

Laser Physics 19. Semiconductor lasers

Maák Pál

Atomic Physics Department

Basic properties

- Operation between conductive and valence bands of the semiconductor material
- Direct current pumping
- Efficiency typically > 30%
- Small dimensions (0.1 x 1-2 x 150-200 μm^3 volume, cross section in the range of $\mu m^2)$

<u>Semiconductor materials</u> – energy bands, charge carriers

Semiconductor materials – energy bands, charge carriers (cont.)

Energy of free electrons depends on <u>p</u>:

$$E = \frac{p^2}{2m_0} = \frac{\hbar^2 k^2}{2m_0}, \quad \underline{p} = \hbar \underline{k}, \quad |\underline{k}| = \frac{2\pi}{\lambda}, \quad m_0 = 9,1 \cdot 10^{-31} kg$$

de Broglie wavelength

E - k relation is a simple parabola!

In semiconductors electrons and holes move "freely" within the bands. Schrödinger-equation and the crystal structure determine their movements. E - k is a periodic function of the <u>k</u> components: k_1 , k_2 , k_3 . When a_1 , a_2 , a_3 are the lattice constants, the periods are π / a_1 , π / a_2 , π / a_3 .

Close to the edges the E - k function is nearly a parabola:

at the conduction band edge $E = E_c + \frac{\hbar^2 k^2}{2m_c}$, effective masses (*c*, *v*-conduction, valence band) at the valence band edge $E = E_v - \frac{\hbar^2 k^2}{2m_v}$, $E_v = E_c - E_g$ Laser Physics 19

<u>Semiconductor materials</u> – energy bands, charge carriers (cont.)

<u>Semiconductor materials</u> – energy bands, charge carriers (cont.)

Avarage effective masses of electrons and holes									
	$m_c/m_0 = m_v/m_0$								
Si	0.33	0.5							
GaAs	0.07	0.5							

Basic difference between Si and GaAs considering interaction with light!

Photon momentum << electron momentum! In indirect band gap semiconductor the recombination is not possible with only a photon emission!

Semiconductor materials

Photon emission in indirect and direct band semiconductors:

indirect transition (e.g. in Si)

direct transition (e.g. in GaAs)

		Effective	mass		
Material	Bandgap (eV)	Electrons	Holes		
InAs	0.36	0.023	0.40		
InP	1.36	0.077	0.64		
GaAs	1.43	0.067	0.48		
AlAs	2.16				
GaP	2.26	0.82			
AlP	2.45				
GaN	3.39	0.19	1.4		

----- Infrared ------Pb x Sn 1-x Se ⊢ Pb_xSn_{1-x}Te ⊢ PbS_{1-x}Se_x In As x Sb_{1-x} Cd x Hg 1-x Te ⊢ Cd x Pb 1-x S Ga_xIn_{1-x}As_yP_{1-y} Ga As_x Sb_{1-x} In As _x P_{1-x} (Al xGa 1-x) vIn 1-vAs Semiconductor Band gap λ [µm] Al_xGa _{1-x}As ⊢ [eV] material 1.428 0.868 Ga As_{1-x}P_x GaAs InP 1.351 0.918 In_xGa_{1-x}As ⊢____ (Al_xGa _{1-x}) _v In _{1-v}P 0.65 - 0.9Ga_{0.7}Al_{0.3}As Cd S x Se 1-x 0.9 - 1.7In_{1-x}Ga_xAs_vP_{1-v} Cd_xZn_{1-x}S 6.3 - 30Pb_xSn_{1-x}Te In_xGa_{1-x}N ⊢ GaN 3.39 0.366 Al_xGa_{1-x}N 0.1 0.5 10 50 100 Laser emission wavelength (µm) Laser Physics 19

Materials of semiconductor lasers

<u>Semiconductor materials</u> – probability of occupancy, thermal equilibrium

At T = 0 K the electrons occupy the lowest energy states (acc. Pauli exclusion principle), the valence band is completely filled, the conduction band is completely empty. With increasing T, electrons \rightarrow to the conduction band, leaving empty states (holes) in the valence band.

The probability that *E* state is filled (Fermi function):

$$f(E) = \frac{1}{exp[(E-E_f)/k_BT]+1},$$

The probability that *E* is empty: 1 - f(E)

 E_f is the Fermi energy, at T = 0 K is the limit of filled and unfilled levels. At any other temperature the probability of occupancy at the Fermi energy is $f(E_f) = \frac{1}{2}$. In semiconductors without doping the Fermi energy is approximately in the middle of the band gap in thermal equilibrium.

Quasi-equilibrium carrier concentrations

An external electric current or photon-flux density causes band-to-band transitions, and then quasi-equilibrium evolves in both the conduction and valence band due to interband transitions, the intraband relaxation time is $\sim 10^{-13}$ s (the radiative electron-hole recombination time is 10^{-9} s). Two separate Fermi levels can be used for each band: E_{fc} és E_{fv} .

Absorption, emission, and gain condition

Excited direct band semiconductor in quasi-equilibrium with two Fermi level. $E_2 - E_1 = hv$ is the transition, where E_2 and E_1 are in the conduction and valence band, resp.

Emission condition: E_2 is filled, E_1 is empty Absorption condition: E_2 is empty, E_1 is filled The emission will be dominant, if

$$f_{e}(v) = f_{c}(E_{2})[1 - f_{v}(E_{1})]$$

$$f_{a}(v) = [1 - f_{c}(E_{2})]f_{v}(E_{1})$$

$$\begin{aligned} f_{e}(v) - f_{a}(v) &> 0 \\ f_{c}(E_{2})[1 - f_{v}(E_{1})] - [1 - f_{c}(E_{2})]f_{v}(E_{1}) &= f_{c}(E_{2}) - f_{v}(E_{1}) > 0 \\ \frac{1}{exp[(E_{2} - E_{fc})/k_{B}T] + 1} &> \frac{1}{exp[(E_{1} - E_{fv})/k_{B}T] + 1} \\ E_{1} - E_{fv} &> E_{2} - E_{fc} \\ E_{2} - E_{1} &< E_{fc} - E_{fv} \\ \hline E_{g} &< hv < E_{fc} - E_{fv} \\ \hline \end{bmatrix} \leftarrow \text{gain condition.} \end{aligned}$$

Pumping – *p* - *n* junction in forward bias

First semiconductor laser (1962) was a homojunction GaAs laser, operated at T = 77 K. Homojunction – same basic material with two different dopings (*p* and *n*)

p - n junction in contact without bias

In thermal equilibrium at T > 0 K

Electrons and holes diffuse from high to low concentration areas, resp. Electrons diffuse away from the *n*-region into the *p*-region leaving behind positively charged ionized donor atoms, in the pregion they recombine. Holes vice versa. \rightarrow Depleted region of ~ 0.1 µm thick containing fixed charges and a built-in potential difference V₀ that obstruct the diffusion.

Single Fermi function for the entire structure, no net current flows across the junction.

Forward biased p - n junction (homojunction)

The + voltage applied to the *p*region compensates the field charges and begins the flow of electrons (holes) toward the depleted region. The Fermi levels separate under bias voltage of $V (eV \sim E_g)$ and population inversion evolves. For appropriate value of the current density the gain condition can be achieved.

Problem: diffusion of electrons (and holes) to the *p* (and *n*) region!

```
thickness of the junction region d >> depleted region
```


Limitations:

Semiconductor lasers

Forward biased p - n junction (homojunction, cont.)

The thickness of the junction region (*d*) can be determined by the diffusion theory: $d = \sqrt{D\tau}$ *D* is the diffusion coefficient, τ is the electron lifetime (electron-hole recombination time). In GaAs $D = 10 \text{ cm}^2/\text{s}$ and $\tau \approx 3 \text{ ns}$, $d \sim 1 - 2 \mu \text{m}$, much larger than the width of the depleted layer (~ 0.1 μ m).

Cheap laser diode: the resonator mirrors are the cleaved end faces of the semiconductor crystal:

 n_{GaAs} = 3.6

$$R_{\perp} = \left(\frac{n-1}{n+1}\right)^2 = \left(\frac{2.6}{4.6}\right)^2 = 0.32$$

1. Because of the large active volume, high operation current is needed, the threshold current density $J_{th} \sim 10^5 \text{ A/cm}^2 (T_{room})$, therefore cw operation at cryogenic temperature (T = 77 K, liquid N₂).

Forward biased p - n junction (homojunction, cont.)

Limitations (cont.):

2. Because of the diffraction the beam width is much larger than $d (\sim 5 \mu m) \rightarrow$ significant absorption loss in the *p* and *n* regions (only small confinement of the beam: the refraction index of the junction region is larger with 0.1 - 1% because of the excess electrons)

Heterojunction lasers (from 1970)

Goal: to decrease the losses due to diffusion of the carriers and due to the light absorption. Carrier and light confinement with multiple layers of different band gap and refractive index.

Double-heterostructure (DH) laser: layers (a), energy bands (b)

E.g.: 2. cladding layer n-Al_{0.3}Ga_{0.7}As 4. cladding layer p-Al_{0.3}Ga_{0.7}As

$$n_3 = 3.6; n_2 = n_4 = 3.4$$

 $\Lambda n \sim 6\%$

1 2 3 4 Energy bands withhigh forward bias
(b) $E_{g3} \sim 1.5 \text{ eV}, E_{g2} = E_{g4} \sim 1.8 \text{ eV}$

Potential barrier around layer 3!

Double-heterostructure (DH) laser (cont.)

Advantages of DH laser:

- 1. width of the active layer is determined by the layer structure and not by the diffusion $\rightarrow 0.1 0.2 \ \mu m$ is feasible
- 2. the absorption loss decreases because of the waveguiding effect and the different band energies of the surrounding layers

Result: threshold current decreases \rightarrow cw at T_{room} is feasible

Preparation of DH layers - requirement:

the lattice period of the active layer must equal (within ~ 0.1%) that of the cladding layer. Otherwise dislocations form \rightarrow nonradiative recombination that causes loss and increases the threshold current density!!! (atomic radii of Ga and AI are almost the same)

Gain guided and index guided lasers

The threshold current decreases when the active region is surrounded from four directions with different type layers – buried heterostructure laser. Lateral confinement of both the current and photon flux. New layer type is the insulator. Typical width is $1 - 2 \mu m$.

Two types:

1. gain guided – carrier concentration with different band gap and insulator layers

Gain guided and index guided lasers (cont.)

Two types (cont.):

2. index guided – optical waveguide is created with the buried high refractive index active layer, light concentration

Laser diode packaging

built-in photodiode

Laser Physics 19

Brewster-window

Properties of laser diodes: light output – current characteristics

Temperature dependent characteristics of a GaAlAs laser diode

Properties of laser diodes: temperature dependent threshold current density and wavelength

Properties of laser diodes: spectral output

Wavelength difference between consecutive longitudinal modes: $\Delta \lambda_m$, if *L* is the length of the resonator, $n(\lambda)$ is the refractive index of the material:

$$L = q \frac{\lambda_q}{2n(\lambda_q)} \rightarrow q \cdot \lambda_q = 2n(\lambda_q)L \qquad q = 1, 2, 3, \dots \text{ integer}$$

Since *q* is very large we may regard it as a continuous variable, a change in $q (\Delta q)$ is related to the change in $\lambda (\Delta \lambda)$:

$$\frac{\Delta q}{\Delta \lambda} \cong \frac{d}{d\lambda} \left(\frac{2n(\lambda)L}{\lambda} \right) = 2L \left[\frac{1}{\lambda} \frac{dn(\lambda)}{d\lambda} - \frac{n(\lambda)}{\lambda^2} \right] = -\frac{2L}{\lambda^2} \left(n(\lambda) - \lambda \frac{dn(\lambda)}{d\lambda} \right)$$
$$\Delta \lambda = -\frac{\Delta q}{2L} \frac{\lambda^2}{n(\lambda) - \lambda (dn(\lambda)/d\lambda)}$$

 $\Delta \lambda_m (| \Delta \lambda | \text{ when } \Delta q = 1):$

$$\Delta \lambda_m = \frac{\lambda^2}{2L} \frac{1}{n(\lambda) - \lambda(d n(\lambda)/d\lambda)} = \frac{\lambda^2}{2n_{\text{eff}}L}, \quad n_{\text{eff}} = n(\lambda) - \lambda \frac{d n(\lambda)}{d\lambda}$$

 $n_{\rm eff}$ is much larger than *n* in the semiconductors!

Properties of laser diodes: spectral output (cont.)

0.800

(a) below threshold (LED, I=35 mA

(b) above threshold (laser), *I*=39 mA

Typical spectral width of a GaAs LED is 30 nm, therefore below threshold ~ 100 longitudinal modes oscillate.

Above threshold much less modes in $\Delta \lambda_m$ distance.

When n_{eff} (GaAs, λ =0.85 µm) ~ 4

$$\Delta \lambda_m = \frac{\lambda^2}{2 n_{\text{eff}} L} = \frac{\left(0.85 \cdot 10^{-6}\right)^2}{2 \cdot 4 \cdot 300 \cdot 10^{-6}} = 0.3 \, \text{nm}$$

Properties of laser diodes: divergence

The output beam diverges largely because of the small asymmetric emitting area (comparable in size with the wavelength), the divergence angles differ in the direction parallel ($\theta_{//}$) and perpendicular (θ_{\perp}) to the junction plane - elliptical Gaussian beam. $\theta_{\perp} \sim 20 - 30^{\circ}$, $\theta_{//} \sim 5 - 10^{\circ}$ for cheap lasers.

The beams in these two orthogonal directions originate from different point on the axis of the laser, property known as astigmatism. The astigmatism of index-guided lasers is much lower.

Laser Physics 19

Semiconductor lasers - applications

Source: Laser Focus World February 2008

Laser Physics 19

Ref.: G. P. Agrawal, Fiber-Optic Communication systems

Bit-rate distance product (BL) for different generations of optical communication systems.

Attenuation of a single mode fiber per kilometer

Laser Physics 19

3. Generation:

Main disadvantage: the optical signal is transferred to an electrical signal, the signal is regenerated and amplified before the signal is again transferred to an optical signal.

4. Generation: development of the optical amplifier

Schematic sketch of an erbium-doped fiber amplifier (EDFA).

4. Generation: State of the Art optical communication system

Dense Wavelength Division Multiplex (DWDM) in combination of optical amplifiers. The capacity doubles every 6 months.

The current laboratory fiber optic data rate record is multiplexing 155 channels, each carrying 100 Gb/s over a 7000 km fiber (Bell Labs in Villarceaux, France).

Semiconductor lasers – applications 2. Optical data storage

Capacity enhancement in different optical data storage devices

Semiconductor lasers – applications 2. Optical data storage (cont.)

Scale of data density:

Semiconductor lasers – applications 2. Optical data storage (cont.)

Semiconductor lasers – applications

2. Optical data storage (cont.) Example: CD (cont.)

Focusing

Semiconductor lasers – applications

2. Optical data storage (cont.)

Focusing (cont.)

Semiconductor lasers – applications

2. Optical data storage (cont.) Example: CD (cont.) Tracking

optimal position

the spot is left right from the optimal position

Tracking error signal: TE = E - F

lasers –

Laser Physics 19

Table 1. Worldwide commercial diode-laser sales 2007-2008 (units)

DIODE UNITS		Materials processing	Medical therapeutics	Instrumentation	Basic research	Telecommunications	Optical storage	Entertainment	Image recording	Inspection, measurement, and control	Barcode scanning	Sensing	Other	Solid-state laser pumping	TOTALS
.700	2007	0	0	0	0	0	355,000,000	25,000,000	21,500	15,090,000	6,950,000	0	0	10	402,061,510
<700 nm	2008	0	50	0	0	0	369,000,000	20,000,000	21,500	15,100,000	6,990,000	0	0	50	411,111,600
750–980 nm	2007	0	0	0	0	0	359,000,000	0	9,800,000	0	0	24,270,000	15,700,000	0	408,770,000
<100 mW	2008	0	0	0	0	0	345,000,000	0	10,100,000	0	0	29,124,000	19,598,000	0	403,822,000
750–980 nm	2007	0	195,000	0	0	207,000	0	0	102,500	0	0	0	1,700	538,000	1,044,200
100 mW-10 W	2008	0	185,350	0	0	207,000	0	0	100,750	0	0	0	1,800	807,000	1,301,900
750–980 nm	2007	7,150	147,400	0	1,000	0	0	0	5,000	0	0	10,000	31,100	29,000	230,650
>10 W	2008	7,475	162,900	0	1,000	0	0	0	5,000	0	0	10,000	31,100	30,050	247,525
908–1550 nm	2007	0	925	0	0	12,643,000	0	0	0	0	0	0	2,331,500	0	14,975,425
500-1000 fail	2008	0	1,300	0	0	14,243,000	0	0	0	0	0	0	2,916,200	0	17,160,500
>1550 nm	2007	0	0	0	0	0	0	0	0	0	0	0	0	0	0
>1550 IIII	2008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stacks	2007	500	3,609	0	0	0	0	0	0	0	0	0	1,840	9,800	15,749
JIGUNO	2008	525	4,713	0	0	0	0	0	0	0	0	0	2,080	10,750	18,068
TOTAL	2007	7,650	346,934	0	1,000	12,850,000	714,000,000	25,000,000	9,929,000	15,090,000	6,950,000	24,280,000	18,066,140	576,810	827,097,534
UNITS	2008	8,000	354,313	0	1,000	14,450,000	714,000,000	20,000,000	10,227,250	15,100,000	6,990,000	29,134,000	22,549,180	847,850	833,661,593

Source: Laser Focus World February 2008

Laser Physics 19

Table 2. Worldwide commercial diode-laser sales 2007–2008 (\$ thousands)

DIODE DOLLARS		Materials processing	Medical therapeutics	Instrumentation	Basic research	Telecommunications	Optical storage	Entertainment	lmage recording	Inspection, measurement, and control	Barcode scanning	Sensing	Other	Solid-state las er pumping	TOTALS
<700 nm	2007	0	0	0	0	0	1,234,800	9,000	5,450	11,910	13,600	0	0	30	1,274,790
<700 mm	2008	0	150	0	0	0	1,377,647	6,400	5,450	12,070	8,600	0	0	105	1,410,422
750–980 nm	2007	0	0	0	0	0	364,180	0	13,070	0	0	29,852	79,425	0	486,527
<100 mW	2008	0	0	0	0	0	312,492	0	13,580	0	0	35,823	96,380	0	458,275
750–980 nm	2007	0	7,000	0	0	119,030	0	0	11,650	0	0	0	1,600	72,560	211,840
100 mW-10 W	2008	0	6,500	0	0	113,850	0	0	11,300	0	0	0	1,680	101,436	234,766
750–980 nm	2007	10,850	45,800	0	2,000	0	0	0	11,000	0	0	2,000	9,000	49,500	130,150
>10 W	2008	11,100	47,650	0	2,000	0	0	0	11,200	0	0	2,000	9,000	50,125	133,075
000 4550	2007	0	1,850	0	0	1,619,030	0	0	0	0	0	0	15,625	0	1,636,505
908–1550 nm	2008	0	2,600	0	0	1,749,030	0	0	0	0	0	0	18,552	0	1,770,182
>1550 nm	2007	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stacks	2007	5,000	8,250	0	0	0	0	0	0	0	0	0	4,600	49,000	66,850
	2008	5,250	9,425	0	00	0	0	0	0	0	0	0	5,200	53,750	73,625
	2007	15,850	62,900	0	2,000	1,738,060	1,598,980	9,000	41,170	11,910	13,600	31,852	110,250	171,090	3,806,662
TOTAL DOLLARS	2008	16,350	66,325	0	2,000	1,862,880	1,690,139	6,400	41,530	12,070	8,600	37,823	130,812	205,416	4,080,345

Source: Laser Focus World February 2008

Laser Physics 19