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Figure 12.1-11  The Fermi-Dirac distribution flE) !
is well approximated by the Bollzmann distribution |
P(E_ ) when E = Ej. 0 1z 1

The probability that energy level E is occupicd is given by the Fermi—Dirac
distribution

_ 1
f(E) = mmﬂﬁ (12.1-10)

where E,r is a constant known as the Fermi encrgy. This distribution has a maximum
value of unity, which indicates that the energy level E is definitely occupied. f(E)
decresses monotonically as E increases, assuming the value 1 at E=E. Although
FE) is a distribution (sequence) of probabilities rather than a probability density
function, when E == E; it behaves like the Baltzmann distribution
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as is evident from (12.1-10). The Fermi-Dirac and Boltzmann distributions are ¢om-
pared in Fig. 12.1-11 The Fermi-Dirac distribution is discussed in further detail in
Chap. 15.

12.2 INTERACTIONS OF PHOTONS WITH ATOMS

A. Interaction of Single-Mode Light with an Atom

As is known from atomic theory, an alom may emit {create) or absorb (annibilate) a
photon by undergoing downward or upward transitions between its energy levels,
conserving cnergy in the process. The laws that govern these processes arc described in
this section.

Interaction Between an Atom and an Electromagnetic Mode

Consider the energy levels E, and E, of an atom placed in an optical resonator of
volume W that can sustain a number of glectromagnetic modes. We are particularly
interested in the interaction between the atom and the photons of a prescribed
radiation mode of frequency v = p,, where hv, = E, — E,, since photons of this
energy match the atomic energy-level difference. Such interactions are formally studied
by the use of quantum electrodynamics. The key results are presented below, without
proof, Three forms of interaction are possible—spontancous emission, absorption, and
stimulated emission,
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2
Figure 12.2-1 Spontancous emission of a photon
e into the mode of frequency » by an atomic transition
‘ fev from energy level 2 to cnergy level I The photon
1 encrgy he = £ — Ey.

Sponlaneous Emission
If the atom is initially in the upper energy level, it may drop spontancously to the lower
energy level and release its energy in the form of a photon {Fig. 12.2-1). The photon
energy e is added to the energy of the electromagnetic mode, The process is called
spontancous emission because the transition is independent of the number of photons
that may already be in the mode,

In a cavity of volume ¥, the probability density (per second), or rate, of this
spontaneous transition depends on v in a way that characterizes the atomic transition.

‘ P = ;eﬂT‘] (12.2-1)

Probability Deansity
of Sp 15 Emission
inta a Single Preseribed Mode

The function o{r) is a narrow function of » centered aboul the atomic resonance
frequency wy; it is known as the transition cross section. The significance of this name
will become apparent subsequently, but it is clear that its dimensions are area (since
pap has dimensions of second '), In principle, o{p) can be calculated from the
Schrédinger equation; the caleulations are usually so complex, however, that o{e) is
usually determined experimentally rather than caleulated. Equation {12.2-1) applies
separately to every mode, Because they can have different directions or polarizations,
more than one mode can have the same frequency v.

The term “probability density” signifies that the probability of an emission taking
place in an incremental time interval between £ and @+ Af is simply py, &¢. Because it
is # probability density, p,,, can be greater than 1 (s™1), although of course p,, &1 must
always be smaller than 1. Thus, if there are a Jarge number A of such atoms, a fraction
of approximately AN = {p,, A}V atoms will undergo the transition within the time
interval At. We can therefore write dN/dt = —p, N, s0 that the number of atoms
N(r) = N0 expl —p,,t) decays exponentially with time constant 1 /p,,, as illustrated in
Fig. 12.2-2,
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Figure 12.2-2 Spontancous emission into a single mode causes the number of excited atoms (o
decrease exponeniially with time constant 1/p,.
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2
Figure T2.2-? Absarption of a photon he leads 1o an  ~w———
upward transition of the atom from cnergy level | 10 e
encrgy level 2. 1
Absorption

If the atom is initially in the lower cnergy level and the radiation mode contains a
photon, the photon may be absorbed, thereby raising the atom to the upper encrgy
level (Fig, 12.2-3). The process is called absorption. Absorption is a transition induced
by the photon. Tt can occur anly when the mode contains a phatan,

The probability density for the absorption of a photon from a given mode of
frequency » in a cavity of volume V' is governed by the same law that governs
spontaneous emission into that mode,

&
Pay = i), (12.2-2)

However, if there are n phatons in the mode, the probability dessity that the atom
absorhs aue photon is o times greater (since the cvents arc mutually exclusive), e,

—
[

Py = ﬂ[—/cr(y). (12.2.3)

Probability Density of

Absorbing One Photan from

a Mode Conlaining n Photons

Stimulated Emission

Finally, if the atom is in the upper energy level and the mode contains a photon, the
atom may be stimulated to emit another photon into the same mode. The process is
J_clmwn as stimulated emission. It is the inverse of absorption. The presence of a photon
ina mo_dq of specified frequency, direction of propagation, and polarization stimulates
the emission of a duplicate (“clone™) photon with precisely the same characteristics as
the original photon (Fig. 12.2-4). This photon amplification process is the phenomenon
underlying the operation of laser amplificrs and lascrs, as will be shown in later
chapters, Again, the probability density p. that this process oceurs in a cavily of
volume V' is governed by the same transition cross section,

[
Py = po(v). (12.2.4)
2
Figure 12,244 Stimulated emission is a pro- Loy
cess whereby a photon e stimulates the ————
atom to emit a ¢lone photon as it unde rjoes e e

a downward transition. 1 L
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As i the case of absorption, if the mode originally carrics n photons, the
probability density that the atom is stimulated to emit an additional photon is

{12.2-5)

Probability Density of
Stimulated Emission of Ona
Phaton into a Moda in Which
n Photons Are Present

B = nilr{v)
£ i k

After the emission, the radiation mode carries 0 + 1 photons. Since P, = P, we use
the notation W, for the pro ility density of both stimulated emission and absorption.

Since spontancous emission occurs in addition to the stimulated emission, the total
probability density of the atom emilling a photon into the mode is Bt Py =
Crr + IMe /¥ Do), I fact, from a quantum clectrodynamic point of view, sponianeous
emission may be regarded as stimulated emission induced by the zero-paint fluctua-
tions of the mode. Because the zero-point energy is inaccessible for absorption, P, is
propartional to o rather than to (n + 1L

The three possible interactions between an atom and a cavity radiation mode
(spontaneous emission, absorption, and stimulated emission) obey the fundamental
relations provided above. These should be regarded as the laws governing photon—atom
interactions, supplementing the rules of photon optics provided in Chap. 11, We now
proceed 1o discuss the character and consequences of these rather simple relations in
some detail.

The Lineshape Function
The transition cross section o(r) specifics the character of the interaction of the atom
with the radiation. Its area,

=
5= Jl; v} dv,

which has units of em®-Hz, is called the transition st rength or oscillator strength, and
represents the strength of the interaction. Its shape governs the relative magnitude of
the interaction with photons of different frequencies. The shape (profile) of o{i) is
readily separated from its overall strength by defining a normalized function with units
of Hz™" and unity area, g(e) = o{v)/S, known as the lineshape function, so that
fo g(r}dy = 1. The transition cross section can therefore be written in terms of its
strength and its profile as

a(v) = Su(w). (12.2:6)

The lineshape function g(e) is centered about the frequency where o) is largest
(viz., the transition resonance frequency v,) and drops sharply for v different from v,
Transitions are therefore most likely for photons of frequency v = vy, The width of the
function” gle) is known as the transition linewidth. The linewidth Av is defined as
the full width of the function g{e} at half its maximum value (FWHM). In general, the
width of g(v) is inversely proportional to its central value (since its arca is unity),

1

Av o pront {12.2.7)
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Figure 12:2-5 The transition cross section o{(v) and the lineshape Eunction gl).

It is also useful o define the peak transition cross section, which occurs at the
resonance frequency, a, = e{pg). The function a(v) is therefore characterized by its
height oy, width Av, arca §, and profile g(v), as Fig. 12.2-5 illustrates.

B. Spontaneous Emission

Total Spontanecus Emission into Alf Modes
Equation (12.2-1) provides the probability density p,, for spontancous emission into a
specific mode of frequency v (regardless of whether the mode containg photons). As
shown in Sec. 9.1C, the density of modes for a three-dimensional cavity is M(w) =
8wt /e, This quantity approximates the number of modes (per unil volume of the
cavity per unit bandwidth) that have the frequency »; it increases in quadratic fashion.
An atom may spontancously emit ene photon of frequency w into any of these maodes,
as shown schematically in Fig. 12.2-6.

The probability density of spontancous emission into a single prescribed mode must
therefore be weighted by the modal density. The overall spontaneous emission proba-
bility density is thus

P, = _f;x[iyrr{if)][VM[|a)] dv = CJ;”U(»)M(V) dv.

For simplicity, this expression assumes that spontaneous emission into modes of the

same frequency v, but with different dircetions or polarizations, is equally likely.
Because the function o{r} is sharply peaked, it is narrow in comparison with the

function Miv). Since () is centered aboul vy, M{e) is essentially constant at Mivy),

'y
iy — 1
=
-
e =|
~— T
1
Atom Optical modes

Figure 12,26 An alom may spontaneously emit a photon into any one (but only onc) of the
many modes with [requencies v = 1y,
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so that it can be removed from the integral. The probability density of spontaneous
emission of one photon into any made therefore beeomes

Brd
Py = M(wg)eS = —7» (12.2-8)

where A = ¢ /ey is the wavelength in the medium. We defing a time constant {,
known as the spontaneous lifetime of the 2 = 1 transition, such that 1/1g, = P =
M{epdes. Thus

By (12.29)
' E Probability Density of
| Spontaneous Emission

of One Photan into Any Mode

which, it is important to note, is independent of the cavity volume V. We can therefore
cxpress 5 as

A7
-S‘JTI

i {12.2-10)
s
consequently, the transition stre nath is determined from an experimental measurement
of the spontancous lifetime £, This is uselul because an .'um_]ytlcal caleulation of S
would require knowledge about the quantum-mechanical behavior of the system and is
usually too difficult to carry out. N i

Typical values of £, arc = 10~¥ s for atomic transitions (e.g., the ﬁrsl_excnull state
of atomic hydrogen); however, £, can vary over a large range (from subpicoseconds 10
minutes).

EXERCISE 12.2-1

Frequency of Spontaneously Emittedl Photons. Show that the probability density of
an excited alom spontaneously emilting @ photon of frequency between » _an_d v+ de s
Fledee = et de. Explain why the spectrum of spontanenus emission from an
atom is proportional to its lineshape function g{v) after a large number of photons heave
been emitted.

e S e T

Relation Between the Transition Cross Section and the Spontaneous Lifetime_
The substitution of (12.2-10) inta (12.2-6) shows that the transition cross section is
related to the spontaneous lifetime and the lineshape function by

a2
o(v) = c—e(¥). (12.2-11)
Bty Transition
Cross Section

Furthermore, the transition cross section at the central frequency vy is
2

Al
oy = aley) = a_n_r_&'{”tl)- {12-2"2]

=



440 PHOTONS AND ATOMS

Because gleg)is inversely proportional to A, according to (12.2-7), the peak transition
cross section e, is inversely proportional to the linewidth Ae for a given [

C. Stimulated Emission and Absorption

Transitions Induced by Monochromatic Light

We now consider the interaction of single-mode light with an atom when a stream of
photons impinges on it, rather than when it is in a resonator of volume 1 as considered
above, Let monochromatic light of frequency », intensity [/, and mean photon-flux
density (photons /om*-s)

1

= — (12.2-13)
fw

interact with an atom having a resonance frequency vy We wish to determine the

probability densities for stimulated emission and absorption W, = P, = P, in this

configuration,

The number of photons a1 involved in the interaction process is determined by
constructing a volume in the form of a cylinder of arca A and height ¢ whose axis is
parallel to the direction of propagation of the light (its k vector). The eylinder has a
volume B = ¢A. The photon flux across the cylinder base is ¢4 (photons per second).
Because photons travel at the speed of light ¢, within one second all of the photons
within the cylinder cross the cylinder base. It follows that at any time the cylinder
contains 1 = A, ar

v
n=d—, (12.2-14)

photons so that ¢ = (c/V hn. To determine W, we substitute (12.2-14) into (12.2-3) 1o
ablain

W, = do(r). (12.2-15)

It is apparent that (v} is the coeflicient of proportionality between the probability
density of an induced transition and the photon-flux density. Hence the name *transi-
tion cross section™: ¢ is the photon flux per cm?, a(r) is the effective cross-sectional
area of the atom (cm?), and der(i) is the photon flux “captured” by the atom for the
purpose of absorption or stimulated emission.

Whereas the spontaneous emission rate is enhanced by the many mades inta which
an atom can decay, stimulated emission involves decay only into modes that contain
photons. Itz rate is enhanced by the possible presence of a large number of photons in
few modes,

Transiti in the Pi of Broadband Light

Consider now an atom in a cavity of volume V' containing multimode polych ic
light of spectral energy density p{r) (energy per unit bandwidth per unit volume) that is
broadband in comparison with the atomic linewidth, The average number of photons in
the » to v + dv band is ple )V dv fhe, each with a probability density (c/V Je{v) of
initiating an atomic transition, so that the overall probability of absorption or stimu-
lated emission is

W, ;L’@.V.[c

hy ?U(V)

dv. (12.2-18)
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Since the radiation is broadband, the function p(v) varies slowly in cf;mmri:;fm with
the sharply peaked function e(v). We can therefore replace ol()/v under the integral
with plrg) /vy to obtain

o)

o(¥)
- ST
ey

o = o,
! hey

j:a{v) dv =

Using (12.2-10), we have
3

W, olvy), (12.2-17)

O Brhiy,

where A = /vy is the wavelength (in the medium) at the central frequency #o.

The approach followed here is similar to that vsed for calculating the probability
density of spontancous emission into multiple modes, wh ich gives rise to Py, = M( pleS.
Defining.

P
= — 2
n Fh o)
which represents the mean number of photons per mode, we write (12.2-17) in the
convenient form

W (12.218)
r!l!

The interpretation of A follows from the ratio W,/P, = g(v,,)ﬂw“M{_y‘!}. TI_\c proba-
bility density W, is a factor of 7 greater than that for spontaneous emission since each
of the modes contains an average of 7 photons.

Einstein's & and B Coefficients .

Einstein did not have knowledge of (12.2-17). However, based on an analysis nl‘_t_hc
exchange of energy between atoms and radiation under condi[ions_ _of ther n_\a_l couilib-
rium, he was able to postulate certain cxpressions for the probability dc_:nslhcs of the
different kinds of transitions an atom may undergo when it interacts with bm;l-dhand
radiation of spectral energy density p(v). The expressions he obtained were as follows:

-
A (12.2-19)

= Bo(v)- (12.2:20)
Einslein's Postulates

The constants & and B are known as Einstein’s A and B coefficients. B)' a simple
comparison with our expressions (12.2-9) and (12.2-17), the & and B coefficients are
identificd as

A=— (12.2-21)

i (12,222
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5o that

] At
- =—. 12.2-23
& Bwh ( )
It is in_mt:rmnt to note that the relation between the & and B cocflficients is a result of
the microscopic {rather than macroscopic) probability laws of interaction between an
atom and the photons of cach mode. We shall present an analysis similar to that of
Einstein in Sec. 123,

EXAMPLE 12.2-1. Comparison Between Rates of Spomtaneous and Stimulated
Emission. Whereas the rate of spontancous emission for an atom in the upper state is
canstant (a1 & = 177 ), the rate of stimulated emission in the presence of broadband light
Holeyh is proportional to the energy density of the light ole,) The two rates are
2B = Bk /A% for geeater speceral energy densities, the rate
ion exceeds that of spontanecus emission. IF & = 1 pm, tor example,
= 166 = 107" Jrm® e This corresponds to an optical intensi cotral densily
Thus for a linewsdith A = 1 he optical
e equals the spontancous emission rate is 50

Worm® or 5 mW fem’

Summary

An atomic transition is characterized by ifs resonance frequency wg, ils
spontancous lifetime 1., and its lineshape function #lr), whose width is the
linewidth Aw. The transition cross section is

o(v) = g{v). (12.2-11)

Bt

Spqn.'aneous Emission

® If the atom is in a cavity of volume I in the upper level, the probability density
{per second) of emitting spontancously into one prescribed mode of frequency
v is

P ™ fV-a(v). {12.2-1)
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® The probability density of spontaneous emission into any of the available
modes is

oA G T A

1
Pp= e (12.2-9)

= The probability density of emitting into modes Iying only in the frequency
band between ¢ and v+ dv is Pledde = (/¢ )g(e) dv. The spectrum of
spontaneously emitted light is therefore proportional to the lineshape function
gl

Stimuiated Emission and Absorption

® [f the atom in the cavity is in the upper level and a radiation mode contains 0
photons, the probability density of emitting a photon into that mode is

L"I.-‘r--—-n;cr[u}. (12.2:5)

1f the atom is instead in the lower level, and a mode containg n photons, the
probability of absorption of a photen from that mode is also given by (12.2-5).
If instead of being in a cavity the atom is illuminated by a monochromatic
beam of light of frequency v, with mean photan-fux density @ (photons per
sceond per unil area), the probability density of stimulated emission (if the
atom is in the upper level) or absorption (if the atom is in the lower level) is

W, = po(v). (12.215)

If the light illuminating the atem is polychromatic but narrowband in
comparison with the atomic linewidth, and has a mean photon-flux spectral
density ¢, (photons per second per unit arca per unit frequency), the
probability density of stimulated emission fabsorption is

e
E‘a‘j = fqﬁ,,u'(»} du.

If the light illuminating the atom has a spectral energy density plv) that is
broadband in comparison with the atomic linewidih, the probability density of
stimulated emission /absorption is 1

b

where B = (A*/Bwhe,,) is the Einstein B coefficient.

(12.2-24)

(12.2-20)

In all of these formulas, ¢ = e /n is the velocity of light, & = A, /n is the
wavelength of light in the atomic medium, and # is the refractive index.
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D. Line Broadening

Because the lineshape function g{») plays an important role in atom—photon interac-
tions, we devote this subsection to a brief discussion of its origins. The same lineshape
function is applicable for spontaneous emission, absorption, and stimulated emission.

Lifetime Broadening

Atoms can undergo transitions between energy levels by both radiative and nonradia-
tive means. Radiative ransitions result in photon absorption and emission. Nonradia-
tive tramsitions permit cnergy transfer by mechanisms such as lattice vibrations,
inclastic collisions among the constituent atoms, and inclastic collisions with the walls
of the vessel. Each atomic energy level has a lifetime 7, which is the inverse of the rate
at which its population decays, radiatively or nonradiatively, to all lower levels,

The lifctime 7 of energy level 2 shown in Fig, 12.2-1 represents the inverse of the
rate at which the population of that level decays to level 1 and to all other lower energy
levels (none of which are shown in the figure), by either radiative or nonradiative
means, Since 171, is the radiative decay rate from level 2 to level 1, the overall decay
rate l/Tz must be more rapid, ie., 1/7, = 1/, 5o that 7, =y Thc lifetime =, of
level 1 s defined similarly. Clearly, if level 1 is IhL Jomwest '\Ilo\w:d energy level (the
ground state), | = .

Lifetime broadening is, in essence, a Fourier transform effect. The lifetime 7 of an
energy level is related to the time uncertainty of the occupation of that level. As shown
in Appendix A, the Fourier transform of an exponentially decaying harmonic function
of time &7*/%7 ¢27 which has an energy that decays as ¢ /7 (with time constant 1),
is proportional to 11 + jdarle — wpdr]. The full width at half-maximum (FWHM) of
the magnitude of this Lorentzian function of frequency is Av = 1/2wr. This speciral
uncertainty corresponds to an energy uncertainly AE = h Av = b /277, An energy
level with lifetime 7 therefore has an encrgy spread AE = fi /277, provided that we
can model the decay process as a simple exponential. In this picture, spontaneous
emission can be viewed in terms of a damped harmonic oscillator which generates an
cxponentially decaying harmonic function.

Thus, if the energy spreads of levels 1and 2 are AE, = h /277, and AE, = h/277,,
respectively, the spread in the energy difference, which corresponds to the transition
between the two levels, is

a1 1 1
&E=QE|+AE1-—~--[—+—) =—-, (12.2:25)
2w |y T2 T
where 7~ Tl 40 '} and 7 is lhe transition lifctime. The correspondlng spread of
i1 1
v=oe| =+ . (12.2-26)
SN T Lifetime-Broadening
] Linawicth

This spread is centered about the frequency vy ~ (E, — E\)/h, and the lineshape
function has a Lorentzian profile,

Av /2w

gr) = ——— (12.2-27)
(v = vg)? + (80/2)" Lorentzian Lineshape
Function
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Figure 12.2-7  Wavepackel emissions at random times from a lifetime broadened atomic syslem
with transition lifetime =, The light emitted has a Lorentzian power specteal density of widih
Ay = 1/2wr.

The lifetime broadening from an atom or a collection of atoms may be more
generally madeled as follows. Each of the photons emitted from the transition repre-
sents a wavepacket of central frequency v, (the transition resonance frequency), with
an exponentially decaying envelope of decay time 27 (i.e., with energy decay time equal
to the transition lifetime +), as shown in Fig. 12.2.7. The radiated light is taken to be a
sequence of such wavepackets emitted at random times, As discussed in Example
10.1-1, this corresponds to random (partially coherent) light whose power spectral
density is precisely the Lorentzian function given in (12.2-27), with Av = 1/277.

The walue of the Lorentzian lineshape function at the central frequency ey, is
gley) = 247 Ap, so that the peak transition cross section, given by (12.2-12), becomes

- (12.2:28)
o, = -21" 2wl Ar ’ i

The largest transition cross section occurs wnder ideal conditions when the decay is
entirely radiative so that v, = t,, and 1/r, = 0 (which is the case when level 1 is the
ground state from which no dccay is possible). Then Aw = 1/2mi, and

112

3o (12.2-29)
w

ay =

indicating that the peak cross-sectional area is of the order of one square wavelength.
When level 1 s not the ground state or when nonradiative transitions are significant,



446 PHOTONS AND ATOMS

Cellision times i | ! [

Figure 12.2-8 A sinewave interrupted at the rate f, by random phase jumps has a Lorentzian
spectrum of width Av = f /e

Aw can be s 147, in which case ey can be significantly smaller than A%/2%. For
example, for optical transitions in the range A — 0.1 to 10 pm, Mp2e =101 1077
em?, whereas typical values of oy for optical transitions fall in the range 10" 10"
em? (see, e.g., Table 13.2-1 on page 480),

Coliision Broadening

Inelastic collisions, in which energy is exchanged, result in atomic transitions between,
energy levels. This contribution to the decay rates affects the lifetimes of all levels
involved and hence the linewidth of the radiated field, as indicated above.

Flastic collisions, on the other hand, do not involve energy exchange. Rather, they
cause random phase shifts of the wavefunction associated with the energy level, which
in turn results in a random phase shift of the radizted field at cach collision time.
Collisions between atoms provide a source of such line broadening. A sinewave whose
phase is modified by a random shift at random times (collision times), as illustrated in
Fig. 12.2-8, exhibits spectral broadening. The determination of the spectrum of such a
randomly dephased function is a problem that can be solved using the theory of
random processes. The spectrum turns out to be Lorentzian, with width dv = f /7,
where f., is the collision rate (mean number of collisions per second).

Adding the linewidths arising from lifetime and collision broadening therefore
results in an overall Lorentzian lineshape of lingwidth

1 1 1 ‘
Av=—|—+—+2 . 12.2-30
Ly { - + : fcun} ( )

Inhomogeneous Broadening

Lifetime broadening and collision broadening are forms of homegencous broadening
that are cxhibited by the atoms of a medium. All of the atoms are assumed o be
identical and to have identical lineshape functions. In many situations, however, the
different atoms constituting a medium have different lineshape functions or different
center frequencies. In this case we can define an average lineshape function

Elr) = {zple)d, (12.2-31)

where { © b represents an average with respect to the variable §, which is used to label

'See, e, A E. Siegman, Lasers, University Science Books, Mill Valley, CA, 1984, Sec. 3.2,
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Figure 12.2-9  The average lineshape [unction of an inhomogeneously broadencd collection of
atoims.

those atoms with lineshape function ggle). Thus x#(v) is weighted with the fraction of
the atomic pepulation having the property B, as shown in Fig. 12.2.9.

One inhomogeneous broadening mechanism is Doppler broadening. As a result of
the Doppler effect, an atom moving with velogity v along a given direction exhibits a
spectrum that is shifted by the frequency +{v/chy, where vy is its central frequency,
when viewed along that direction. The shift is in the dircction of higher frequency (+
sign) if the atom is moving toward the observer, and in the di rection of lower frequency
{— signy if it is moving away. For an arhitrary direction of observation, the frequency
shift is (v /edwy, where v, is the component of velocity parallel to the direction of
ohservation. Since a collection of atoms in a gas exhibits a distribution of velocities, the
light they emit exhibils a range of frequencies, resulting in Doppler broadening, as
illustrated in Fig, 12.2-10.

In the case of Doppler broadening, the velocity v therefore plays the role of the
parameter B F(v) = {g,(0)). Thus if plv)dy is the probability that the velocity of 2
given atom lies between v and v + dv, the overall inhomogeneous Do ppler-broadened
lineshape is (sce Fig, 12.2-11)

() = j”mg[:a - r.-“;]p{v}dv. (12.2:32)

2
—_— T T
BI\/\M
1
——nAnnea
P ATATAT A Diraction
/ of observation

Fllgure 12210 The radiated frequency is dependent on the direction of alomic motion relative

1o the direetion of observation. Radiation from atom 1 has higher frequency than that from atoms
3 and 4. Radiation from atom 2 has lower frequency.
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Figure 12.2-11  The velocity distribution and average lineshape function of a Doppler-broad-
enad atomic system,

T e T T, T e e P P L T
EXERCISE 12.2-2

Doppl L hape Function

Pe

(2} The component of velocity v of atoms of 2 gas along & particular direction is known 1o
hawe & Gaussian probability density function

1 2
plv) = e exp(—%)‘

where o) = & T/M and M is the atomic mass, 1T each atom has a Lorentsian natural
lincshape function of width &e and central frequency w,, derive an expression for the
average lineshape function gle),

() Show that if Aw = wgofe, §le) may be approximated by the Gaussian lineshape

function
1 (v = )
4 = —— 0P| - ———— |, 12.2-33
Ele} o [ p ( )
where
o, 1 kgT\"*
ap = v,,?" = I{%] . (12.2-34)

The full-width half-maximum (FWHM) Dappler linewidth Avp, is then
Aug, = (8102) e, = 2350, (12.2-35)

{e} Compute the Doppler linewidth for the Ag = 63LE nm transition in Me, and for the
A= 106 e transition in COz at room temperature, assuming that Aw = vy, fo.
These transitions are used in the He—Ne and CO, lasers, respectively.
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(d) Show that the maximum value of the transilion cross section for the Gaussian
lineshape in (12.2-33) is

A pamzy VT
e ] S
v Ew'{ T ) [
P
o — (12.2-35)
B ':cn‘h’u

Compare with (12.2-28) for the Lorentzian lineshape function.

Many atom-photon interactions exhibit broadening that is intermediate between’
purcly homogeneous and purcly inhomogencous. Such mixed broadening can be
modeled by an intermediate lineshape function known as the Voight profile.

*E. Laser Cooling and Trapping of Atoms

The broadening associated with the Doppler effect often masks the natural lineshape
function: the magnitude of the latter is often of interest. One way 1o minimize Doppler
broadening is to use a carefully controlled atomic beam in which the velocities of the
atoms are well regulated. However, the motion of atoms can also be controlled by
means of radiation pressure (see Sec. 11.1C).

Photons from a laser beam of narrow linewidth, tuned above the atomic line conter,
can be absorbed by a beam of atoms moving toward the laser beam. After absorption,
the atom can return to the ground state by either stimulated or spontancous emission,
If it returns by stimulated emission, the momentum of the emitted photon is the same
as that of the absorbed photon, leaving the atom with no net change of momentum. If
it returns by spontangous emission, on the other hand, the direction of photon emission
is random so that repeated absorptions resull in a net decrease of the atomic
momentum in the direction pointing toward the laser beam. The resull is a decrease in
the velocity of those atoms, as shown schematically in 12.2-12, Ultimately, the

Number of atoms

Velocity v

Figure 12.2-12 The thermal velocity distribution (dashed curve) and the laser-cooled distribu-
tion {sclid curve).



