$\mathbf{A1}$

A cilinder having moment of inertia Θ can easily rotate around a fixed axis. The Hamiltonian of the system is

$$H(\phi, p_{\phi}) = \frac{p_{\phi}^2}{2\Theta} \tag{1}$$

- (a) Write down the Hamilton-Jacobi equation for the system.
- (b) Following the usual separation $S(\phi, t) = S_0(\phi) Et$ write down the abbreviated Hamilton Jacobi equation for S_0 .
- (c) Solve the abbreviated equation, i.e. express the solution $S_0(\phi, E)$.
- (d) At t = 0 the cilinder is in the position $\phi = 0$, and has angular momentum $p_{\phi} = L$. Using this information determine the values of the constants of motion E and $\beta_E = \frac{\partial S}{\partial E}$.
- (e) From the results of d.) determine the $\phi(t)$ solution of the equations of motion.

A2

The Hamiltonian of a free particle in special relativity is

$$H(x,p) = \sqrt{m^2 c^4 + p^2 c^2}$$
(2)

- (a) Write down the Hamilton-Jacobi equation for the system.
- (b) Following the usual separation of time, by introducing the constant E, write down the abbreviated Hamilton-Jacobi equation.
- (c) Solve the abbreviated equation. Determine also the solution of the full Hamilton-Jacobi equation.
- (d) Determine β_E , which is the canonical pair of E.

B1

A particle can move along the x axis. An external force that increases linearly in time acts on the particle, therefore the Hamiltonian of the system is

$$H(x,p) = \frac{p^2}{2m} - Axt \tag{3}$$

- (a) Write down the Hamilton-Jacobi equation for the system.
- (b) The Hamilton function depends explicitly on time, therefore we cannot follow the usual separation technique. Try the following form instead:

$$S(x,t) = F(t)x + G(t) \tag{4}$$

Substitute this to the Hamilton-Jacobi equation.

- (c) Collect the terms according to the powers of x.
- (d) In order to find a solution to the equation, both the first order and zero'th order terms in x must be zero. Use this to determine the functions F(t) and G(t). If your calculation is correct, an integration constant appears. Denote it by α .
- (e) Write down the solution $S(x, \alpha, t)$. At t = 0 the particle is at $x_0 = 0$ and has momentum $p_0 = 0$. Using this information determine the value of α .
- (f) According to the Hamilton-Jacobi theory, $\beta = \frac{\partial S}{\partial \alpha}$ is also a constant of motion. Express its value using the initial conditions.
- (g) Use the equation for β to determine the x(t) solution of the equation of motion.

$\mathbf{B2}$

In class we considered the particle in gravitational field. The Hamiltonian is

$$H(x,p) = \frac{p^2}{2m} + mgx \tag{5}$$

In the usual Hamilton-Jacobi approach we search a 2nd type generator function $S(x, \alpha, t)$ that makes the new Hamiltonian zero. Then we exploit the fact that the new momentum α is a constant of motion. However, this is not the only possible choice.

In this problem we consider a 3rd type generator function $S(p, \alpha)$. In this case $x = -\frac{\partial S}{\partial p}$.

- (a) Write down the Hamilton-Jacobi equation.
- (b) Separate the time using $S(p, E, t) = S_0(p, E) Et$. Write down the abbreviated Hamilton-Jacobi equation for S_0 .
- (c) Solve the equation, and express the function $S_0(p, E)$.
- (d) At the moment t = 0 the particle starts from the position x = 0 having momentum p_0 . Express the value of the constant E.
- (e) The quantity $\beta = \frac{\partial S}{\partial E}$ is also a constant of motion. Express its value using the initial conditions.
- (f) Determine the x(t) function.