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Dielectric materials 

Electrical insulator materials do not contain free charge carriers. Atomic and molecular charges 
of an insulator can be described by bound charges that are localized at a given atom or molecule. 
When the + and – charges of a molecule do not overlap (i.e. are displaced from each other) the 
charge distribution can be modelled by an electric dipole. The electric dipole is composed of a 
positive and a negative charge of equal absolute value, separated by a distance l. The definition 
of the electrical dipole moment vector is the following: 

lQe d  

where the vector l is pointing from the negative to the positive charge. 

Field of an electrical dipole: 
 
The field of the electrical dipole can be 
determined by the superposition of the field of 
the + and – charges according to the figure. 
 
 
 
 
 
 
 

Electric dipole in an external electric field 
 
Uniform (homogenous) field  
 
The net force acting on the dipole is zero, but a 
torque can be observed that rotates the dipole 
towards an orientation parallel to the external field: 

 sinQElsinFl'FlM  . 
expressed with the dipole moment: 
 sinEdM e . 

 
In vector form: 
 EdM  e . 

This torque aligns the dipole moment vector parallel to the external field. 
 
Non-uniform (inhomogenous) field  
In a non-uniform field the dipole aligns parallel to the local 
field. As the field is different at the + and – charges a net force 
is acting on the dipole:   

)x(QE)xx(QEFFFx    . 

For small distances: 

x
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)x(dE
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dx

)x(dE
xQ)x(QEx

dx

)x(dE
Q)x(QEFx   . 

finally using the definition of the dipole moment: 

 
dx

)x(dE
dF ex  . 

So the net force is pointing towards the higher electric field region. 
 

Laws of static electricity in dielectric materials 
 
In the absence of external electric field the average 
dipole moment of the molecules is usually zero. For 
apolar molecules the center of + and – charges 
overlap, so the dipole moment of each molecule is zero 
(a and b on the figure).  
 
For polar molecules (like water) the molecule can be 
considered as a microscopic dipole (c.). Due to the 
interaction between the microscopic dipoles and to the 
thermal movement of the dipoles, the orientation of the 
billions of dipoles will be disordered. This also results 
a zero average dipole moment (d). 
 
 
 
 
 
 
 
 
However, when the material is placed in an external electric field + and – charges of apolar 
molecules will slightly move (displace) parallel and anti-parallel to the field creating 
microscopic dipoles aligned parallel to the field. Polar molecules will rotate towards the field, 
but will keep some degree of disorder due to the interaction and to the thermal movement of 
the dipoles. This phenomenon is called the polarization of an insulator material. For most 
materials and for low field strength values the average dipole moment grows linearly with the 
field. 
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As a result for both polar and apolar molecules the 
average dipole moment will align to the external 
field. The total electric field can be calculated as the 
superposition of the external field and that of the 
billions of microscopic dipoles. We can see from the 
figure (or prove by the addition of plenty point 
charge fields) that the overall electric field is reduced 
by the polarization of the material.  

 

 

 

First law of static electricity in insulators  
The presence of polarized charges does not change the conservative nature of static electric 
field, so the first law remains unchanged for the resulting average field: 

 0
A
 Edr . 

Second law of static electricity in insulators (Gauss’s law) 
In Gauss’s law we can separate the effect of free and bound charges: 

 
00 
bfree

A

QQ
EdA . 

To evaluate the effect of bound charges, we have to sum up all charges enclosed by the closed 
surface A. Suppose that the surface is within the material. For dipoles that are outside the closed 
surface the result is obviously zero. The same holds for dipols having both + and – poles inside 
the surface, since the net contribution is zero again. So we have to sum up dipolse that have 
exactly one pole inside the surface (and the other pole outside). These are dipoles in the vicinity 
of the surface, as shown on the figure below: 
 
 

The volume in which the center of these dipoles sit: 
cosldAdV  . 

let us denote the dipole density (number of dipoles / unit 
volume) by  

dV

dN
n    

the number of dipoles intersecting the surface dA 
 

cosnldAndVdN  , 

and the bound charge within the closed surface:

cosqldA
dV

dN
dQp  , 

where the – sign is due to the fact that cos is positive for dipoles having the negative 
pole enclosed by the surface. 
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 PdAdAd  ep dV

dN
dQ . 

where P is the dipole momentum density defined by:  
V

i
ei







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





d

P  

 
P is also called polarization vector.  
 
For the entire surface A: 

 
A

pQ PdA . 

Substituting to Gauss’s law: 
 

  
A

free
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We can introduce  
 PED  0 . 

called dielectric displacement vector. With this definition Gauss’s law simplifies to the 
form: 
 
 free

A

Q DdA . 

Polarization in homogenous, isotropic, linear dielectrics 

In in homogenous, isotropic, linear dielectrics the average dipole is parallel and proportional to 
the field, thus EP ~ . It is customary to define  
 

EP 0  

where  is a material constant called dielectric susceptibility. In vacuum 0 , and in all 

practical materials at static external fields or low frequency. For air 00059.0air ). 
 in that case: 
 
 EEEEED   r0000 )1( . 

 
where   1r  is the relative permittivity of the material and r 0  is the absolut 

permittivity.  
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Anizotropic linear materials  

In anizotropic linear materials the direction of the polarization is not necessarily parallel 
to the electric field: 
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The relation is similar to the connection between the angular velocity and the angular 
momentum of a rigid body. The polarization can be calculated by multiplying the 
electric field and the 3 by 3 element susceptibility tensor.  

Nonlinear materials  
 
Almost all materials show some nonlinearity at very high electric fields, but some 
special materials exhibit nonlinear polarization at low or even zero external field. So 
called remanent polarization can be observed in pyroelectric and ferroelectric materials. 
 

Boundary conditions on a planar interface of two materials. 
By applying the laws of static electricity on a surface (or volume) across the interface, 
we can see that: 

  
L

T2T1 0dlEdlEEdr , 

 TT EE 21  , 

 
and  

  
A

NN QdADdAD 21DdA . 

 
dA

Q
DD NN 12  

D lines can only start or end on free surface charge. If there is no free surface charge: 
 NN DD 12  , 
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