Optics

Investigates phenomena of the creation, detection and propagation of light

Historical light models

Euclide:	Optics (BC.280) Light is emitted by the eye
Alhazen:	(11th century, Bhagdad)
	Light emitted by light sources, eye is a detector
Déscartes: (1637 La dioptrique)	
	Light: particles moving in "ether"
	Laws of reflection and refraction (Snell's law,)
Huygens	(1679) Light is an elasthic wave of "ether"
Newton	(1704 Opticks)
	Light: particles moving like mechanical objects
	Dispersion observed, color~ size of particle
	Composition of white light
	Newton's rings
Fermat:	(18th century)
	Principle of shortest propagation distance (time)
Young	(1802): Double slit experiment, wave explanation
Fresnel	(1819) Wave theory of light
Maxwell:	(1862) EM wave theory of light
Michelson & Morley: (1881) There is no "ether",	
	c is independent of coordinatte system
Planck	(1900) Black body radiation, energy quanta
Einstein	(1905) Photoelectric effect, light particles, photons
Today:	Dual nature of light (and of matter)

Modern light models

Reflection on a planar interface

Total Internal Reflection

finger

laser

ALT 2-71/2-710

х

Brewster effect

Polarized sunglasses Brewster window Polarizing beam splitter

Ray tracing

Petzval lens, the first photographic portrait objective lens Calculated by 8 artillery gunners and 3

corporals using ray tracing. ~ 1 year. Today: ~1 minute of CPU time

Oil-Immersion Infinity-Corrected Apochromat Objective

Image Formation of a plane mirror

The image point *I* is located behind the mirror a distance *q* from the mirror. The image is virtual.

The image in the mirror is reversed front to back, which makes the right hand appear to be a left hand.

Images Formed by Spherical Mirrors

The reflected rays intersect at different points on the principal axis.

a

When the object is very far away, the image distance $q \approx R/2 = f$, where *f* is the focal length of the mirror.

- Spherical aberration
- Coma, Astigmatism etc...
- Chromatic aberrations
- Paraxial optics

Parabolic surfaces: eliminate spherical aberration

Stigmatism: point-to point Imaging

LAYOUT LAYOUT LENS HAS NO TITLE. MON SEP 27 2004 TOTAL LENGTH: 15.00000 MM DESIGNER: ZEMAX LENS HAS NO TITLE. MON SEP 27 2004 TOTAL LENGTH: 25.00000 MM DESIGNER: ZEMAX LENS.ZMX CONFIGURATION 1 OF HYPERB.ZMX CONFIGURATION 1 OF 1 LAYOUT LAYOUT LENS HAS NO TITLE. MON SEP 27 2004 TOTAL LENGTH: 25.00000 MM LENS HAS NO TITLE. MON SEP 27 2004 TOTAL LENGTH: 23.10000 MM DESIGNER: ZEMAX DESIGNER: ZEMAX HYPERB.ZMX CONFIGURATION 1 OF ELLIPSE.ZMX CONFIGURATION 1 OF

Hiperbolic lens

Parabolic mirror

Elliptical lens

Images Formed by Spherical Mirrors 2

Images Formed by Spherical Mirrors 3

Single refractive surface

Images Formed by Thin Lenses

Biconvex

Convex-

concave

Planoconvex

 $\frac{1}{f} = (n-1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$

$$\frac{1}{p} + \frac{1}{q} = (n-1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

Images Formed by Thin Lenses 2

Simple Imaging Instruments

Camera

Composed Imaging Instruments: Microscope

Composed Imaging Instruments: Telescope

Interference: Young's Double-Slit Experiment

Light passing through narrow slits does *not* behave this way.

Light passing through narrow slits *diffracts*.

Interference in thin films

Newton's Rings

Anti-Reflective Coating

a

LIGO (Laser Interferometric Gravitational-wave Observatory)