A1

A cilinder having moment of inertia Θ can easily rotate around a fixed axis. The Hamiltonian of the system is

$$
\begin{equation*}
H\left(\phi, p_{\phi}\right)=\frac{p_{\phi}^{2}}{2 \Theta} \tag{1}
\end{equation*}
$$

(a) Write down the Hamilton-Jacobi equation for the system.
(b) Following the usual separation $S(\phi, t)=S_{0}(\phi)-E t$ write down the abbreviated Hamilton Jacobi equation for S_{0}.
(c) Solve the abbreviated equation, i.e. express the solution $S_{0}(\phi, E)$.
(d) At $t=0$ the cilinder is in the position $\phi=0$, and has angular momentum $p_{\phi}=L$. Using this information determine the values of the constants of motion E and $\beta_{E}=\frac{\partial S}{\partial E}$.
(e) From the results of d.) determine the $\phi(t)$ solution of the equations of motion.

A2

The Hamiltonian of a free particle in special relativity is

$$
\begin{equation*}
H(x, p)=\sqrt{m^{2} c^{4}+p^{2} c^{2}} \tag{2}
\end{equation*}
$$

(a) Write down the Hamilton-Jacobi equation for the system.
(b) Following the usual separation of time, by introducing the constant E, write down the abbreviated Hamilton-Jacobi equation.
(c) Solve the abbreviated equation. Determine also the solution of the full Hamilton-Jacobi equation.
(d) Determine β_{E}, which is the canonical pair of E.

B1

A particle can move along the x axis. An external force that increases linearly in time acts on the particle, therefore the Hamiltonian of the system is

$$
\begin{equation*}
H(x, p)=\frac{p^{2}}{2 m}-A x t \tag{3}
\end{equation*}
$$

(a) Write down the Hamilton-Jacobi equation for the system.
(b) The Hamilton function depends explicitly on time, therefore we cannot follow the usual separation technique. Try the following form instead:

$$
\begin{equation*}
S(x, t)=F(t) x+G(t) \tag{4}
\end{equation*}
$$

Substitute this to the Hamilton-Jacobi equation.
(c) Collect the terms according to the powers of x.
(d) In order to find a solution to the equation, both the first order and zero'th order terms in x must be zero. Use this to determine the functions $F(t)$ and $G(t)$. If your calculation is correct, an integration constant appears. Denote it by α.
(e) Write down the solution $S(x, \alpha, t)$. At $t=0$ the particle is at $x_{0}=0$ and has momentum $p_{0}=0$. Using this information determine the value of α.
(f) According to the Hamilton-Jacobi theory, $\beta=\frac{\partial S}{\partial \alpha}$ is also a constant of motion. Express its value using the initial conditions.
(g) Use the equation for β to determine the $x(t)$ solution of the equation of motion.

B2

In class we considered the particle in gravitational field. The Hamiltonian is

$$
\begin{equation*}
H(x, p)=\frac{p^{2}}{2 m}+m g x \tag{5}
\end{equation*}
$$

In the usual Hamilton-Jacobi approach we search a 2nd type generator function $S(x, \alpha, t)$ that makes the new Hamiltonian zero. Then we exploit the fact that the new momentum α is a constant of motion. However, this is not the only possible choice.

In this problem we consider a 3rd type generator function $S(p, \alpha)$. In this case $x=-\frac{\partial S}{\partial p}$.
(a) Write down the Hamilton-Jacobi equation.
(b) Separate the time using $S(p, E, t)=S_{0}(p, E)-E t$. Write down the abbreviated Hamilton-Jacobi equation for S_{0}.
(c) Solve the equation, and express the function $S_{0}(p, E)$.
(d) At the moment $t=0$ the particle starts from the position $x=0$ having momentum p_{0}. Express the value of the constant E.
(e) The quantity $\beta=\frac{\partial S}{\partial E}$ is also a constant of motion. Express its value using the initial conditions.
(f) Determine the $x(t)$ function.

