equation*}
$$

Calculate the Poisson brackets on the right-hand side.

- Integrate the equations of b.) with respect to s, and determine the $x(s)$ and $p(s)$ expressions. Let the initial conditions be $x(s=0)=x_{0}$ and $p(s=0)=p_{0}$.
- You can see that $x(s)$ and $p(s)$ give the usual Galilei transformation rules, that is indeed a symmetry of a system consisting of a free particle.

B1

A particle of mass m can move in the $x-y$ plane where a conservative $V(x, y)$ potential is also present.
(a) Write down the Lagrangian of the system and determine the Hamiltonian as a function of p_{x}, p_{y}, x and y.
(b) Write down tha Lagrangian of the system using the r and ϕ polar coordinates.
(c) Determine the Hamiltonian of the system as a function of p_{r}, p_{ϕ}, r and ϕ. Show that this "new" Hamiltonian (denoted by H^{\prime}) is equal to the "old" Hamiltonian, one only needs to change the variables.
(d) Express the canonical momenta p_{x} and p_{y} as functions of p_{r}, p_{ϕ}, r and ϕ.
(e) Show that the Poisson brackets between the variables $\left\{x, y, p_{x}, p_{y}\right\}$ don't change if we calculate them using the polar version of the canonical coordinates.
(f) Show that in the case of a central potential $(V=V(r)) p_{\phi}$ is a conserved quantity.

B2

The Hamiltonian of a system with one degree of freedom reads as

$$
\begin{equation*}
H=\frac{p^{2}}{2}-\frac{1}{2 q^{2}} \tag{10}
\end{equation*}
$$

(a) Show that the following (explicitly time-dependent) quantity is a constant of motion, i.e. it's value during the Hamiltonian time evolution is constant:

$$
\begin{equation*}
D=\frac{p q}{2}-H t \tag{11}
\end{equation*}
$$

(b) Consider a possible two-dimensional generalization of the problem:

$$
\begin{equation*}
H=|\mathbf{p}|^{n}-a|\mathbf{r}|^{-n} \tag{12}
\end{equation*}
$$

Here \mathbf{r} and \mathbf{p} are two-dimensional vectors. Show that the following quantity is a constant of motion:

$$
\begin{equation*}
D=\frac{\mathbf{p} \cdot \mathbf{r}}{n}-H t \tag{13}
\end{equation*}
$$

B3

You learned about some important algebraic properties of the Poisson bracktes,
(a) $\{F, G\}=-\{G, F\}$
(b) $\{F, a G+b D\}=a\{F, G\}+b\{F, D\}$, where a and b are real numbers.
(c) $\{F, G D\}=G\{F, D\}+\{F, G\} D$
(d) Jacobi identity $\{A,\{B, C\}\}+\{B,\{C, A\}\}+\{C,\{A, B\}\}=0$

The proof of the first three relations is trivial, but the fourth is quite complicated. By making use of the simplectic matrix J prove the Jacobi identity. Use the antisymmetric property of J.

