

Laser Physics 11. Laser basics, fundamental knowledge about laser operation

Pál Maák

Atomic Physics Department

Date	Торіс	Lecture	Date	Торіс	Lecture
		Seminar			Seminar
24-Oct	Introduction	L	26-Oct	Interaction of light with	L-S
	Light-matter inetarction			matter – line broadening	
31-Oct	Coherent optical amplifier	L	2_Nov	Coherent optical amplifier	L-S
(5-Nov)	(2)-saturation and noise			(1)– gain, bandwidth, phase	
7-Nov	Fabry-Perot resonators,	L	9-Nov	Passive optical resonators,	S
	longitudinal modes			stability, modes	
14-Nov	Properties of Gaussian	S	16-Nov	break	
	beams – physical optics				
21-Nov	Control test	S	23-Nov	Gain conditions, phase	L
				condition spectral	
				bandwidth	
28-Nov Pulsed mode operation, Q-		L	30-Nov	Properties of laser beams –	L
	switching, mode-locking			coherence,	
				monochromaticity,	
				brightness	
5-Dec	Properties of laser beams -	L-S	7-Dec	Semiconductor lasers and	L-S
	spatial coherence,			amplifiers, homo and	
	divergence			heterojunction, properties	

LASER - acronym

Light Amplification by Stimulated Emission of Radiation

Stimulated emission – concept: by A. Einstein, **1917**

A. E. deduced the energy density (energy per unit volume and frequency interval) for the emission of electromagnetic radiation of two-level atoms in thermal equilibrium as a function of the temperature (Planck's law of black-body radiation):

$$\rho(\mathbf{v}) = \frac{8\pi}{c^3} \mathbf{v}^2 h \mathbf{v} \frac{1}{e^{h\mathbf{v}/kT}(-1)}$$

First laser - ruby laser in 1960

What are the special properties of a laser?

Directed beam with small divergence (1 mrad = 3.4 angular minute), except for diode lasers (10-30° divergence)

Monochromatic or narrow spectral bandwidth light: 0.1 Hz for short time, 50-100 Hz long-time operation is feasible

Coherent beam: spatial and temporal coherence

Ultra short laser pulses: 10⁻¹⁵ s (fs)

Power range: $10^{-9} - 10^{20}$ W Wavelength range: $(10^{11} - 10^{17} \text{ Hz})$ Far-infrared: 10 – 1000 µm Mid-infrared: $1 - 10 \,\mu m$ Near-infrared: $0.7 - 1 \mu m$ **Visible**: 0.4 – 0.7 µm or 400 – 700 nm (**10**¹⁴ – **10**¹⁵ Hz) UV: 0.2 – 0.4 µm or 200 – 400 nm Vacuum UV: 0.1 – 0.2 µm or 100 – 200 nm E(Extreme)UV: 10 – 100 nm Soft x-ray: 1 - 20 (30) nm (overlap with EUV) Laser Physics 11

Dimension - small

Laser diode 0.4 µm x 2 µm x 400 µm

Multicolor nanowire lasers \emptyset 200 - 400 nm, length 20 - 60 μ m Source: Optics & Laser Europe, August, 2008

Dimension - large

NIF, Lawrence Livermore National Laboratory, laser system with 192 beams: 500 TW, 7456 m laser

Milestones in the laser history

Date	Event	Person/institute
1917	Concept of the stimulated emission	Albert Einstein
1951	MASER (Nobel prize in 1964)	Townes, Prohorov, Basov
1960	laser patent 2.929.922	Shawlow and Townes
	first laser – ruby, solid state laser	Th. Maiman, Hughes Labs.
1961	first gas laser He-Ne (infrared, red in 1962)	Bell Laboratories
1962	Pulsed semiconductor laser (GaAs) at liquid N_2 temperature	General Electric
	Ophthalmological applications (rubin and He-Ne)	
1963	first CO ₂ laser	K. N. Patel, Bell Labs.
1964	first Nd-YAG laser	Bell Laboratories
	first Ar-ion laser	Hughes Laboratories
	first surgical experiments on animals	
	distance measurement with a laser interferometer	
1965	first chemical laser	California Berkeley Univ.
	first surgical CO_2 laser	
	proposal - fiber optic communications (Nobel prize 2009)	Charles Kao
1966	first dye laser	IBM Laboratories
1968	Ar-ion laser application in ophthalmology and urology	
1969	First three lasers for material processing in the car industry	General Motors
	rubin laser distance meter (measurement of the Earth – Moon distance using	US army
	the mirror installed by the Apollo 11 astronauts on the Moon)	
	concept of integrated optics	Stewart Miller

Milestones in the laser history

1970	first continuous wave (cw) GaAlAs semiconductor laser (T _{room})	
	20 dB/km	Corning
1971	first N ₂ laser	
	Nobel-prize for the development of holography (principle was published in 1948)	Gábor, Dénes
1972	laser target designator: military use in Vietnam	US army
	fiber with 4 dB/km loss	Corning
1973	Argon and Nd-YAG laser coupled to fiber optic endoscope	Nath, Gorish, Kiefbacher
1975	commercial cw semiconductor laser (laser diode - LD)	
8	first medical laser symposium	
1984	first laboratory x-ray laser	Lawrence Livermore Lab.
1987	LD-pumped Nd:YAG laser	
	Er-doped fiber amplifier	
	dye laser with 6 fs pulse length	
1992	20 Gbit/s transmission speed for 100 km	
1995-	Green, blue light emitting diode (LED)	
	laser pulse with petawatt (10^{12}W) power	
	23 W fiber laser	
	5 fs Ti-Sapphire laser pulse	
1999	LD of 400 nm	Nichia

Types of lasers

What are needed for a laser?

- 1. Amplifier medium (gas, liquid, solid state) in which, due to excitation (by light, electric discharge or current, chemical reaction, ...) light amplification by stimulated emission is possible
- 2. Feedback system optical resonator

Selection of the laser material

Particle with known energy structure (atom, molecule, doping ion in a solid)

Selection of levels E_1 and E_2 , in between light emission and absorption are possible

$$E_2 - E_1 = hv_0,$$

 v_0 is the resonance frequency. E_2 is an excited state, however both E_1 and E_2 can be excited states. In practice, photon emission or absorption is possible in a range of frequencies around $v \approx v_0$.

3 kinds of interaction: spontaneous emission, absorption stimulated emission

Laser material in a 3D optical resonator

We place the selected laser material into an optical resonator of volume *V*, where $V = d^3$ (*d*: edge of cube with reflecting surfaces). Standing wave solutions: $\mathbf{k} = (k_x, k_y, k_z)$ discrete values.

Laser material in a 3D optical resonator

Number of modes in the 0 - v frequency range; density of modes?

The number of modes with continuum approximation (volume of 1/8 sphere / volume of the cell):

$$2\left(\frac{1}{8}\right)\frac{4\pi k^{3}/3}{(\pi/d)^{3}} = \left(\frac{k^{3}}{3\pi^{2}}\right)d^{3}, \quad k = \frac{2\pi v}{c}$$
due to
polarization
$$\frac{8\pi^{3}v^{3}}{3c^{3}\pi^{2}}d^{3} = \frac{8\pi v^{3}}{3c^{3}}d^{3}$$

Density of modes (the number of modes in unit volume and frequency interval):

$$M(v) = \frac{8\pi v^2}{c^3}$$

Laser material in an optical resonator of volume *V*. $v \approx v_0$ is the selected mode of the resonator.

We are interested in the possible interactions of the particle with the resonator mode of frequency v.

Spontaneous emission

The energy of the particle is initially E_2 (upper level). It may decay spontaneously to the lower energy level.

The probability density (per second) or rate - p_{sp} – is a function of the frequency *v*.

$$\boldsymbol{p}_{sp} = \frac{\boldsymbol{c}}{\boldsymbol{V}} \boldsymbol{\sigma}(\boldsymbol{v}) \quad [\mathbf{S}^{-1}],$$

 $\sigma(v)$, the transition cross section (with surface dimension) peaks around v_0 , *c* is the velocity of light in the medium.

Spontaneous emission (cont.)

 $p_{sp}\Delta t$ is the probability, that an emission of photon of frequency v takes place in the time interval of [$t, t + \Delta t$]. $p_{sp}\Delta t < 1$.

If *N* is the density of particles in the upper level E_2 , then in unit volume ΔN atoms will undergo the transition within Δt :

$$\Delta N = (\rho_{sp} \Delta t) N$$

The rate of change of atoms per unit volume on level E_2 :

Absorption

If the particle is initially on the lower level E_1 , a photon may be absorbed raising the particle to the upper level, E_2 . Absorption is a transition induced by the photon.

Effect: the number of photons in frequency mode v decreases in volume V!

Probability density for the absorption of one photon from the frequency mode v when one photon is in the mode: when n photons are in the mode:

$$p_{ab} = \frac{c}{V}\sigma(v),$$
 $P_{ab} = n\frac{c}{V}\sigma(v).$

Stimulated emission

A particle in level E_2 is stimulated by a photon of frequency v to emit another photon into the same mode.

2

Effect: the number of photons of frequency v increases with one h_v in V!

Probability density for one or *n* photons:

$$p_{ie} = \frac{c}{V}\sigma(v), \quad P_{ie} = n\frac{c}{V}\sigma(v),$$
$$P_{ie} = P_{ab} = W_i$$

The clone photon has the same energy, direction and preserves polarization and phase of the mode!!

Spontaneous and stimulated emission together:

$$p_{sp} + P_{ie} = (n+1) \frac{c}{V} \sigma(v).$$

Laser Physics 11

hν

19

Light-matter interactions

The lineshape function

The transition cross section $\sigma(v)$ specifies the character of the interactions. Its area represents the strength of the interaction, its shape characterizes the relative frequency dependence of the interaction:

$$S = \int_{0}^{\infty} \sigma(v) dv \quad [cm^{2}s^{-1}],$$

$$g(v) = \frac{\sigma(v)}{S}.$$

g(v) is the normalized lineshape function. Δv is the full width of g(v) at half maximum (FWHM).

Total spontaneous emission into all modes

Spontaneous emission is possible in V into all modes with frequency within the spectral width of $\sigma(v)$:

$$P_{sp} = \int_{0}^{\infty} \left[\frac{c}{V} \sigma(v) \right] \left[M(v) \cdot V \right] dv = c \int_{0}^{\infty} \sigma(v) M(v) dv.$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \sigma(v) M(v) dv.$$

$$\sigma(v) \text{ is narrow in comparison with } M(v): P_{sp} = M(v_{o}) c S = \frac{8 \pi v_{o}^{2}}{c^{2}} S = \frac{8 \pi}{\lambda^{2}} S. \quad [s^{-1}]$$

We define a time constant t_{sp} , known as spontaneous lifetime by:

$$P_{sp} = \frac{1}{t_{sp}}$$
 and $S = \frac{\lambda^2}{8 \pi t_{sp}}$.

$$\sigma(v) = Sg(v) = \frac{\lambda^2}{8\pi t_{sp}}g(v)$$

typical value of t_{sp} is 10^{-8} s, but it can range from 10^{-13} to 100 s.

 λ is the wavelength in the material.

Transitions in the presence of broadband light

The spectral energy density in V is $\rho(v)$ (energy per unit bandwidth per unit volume) is broad as compared to the width of the particle's lineshape function.

The number of photons in the [v, v + dv] frequency range $\frac{\rho(v)Vdv}{hv}$.

$$W_{i} = \int_{0}^{\infty} \frac{\rho(v)V}{hv} \frac{c}{V} \sigma(v) dv \approx \frac{\rho(v_{0})}{hv_{0}} c \int_{0}^{\infty} \frac{\sigma(v)dv}{hv_{0}} = \frac{\rho(v_{0})}{hv_{0}} cS,$$

We assume that $\rho(v)$ varies slowly in comparison with the sharply peaked $\sigma(v)$ function.

$$N_{i} = \frac{\lambda^{3}}{8\pi h t_{sp}} \rho(v_{0})$$

Einstein's A and B coefficients

Based on the analysis of the exchange of energy between atoms and radiation field in thermal equilibrium, Einstein postulated expressions for the probability densities for spontaneous-emission and stimulated transitions:

$$P_{sp} = A$$
$$W_i = B\rho(v)$$

A and B are known as Einstein's A and B coefficients. By comparing the above with our expressions:

$$A = \frac{1}{t_{sp}}, \quad B = \frac{\lambda^3}{8 \pi h t_{sp}}$$
$$\frac{A}{B} = \frac{8 \pi h}{\lambda^3}.$$

Transitions induced by monochromatic light

Interaction of a monochromatic photon beam of frequency v with a particle of resonance frequency v_0 (laser type interaction). The photon beam has an intensity *I* and travels into the *z* direction. The photon-flux density (photons / cm² ·s) is:

$$\Phi = \frac{I}{hv}. \qquad W_i = P_{ab} = P_{ie} \left(= n \frac{c}{V} \sigma(v) \right) = ?, \quad n = ?$$

 ΦA photons go through the area A in unit time. As the length of the cylinder is equal to c (velocity of light), all photons will leave the cylinder through its base:

$$A = \Phi \frac{V}{c}, \qquad W_i = \Phi \sigma(v).$$