
Standing Waves in Stretched Elastic String

I. THEORETICAL BACKGROUND

In the measurement we will investigate the propagation
of waves in a string with both end fixed. We assume that
the propagation is one dimensional (along the string),
the wave is transverse (the displacement vectors of the
points of the string is perpendicular to the string), in-
plane polarized (the displacement vectors lie in the same
plane). It follows that displacement of a point from its
equilibrium can be described with only one scalar value.
Assuming the string is parallel to the x axis, the wave
can be described with
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the one-dimensional wave-equation, where x is the coor-
dinate, t is the time, Ψ(x, t) is the wave-function, which
describes the displacement as a function of place and
time, i.e. the propagation of the wave, and c is the speed
of wave propagation. Deriving the wave-equation for the
case of a simple, one-dimensional string, the speed of the
propagation, c only depends only on the stretching force
(tension), T and the linear mass density of the string, µ:

c =

√

T

µ
. (2)

The waves formed by an external excitation in the
string are generally very complicated. Although it is
known that exciting at given frequencies stationary, so
called standing waves are formed due to the reflection
from the ends of the string. A property of the standing
waves is that the points of the string are moving in-phase,
and amplitude of the oscillation is only the function of
the place. Mathematically it means that eq. (1) has a
solution, which is the product of a time-dependent and a
place-dependent function (the eq. (1) is separable partial
differential equation). If the excitation is harmonic, the
solution can be written as

Ψ(x, t) = ϕ(x) sin(ωt+ α), (3)

where ω = 2πν is the angular frequency of the oscillation
(ν is the frequency, Hz), and α is the initial phase.
Substituting eq. (3) into eq. (1) the time-dependent

part cancels, and place-dependent part, which describes
the amplitude along the string, gives the following ordi-
nary differential equation:

d2ϕ(x)

dx2
+ k2ϕ(x) = 0, (4)

where k = ω/c, the wavenumber is introduced.
The general solution of eq. (4) is

ϕ(x) = A sin(kx) +B cos(kx), (5)

where A and B are arbitrary constants, determined by
the boundary conditions. In this case both ends of the
string are fixed, so the displacement at these points is
always zero, i.e.

ϕ(0) = 0

ϕ(L) = 0, (6)

where one end of the string lies in origin of the coordinate
system, and length of the string is L.
The first condition of eq. (6) implies that B = 0, the

solution can have the form of

ϕ(x) = A sin(kx). (7)

The second condition of eq. (6) restricts the allowed val-
ues of the wavenumber to

kn = n
π

L
, (n = 1, 2, 3, ...). (8)

Since the wavenumber, k is in direct connection with
the wavelength λ (k = 2π/λ), eq. (8) implies that stand-
ing waves are only formed in case of given discrete value
of wavelenghts:

λn =
2L

n
, (n = 1, 2, 3, ...). (9)

Combining this result with the ν = c/λ formula, in case
of fixed speed of propagation (it means fixed tension and
linear density according to eq. (2)) the frequency values
cannot be arbitrary, either, only given discrete frequency
values of

νn = n
c

2L
(n = 1, 2, 3, ...) (10)

are allowed. These frequencies are the resonance frequen-
cies of the string.
As it follows from the discussion above, the solutions

which suit the boundary conditions can be written as

ϕn(x) = An sin
(nπ

L
x
)

(n = 1, 2, 3, ...). (11)

The maximal values of the amplitudes, An are deter-
mined by the details of the excitation (the initial condi-
tions), but for the given measurement it is not relevant.
Assuming that the actual standing wave contains only
one given n component, the solution of eq. (1) can be
written as

Ψn(x, t) = An sin

(

2π

λn
x

)

sin(ωnt+ αn), (12)

where n is an arbitrary positive integer. The amplitude-
distribution (place-dependence) of the standing wave is
given by eq. (11), some examples are shown in FIG. 1,
for n = 1, 2 and 3 which are called normal modes. As
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it can be seen from FIG. 1 and eq. (11), the solution for
a given n contains n antinodes and n + 1 nodes (taking
into account the fixed ends of the string). From eq. (11)
the distance of two consecutive nodes,

dn =
L

n
=

λn

2
. (13)

FIG. 1. Possible first three normal modes for a stretched

string fixed at the ends

According to eq. (10), different values of n result in
different frequencies (pitches). The n = 1 is called fun-
damental frequency, and higher n values are called higher
harmonics (overtones).
It is useful to note that exciting the string with an or-

dinary method (e.g. plucking a string) generally more
harmonics appear at the same time. (Mathematically
it means that the full solution of eq. (1) is the sum of
eq. (12)-like solutions, with different values of n). But a
string has a well defined pitch, since usually the ampli-
tude of the fundamental frequency is much larger than
the amplitude of the higher harmonics. The higher har-
monics are always present, and the ratio for the different
higher harmonics gives the tone of the string. (I.e. the
difference of the sound of different musical instruments.)
In the measurement sinusoidal excitation will be used,

which enables us to form standing waves with different n
by setting the proper frequencies.

II. MEASUREMENT SETUP

The measurement setup (see FIG. 2) is a stretched
steel string (2) fixed on a board (1). The ends of the
string is fixed to an aluminum block (4), which is mov-
able with a screw (3), and to a two-armed lever (5). The
length of the oscillating section of the string can be set
with two stands (6). The oscillation is induced by an ex-
citer (driver) coil (8) via magnetic coupling. The wave in
the string is transverse, almost in-plane polarized. The
oscillation in the string is detected by a detector coil

(9), whose signal is processed by NI myDAQ data col-
lector (FIG. 3). This data collector provides oscilloscope
and dynamic signal analyzer (and function generator but
during the measurement separate device is used). The
driver coil is driven with this data collector, as well. The
stretching force can be changed by putting weight (11)
on the longer (horizontal) arm of the lever (5).

Fixing the string: The copper-pieced end of the string
has to be hooked to the shorter (vertical) arm of the lever.
The loop on the other end has to be hooked to the screw
on the aluminum block. After fixing the string, it has to
be tightened by moving the screw (3), so the longer arm
of the lever is horizontal.

Relevant tunable parameters of the setup:

• The length of the string can be changed by moving
the stands (6).

• The stretching force can be changed by changing
the position of the weight on the longer arm of the
lever. This arm is designed so putting the weight
in the first slot, the stretching force is equal to the
weight of the weight, putting in the second slot it
is twice as large, and so on. Each time changing
the stretching force, the longer arm should be fine
tuned with the screw (3) to be horizontal.

• The linear mass density of the string can be
changed by using another string with different di-
ameter. The linear mass density has to be calcu-
lated from the diameter, which has to be measured
by a screw-micrometer (the density of steel is 7800
kg/m3).

• The shape of the standing wave can be changed by
changing the excitation frequency on the function
generator. The function generator is controlled by
computer (PC).

The function generator has to be set to sine-wave
output and the exciting coil has to be positioned close
to one of the stands (about 5 cm distance), since it is
most efficient close to a node. The function generator
itself cannot drive the coil therefore an OHMEG power
amplifier is connected to the coil. With the rotary knob
set up the amplification in a way that the red LED
above the input just does not light up. The detector
coil should be placed to an antinode. If we look for
the fundamental frequency, then put it in the middle;
if for the overtone, put it to the appropriate location
according to n. The signal of the detector is large when
it is near to an antinode.

Equipments: String, fixed board, driver and detector
coils, computer, NI myDAQ data acquistion device,
function generator, amplifier, cables, weights.
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Fig. 2

FIG. 2. The measurement setup

FIG. 3. MyDAQ acquistion device with connections

HOMEWORK

Before coming to the exercise, calculate the
followings. The results must be shown to the
instructor before starting the measurement.
With the homework it is easier to find the appro-
priate frequencies since the function generator can
provide signals of wide range frequencies.

1. Determine the speed of wave propaga-
tion in a steel string of diameter 0.35 mm,
0.40 mm, and 0.50 mm, if the tension is 60 N
(density of steel is 7800 kg/m3);

2. Determine the fundamental frequencies
(n = 1) for the above mentioned three strings.
The length of a string is 60 cm.

III. MEASUREMENT TASKS

1. Frequency and wavelength of first, second, third and

fourth harmonics

Measure the diameter of the given string. Set the
length of the string to 60 cm, and stretch it with
60 N (by putting 2 kg to the third slot of the lever,
make sure that the lever arm is horizontal), and set
the fundamental frequency of the given string on
the function generator according to the previously
calculated value. The half of the calculated value

should be set up on the function generator since
the magnet attracts the string two times within
one sine period.

Setup of the spectrum analyzer (Dynamic Signal
Analyzer, see FIG. 4 right):
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FIG. 4. Dynamic Signal Analyzer

- Input Settings; Voltage Range: ±2 V;
- FFT settings; Frequency span: 800, Resolution:
800, Window: Hanning;
- Averaging; # of Averages: 2 or 3 (for low aver-
age number the spectrum follows the changes faster
but in this case due to the noise the fluctuation is
larger);
- Please do not change the other not mentioned set-
tings;
- Press RUN.

By changing the frequency, find the standing wave
for n = 1 (fundamental frequency). Place the de-
tector where one expects node. In the Dynamic Sig-
nal Anayzator the frequrency distribution of the os-
cillating string can be obtained. The magnitude of
the frequency components is measured in dB (deci-
bel):

XdB = 20 log10
Urms

1 V
,

which is a logarithmic value of the real rms value of
the measured voltage relative to 1V. It is useful if
the ratio can change over more order of magnitude
in a single measurement. For example 1 V is 0 dB,
0.5 V is –6 db, 0.1 V is –20 dB, 0.01 V is –40 dB.

When changing the frequency, also change the
tenths and hundredths digits. Set the frequency in
a way that the signal of the fundamental frequency
is the largest and that’s of the overtones are the
lowest.

Then find the second, third and fourtg standing
waves (n = 2, 3, 4). For each of them read the
frequency on the screen of the function generator

(remember that the frequency of the string is two

times larger than that read by the function gener-

ator). For fine tuning near to the appropriate fre-
quency one can use the screw (3 in FIG. 2), and
check the amplitude with oscilloscope at an antin-
ode position. Determine the wavelength of each
modes.

2. The νn − n function

Plot the frequency of the standing waves (νn) as a
function of n, fit a linear function to the data. From
the slope, determine the speed of wave propagation,
c, and compare it with value calculated from eq. (2).

3. First harmonic, different length

Find the n = 1 standing wave for 40, 50, 60, 70 cm
length using tension of 60 N, and read the reso-
nance frequency in each cases. For finding the fre-
quencies, use that we already know the frequency
for the string of length 60 cm. Plot the frequency
as a function of the reciprocal of the length, fit a
linear function, and determine the speed of wave
from the slope. Compare this value with previous
ones.

4. First harmonic, different tensions

Set the length back to 60 cm, and put the 2 kg
weight into the first slot of the lever, and set the
first standing wave corresponding to n = 1. Again,
use that we know the frequency for the 60 N ten-
sion. Measure the resonance frequency and with
the wavelength calculate the speed of wave in the
string by using the c = λν formula. Repeat
the measurement using four different tensions by
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putting the weight farther. Write the measured val-
ues into the table. Using the collected data verify
eq. (2). (According to the equation if µ is con-
stant, c−T 1/2 function is linear.) The correspond-
ing data fall along a straight line, the slope of the
line is (1/µ)1/2

5. First harmonic, different diameters

Set the standing wave corresponding to n = 1 with
60 cm length and 60 N tension for other strings

given by the instructor. Do not forget to measure
the diameter of each wire. Give the wavelength and
the frequency of the standing wave, and calculate
the speed of wave in the strings by using the c = λν
formula. Using the collected data verify eq. (2).
(According to the equation if T is constant, c −
µ−1/2 function is linear.) The corresponding data
fall along a straight line, the slope of the line is
T 1/2.


