Nanotechnology and Material Science Lecture XI. Department of Physics, BME 2024.

BMETE11MF58

Sándor Bordács

website: https://physics.bme.hu/BMETE11MF58_kov?language=en

Email: bordacs.sandor@ttk.bme.hu

Recommended literature

Tanner: Optical effects in solids (Library of the Physics Institute)

Dressel: Electrodynamics of solids

Atkins: Molecular quantum mechanics

Struve: Fundamentals of molecular spectroscopy

Kamarás: Bevezetés a modern optikába V. 11. fejezet

Sólyom: A modern szilárdtest-fizika alapjai I. 13. fejezet

More details in the spring semester

Optikai spektroszkópia az anyagtudományban (BMETE11MF39) (Optical Spectroscopy in Materials Science)

Vibrations of molecules and solids

3 atomic linear molecule, $m \frac{d^2 x_{O1}}{dt^2} = -D(x_{O1} - x_C)$ 1d displacement: (eg. CO2) $M\frac{d^{2}x_{C}}{dt^{2}} = -D(x_{C} - x_{O1}) - D(x_{C} - x_{O2})$ M. Q m, q $m\frac{d^2 x_{O2}}{dt^2} = -D(x_{O2} - x_C)$ $-\omega^{2} \begin{vmatrix} m & 0 & 0 \\ 0 & M & 0 \\ 0 & 0 & m \end{vmatrix} \begin{vmatrix} x_{O1} \\ x_{C} \\ x_{C} \\ x_{C} \end{vmatrix} = \begin{vmatrix} -D & D \\ 0 & -D \end{vmatrix} \begin{vmatrix} x_{O1} \\ x_{C} \\ 0 & D & -D \end{vmatrix} \begin{vmatrix} x_{O1} \\ x_{C} \\ x_{O2} \end{vmatrix}$ $\omega^2 = \frac{D}{m} + \frac{2D}{M} \begin{vmatrix} \frac{1}{2m} \\ -\frac{2m}{M} \end{vmatrix}$ $\omega = 0 \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}$ $\omega^2 = \frac{D}{m} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$

Polarization/polarizability:

If the molecule has inversion symmetry, i.e. $[\hat{H}, i] = 0$, then the eigenfunctions of \hat{H} are either even or odd \rightarrow Vibrations are either Raman or IR active, respectively.

NIST Chemistry WebBook

1500

1000

2000

Wavenumbers (cm-1)

2500

0.2

0.0

3000

3500

N×3 dimensional displacement field: { x_1 , y_1 , z_1 , ..., x_N , y_N , z_N }

Classical:

cal:
$$m_j \frac{d^2 u_j(t)}{dt^2} = -\frac{\partial E_{harm}}{\partial u_j} = -\sum_{k \neq j} D_{j,k} u_k(t)$$
 $u_j(t) = u_j e^{i\omega t}$
 $m_j \omega_j^2 u_j = \sum_{k \neq j} D_{j,k} u_k$

 ω_j eigenfrequencies and u_j eigenmodes \rightarrow diagonalise $D_{j,k}$

Quantum:
$$\widehat{H} = \sum_{j=1}^{3N} \frac{p_j^2}{2m_j} + \frac{1}{2} \sum_{j \neq k} u_j D_{j,k} u_k = \frac{1}{2} \sum_{j=1}^{3N} \left(\widetilde{p}_j^2 + \omega_j^2 \widetilde{u}_j^2 \right) = \left(\sum_{j=1}^{3N} \hbar \omega_j \left(\hat{a}_j^+ \hat{a}_j + \frac{1}{2} \right) \right)$$

 ω_j eigenfrequencies and u_j eigenmodes (polarization) \rightarrow diagonalise $D_{j,k}$

3N harmonic oscillators

N×3 dimensional displacement field: { x_1 , y_1 , z_1 , ..., x_N , y_N , z_N } 3N harmonic oscillators

- 3 translational modes: only the center of mass moves
- 3 rotational modes: rigid rotations around the center of mass, 2 in case of linear molecules, may be IR active, MHz - GHz
- 3N-3-3 vibrational modes, ω_i eigenfrequencies

$$\varepsilon(\omega) = \varepsilon_{\infty} + \sum_{j} \frac{e^{2}}{K_{j}} \frac{\omega_{j}^{2}}{\omega_{j}^{2} - \omega^{2} - 2i\gamma_{j}\omega}$$

- IR active modes: posses oscillating electric dipole moments (thus not all modes are IR active)
- Raman active modes: polarizability of the molecule changes
- Silent modes: neither IR nor Raman active modes

NAME	Pos	TIONS	OF IN	FRAREI	BAN	DS				F	UNCTION	AL GROUP	REPRESENT	ATION		
Aliphatic Methyl	C-H _ 2960										Methyl					
Methylene	_ 2930	C=C									CH3-	Methylene	Alkene	Alkyne		
Alkenes	_ 3050	1640									Vinyl	- CH ₂ -	C=C	C≡C		
Vinyl Vinylidene	_ 910 _ 890	1640 1640								R1	H	Vinylidene	Cis	Trans		
Cis Trans Alkynes	700 965 3200	1640 1670	C≡C 2200							Н	<u> </u>	R1 R2 C=C H	R1 H C=C < H	R1 H ^{C=C} R2		
Aromatics Mono	_ 750			Ring 700								Mono	Ortho	Meta	Para	
Ortho Meta Para	_ 750 _ 782 _ 817	_		700								()- R1	R1 R2	R1	₽	
Oxygen Groups Ether					C-O	0-Н			_		9		Aldehyde	Ketone	R2 Ester	
Carbony Groups					1100	3350	C=O						0 -C-H	0 C-C-C	0 C-0-C	
Aldehyde	_ 2700						1730							Ether	CarbAcid	Alcohol
Ester					. 1200	3100	1740							C-0-C	0 C-0H	C-0-H
Nitrogen Groups						0100		N-H						Amide	Amine	Nitrile
Amide Amine							_ 1640	3200 3300	C≡N					0 C-N	C-N	C=N

https://www.thermofisher.com

- IR and Raman spectra of known molecules are accessible in databases → composition, concentration of a molecule can be determined from spectroscopy
- Units of the molecules (O-H, C=O, ...) have characteristic frequencies (group frequencies), which do not change much → spectroscopy can be used to determine the structure of new molecules
- In case of smaller molecules it is possible to calculate the structure and the vibrational modes from first principels

- IR and Raman spectra of known molecules are accessible in databases → composition, concentration of a molecule can be determined from spectroscopy
- Units of the molecules (O-H, C=O, ...) have characteristic frequencies (group frequencies), which do not change much → spectroscopy can be used to determine the structure of new molecules
- In case of smaller molecules it is possible to calculate the structure and the vibrational modes from first principels
- Solvent: frequency shift, different damping

C₆₀ fullerén: [

vaporization

The Nobel Prize in Chemistry 1996 Robert F. Curl Jr., Sir Harold Kroto, Richard E. Smalley

The discovery of carbon atoms bound in the form of a ball is rewarded

Robert F. Curl, Richard E. Smalley: *Probing C*₆₀ Science **242**, 1017 (1988)

C₆₀ fullerén: [

The Nobel Prize in Chemistry 1996 Robert F. Curl Jr., Sir Harold Kroto, Richard E. Smalley

The discovery of carbon atoms bound in the form of a ball is rewarded

Robert F. Curl, Richard E. Smalley: *Probing* C_{60} Science **242**, 1017 (1988)

Fig. 1. Mass spectra of carbon cluster distributions in a supersonic beam produced by laser vaporization

Fig. 2. Truncated icosahedral structure proposed for C_{60} .

Fig. 3. A possible fullerene structure for the cluster C_{72} .

Vibrations of C₆₀ fulleren

- Vibrational modes: N×3-6=174 harmonic oscillatros
- Icosahedral symmetry \rightarrow 46 normal modes: 4 IR active, 10 Raman active, 32 silent modes

A_{1g} Raman breathing mode

Vibrations of C₆₀ fulleren

- Icosahedral symmetry \rightarrow 46 normal modes: 4 IR active, 10 Raman active, 32 silent modes
- First principles calculations: C₆₀ icosahedral ground state, vibrational frequencies with ~1-2% error

Measurement in 1.4 mm thick films: B. Chase, N. Herron, E. Holler: J. Phys. Chem. 96, 4262 (1992)

The q=0 case is equivalent to a diatomic molecule, atoms move respect to the center of mass

Wave equation for Fourier components: $0 = \mathbf{q} \times (\mathbf{q} \times \mathbf{E}_{\mathbf{q},\omega}) + \frac{\omega^2}{c^2} \varepsilon(\omega) \mathbf{E}_{\mathbf{q},\omega}$

Longitudinal solution:
$$0 = \mathbf{q} \times \mathbf{E}_{\mathbf{q},\omega} \Leftrightarrow \varepsilon(\omega) = 0 \Rightarrow \omega^2 = \omega_{TO}^2 + \frac{\Omega_{pl}^2}{\varepsilon_{\infty}} \equiv \omega_{LO}^2$$

 $\mathcal{E}(\omega) = \mathcal{E}_{\infty} + \frac{\Omega_{pl}^{2}}{\omega_{TO}^{2} - \omega^{2}} = \mathcal{E}_{\infty} \frac{\omega_{TO}^{2} + \frac{\Omega_{pl}^{2}}{\mathcal{E}_{\infty}} - \omega^{2}}{\omega_{TO}^{2} - \omega^{2}}, \quad 1 \to \mathcal{E}_{\infty} \text{ to take into account the high frequency electronic excitations, } \gamma = 0$

 $\omega_{TO} = \sqrt{2D \frac{m_u + m_v}{m_u m_u}}$

 E_{a}

Longitudinal

Wave equation for Fourier components: $0 = \mathbf{q} \times (\mathbf{q} \times \mathbf{E}_{\mathbf{q},\omega}) + \frac{\omega^2}{c^2} \varepsilon(\omega) \mathbf{E}_{\mathbf{q},\omega}$

Longitudinal solution:
$$0 = \mathbf{q} \times \mathbf{E}_{\mathbf{q},\omega} \Leftrightarrow \varepsilon(\omega) = 0 \Rightarrow \omega^2 = \omega_{TO}^2 + \frac{\Omega_{pl}^2}{\varepsilon_{\infty}} \equiv \omega_{LO}^2 \qquad \qquad \omega_{TO} = \sqrt{2D \frac{m_u + m_v}{m_u m_v}}$$

Dispersion relation:
$$q^2 = \frac{\omega^2}{c^2} \varepsilon(\omega) = \frac{\omega^2}{c^2} \varepsilon_{\infty} \frac{\omega_{LO}^2 - \omega^2}{\omega_{TO}^2 - \omega^2} \Rightarrow \omega(q) = \frac{1}{2} \left(\frac{c^2 q^2}{\varepsilon_{\infty}} + \omega_{LO}^2 \pm \sqrt{\left(\frac{c^2 q^2}{\varepsilon_{\infty}} + \omega_{LO}^2 \right)^2 - 4 \frac{c^2 q^2}{\varepsilon_{\infty}}} \omega_{TO}^2 \right)$$

Wave equation for Fourier components: $0 = \mathbf{q} \times (\mathbf{q} \times \mathbf{E}_{\mathbf{q},\omega}) + \frac{\omega^2}{c^2} \varepsilon(\omega) \mathbf{E}_{\mathbf{q},\omega}$

Longitudinal solution:
$$0 = \mathbf{q} \times \mathbf{E}_{\mathbf{q},\omega} \Leftrightarrow \varepsilon(\omega) = 0 \Rightarrow \omega^2 = \omega_{TO}^2 + \frac{\Omega_{pl}^2}{\varepsilon_{\infty}} \equiv \omega_{LO}^2 \qquad \qquad \omega_{TO} = \sqrt{2D \frac{m_u + m_v}{m_u m_v}}$$

Dispersion relation:
$$q^2 = \frac{\omega^2}{c^2} \varepsilon(\omega) = \frac{\omega^2}{c^2} \varepsilon_{\infty} \frac{\omega_{LO}^2 - \omega^2}{\omega_{TO}^2 - \omega^2} \Rightarrow \omega(q) = \frac{1}{2} \left(\frac{c^2 q^2}{\varepsilon_{\infty}} + \omega_{LO}^2 \pm \sqrt{\left(\frac{c^2 q^2}{\varepsilon_{\infty}} + \omega_{LO}^2 \right)^2 - 4 \frac{c^2 q^2}{\varepsilon_{\infty}}} \omega_{TO}^2 \right)$$

Choudhury et al., Phys. Rev. B 77, 134111 (2008)

Symmetry lowering as seen by the vibrational modes

The Nobel Prize in Physics 1994 Bertram N. Brockhouse, Clifford G. Shull The Nobel Prize in Physics 1994 was awarded "for pioneering" contributions to the development of neutron scattering techniques for studies of condensed matter"

- FCC lattice with 2 atoms in the unit cell, NaCl structure MnO
 - Antiferromagnetic order below $T_N = 118K$ (Nobel prize, magnetic neutron scattering) ٠
 - The crystal symmetry changes from cubic to rhombic due to the magnetic order •

Symmetry lowering as seen by the vibrational modes

The crystal symmetry of MnO changes from cubic to rhombic lower than rhombic due to the magnetic order!

As the temperature is lowered phonon modes become: • harder as the lattice shrinks

• sharper as the phonon-phonon scattering freeze out

- 2 atoms in the unit cell: 3 acoustic + 3 optical branches
- T>T_N 3× degeneracy, cubic phase
- T<T_N no degeneracy, orthorhombic phase

- Spinel structure: AB_2X_4
- FCC unit cell contains 2 formula units
- Symmetry analysis of the IR active modes

Symmetry lowering as seen by the vibrational modes

Bordács et al., Phys. Rev. Lett. 103, 077205 (2009)

Grating spectroscopy

Grating spectrometer

(Radiance)

Radiant flux:
$$\Phi = \iint_{A} S dA$$

Total emitted power) A
Brightness: $B = \frac{\delta^2 \Phi}{\delta \Omega \delta A \cos \theta}$

Brightness is conserved in an ideal loss-less optical system

Etendue (throughput): E=A*Ω

f-number = F/Dnotation: f/#, e.g. f/2 = 100 mm / 50 mm = 2Numerical aperture: NA = $nsin\theta = nsin(arctg(D/2F))$ small f-number or large NA is better

K-P. Mollmann and M. Vollmer Eur. J. Phys. 34 S123 (2013).

Fourier transform infrared (FT-IR) spectrometer

Discrete Fourier Transform (DFT) finite sampling interval, Δx finite high frequency cut-off $\omega_M = \frac{\pi c}{2\Delta x}$

Fourier transform infrared (FT-IR) spectrometer

Discrete Fourier Transform (DFT) finite sampling interval, Δx finite high frequency cut-off $\omega_M = \frac{\pi c}{2\Delta x}$

multiplex advantage

throughput advantage

$$\xi = \left[\frac{2L}{\cos(\alpha)} - 2Ltg(\alpha)\sin(\alpha)\right] - 2L$$

path difference = [deflected beam] - centered beam when $\xi \sim \lambda$ cancellation on the detector, no point to further move the mirror

$$\frac{\lambda \approx L\alpha^2}{\frac{\Delta \lambda}{\lambda} \approx \alpha^2} \qquad E_{FT} \propto \left(\frac{D}{2}\right)^2 \pi \left(\frac{D}{F}\right)^2 \propto \alpha^2 D^2 = D^2 \frac{\Delta \lambda}{\lambda}$$

Raman spectroscopy

