Optical spectroscopy in materials science 8. Symmetry and selection rules in vibrational spectroscopy

Kamarás Katalin MTA Wigner FK kamaras.katalin@wigner.mta.hu

Budapesti Műszaki és Gazdaságtudományi Egyetem

Optical spectroscopy in materials science 8.

1

Vibrational degrees of freedom

For a molecule with N atoms: 3N – 6 (3N- 3 translations– 3 rotations) For linear molecules: 3N – 5 (rotation around axis does not cause atomic displacement)

Selection rules:

Vibrational spectra of CO₂

https://scilearn.sydney.edu.au/fychemistry/chem2401/Lecture%209.pdf

Basic concepts - symmetry

Symmetry elements:

- point
- line (rotation axis)
- plane

Iulian Ionita: Condensed Matter Optical Spectroscopy. An Illustrated Introduction.CRC Press, 2015

Symmetry operations:

- identity
- rotations
- reflections

Symmetry point group:

all symmetry operations which leave at least one point in the object fixed

Budapesti Műszaki és Gazdaságtudományi Egyetem

Basic concepts - symmetry

Symmetry elements and operations: (Schoenflies' notation)

- C_n^m axis of rotation: rotation by $2\pi/n$ m times principal axis: largest n
- σ: mirror plane
 - σ_v : vertical
 - σ_h : horizontal
 - σ_d : diagonal (dihedral) vertical, bisects two C₂ axes perpendicular to principal axis)
- S_n^m : improper rotation (C_n^m , then σ_h) rotation-reflection
- •*i*: inversion center

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Book%3A_Symmetry_(Vallance)

Budapesti Műszaki és Gazdaságtudományi Egyetem

Basic concepts - groups

Symmetry operations form a group Group multiplication: subsequent application of operations

Group:

$$AB \in G$$

$$A(BC) = (AB)C$$

$$E \in G$$

$$A^{-1}A = E, A \in G, A^{-1} \in G$$

closed associative contains identity element contains inverse element

Reflection planes

XeF₄

dihedral plane bisects two C₂ axes perpendicular to principal axis in most cases, the vertical plane contains more atoms

Proper rotations

BF₃: principal axis C₃

 C_2 axes are generated from each other by C_3

Proper rotations for higher axes

n even

two types of C_2 axes

one type of C_2 axis

Improper rotations

Top view Side view

Crystallographic point groups

	notation	n	number	
Rotation	C _n	1,2,3,4,6	5	
$C_n + \sigma_h$	C _{nh}	1,2,3,4,6	5	
$C_n + \sigma_v$	C _{nv}	2,3,4,6	4	
$C_n + S_n$	S _n	2,4,6	3	
$C_n + C_2$	D _n	2,3,4,6	4	
$C_{nh}+C_2$	D _{nh}	2,3,4,6	4	
$S_n + C_2$	D _{nd}	2,3	2	
Cubic	no principal axis	4C ₃	5	

For molecules: any n (5,7,10...)

 $C_{_{\infty\nu}}$ (HCI), $D_{_{\infty h}}$ (Cl₂), l_h (C₆₀)

Budapesti Műszaki és Gazdaságtudományi Egyetem

Budapesti Műszaki és Gazdaságtudományi Egyetem

Optical spectroscopy in materials science 8.

95.84 pm

104.45°

Budapesti Műszaki és Gazdaságtudományi Egyetem

 σ_h ?

 \mathbf{D}_{nh}

Yes

Budapesti Műszaki és Gazdaságtudományi Egyetem

D Groups

 σ_h ?

 \mathbf{D}_{nh}

Yes

Multiplication tables

C _{2v}				
C_{2v}	E	C_2	$\sigma_{_{v}}$	σ_v
E	E	C_2	σ_v	σ_v
C_2	C_2	E	σ_v	σ_{v}
$\sigma_{_{\!v}}$	σ_{v}	σ_v	E	C_2
σ_v	σ_v	σ_v	C_2	Ε

C_{3v}

Budapesti Műszaki és Gazdaságtudományi Egyetem

Representations

- Symmetry operations can be represented by matrices
- The trace of the matrices (*the character*) is invariant with respect to similarity transformations
- Reducible representation: matrices attain block format on a suitably chosen basis
- Irreducible representation: cannot be simplified (reduced) further
- Character table: characters of irreducible representations (irreps) by symmetry operation for individual point groups

Representations - example: NH₃ 101.7 pm H $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} R_{xx} & R_{xy} & R_{xz} \\ R_{yx} & R_{yy} & R_{yz} \\ R_{xx} & R_{yy} & R_{yz} \\ R_{yz} & R_{yz} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

Representation on Cartesian basis:

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} C_3 = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} C_3^2 = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\sigma_v'' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \sigma_v'' = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \sigma_v''' = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \sigma_v''' = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Budapesti Műszaki és Gazdaságtudományi Egyetem

Representation on r_1 , r_2 , r_3 basis:

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} C_3 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} C_3^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
$$\sigma_v'' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \sigma_v''' = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \sigma_v''' = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Character table:

C _{3v}	S _{3v} E		3σ _v
Γ ₁	1	1	1
Γ ₂	1	1	-1
Γ ₃	2	-1	0

Great Orthogonality Theorem (GOT) (Fundamentális ortogonalitási tétel (FOT))

$$\sum_{R} \Gamma_{i}(R)_{mn}^{*} \Gamma_{j}(R)_{op} = \frac{h}{l_{i}} \delta_{ij} \delta_{mo} \delta_{np}$$

where:

 Γ_i , Γ_i are two non-equivalent irreducible representations

- h is the order of the group (number of elements)
- I_i is the dimension of the matrices

These relations for the characters follow from the GOT:

$$(\chi_R = \sum_k \Gamma_i(R)_{kk}):$$

$$\sum_{R} \chi_{i}(R)^{*} \chi_{j}(R) = h \delta_{ij}$$
$$\sum_{i} l_{i}^{2} = h$$

Reduction

Reduction of reducible representations:

$$\chi(R) = \sum_{i} n_i \chi_i(R)$$

 $\chi(R)$ being the character of the reducible representation, n_i the coefficient of the *i*th irrep

Vibrational modes

Vibrational Hamiltonian:

$$H_{vib} = \sum_{i} H_{i} = \frac{1}{2} \left(-\hbar^{2} \frac{\partial}{\partial q_{i}^{2}}\right) + \omega_{i} q_{i}^{2}$$

 q_i normal coordinates $\longrightarrow \omega_i$ eigenfrequencies

 $V = \frac{1}{2} \sum_{i} \omega_i^2 q_i^2$

Neumann principle: V and ω_i show the symmetry of the point group

• non-degenerate case:
$$V \sim q_i^2$$
, $Rq_i = \pm q_i$

•degenerate case: $V \sim (q_j^2 + q_k^2 + q_l^2) \quad R |q_j, q_k, q_l| \Rightarrow |\pm q_j, \pm q_k, \pm q_l|$

The normal coordinates form bases of the irreps of the point group; the dimension of the representation equals the degeneracy

Selection rules

IR:
$$\frac{\partial \mu}{\partial q} \neq 0$$

 $\mu_x \sim x$, $\mu_v \sim y$, $\mu_z \sim z$ are always basis functions for an irrep of the point group

Since basis functions of inequivalent representations are orthogonal, this selection rule means: those vibrations are IR active, whose normal coordinate belongs to the same irrep as one of the x,y,z coordinates

Raman:
$$\frac{\partial \alpha}{\partial q} \neq 0$$

 $\alpha_{xx} \sim x^2$, $\alpha_{xy} \sim xy$,...and the products of the coordinates are also always basis functions for an irrep of the point group, this selection rule means: those vibrations are Raman active whose normal coordinate belongs to the same irrep as one of the binary products of the x,y,z coordinates

Notation of irreps

- A, B 1-dimensional
- E 2-dimensional
- T(F) 3-dimensional
- G 4-dimensional
- H 5-dimensional

In point groups containing inversion: Subscript g (gerade = even) or u (ungerade = odd) refers to the character of *i* in the given irrep: $\chi(i) > 0$ g, $\chi(i) < 0$ u

number in subscript is just a "serial number"

"Counting" of vibrational modes

C _{2v}	E	C ₂	σ _v (xz)	σ _v (yz)	
A ₁	1	1	1	1	z, x ² , y ² , z ²
A ₂	1	1	-1	-1	R _x , xy
B ₁	1	-1	1	-1	x, R _x , xz
B ₂	1	-1	-1	1	y, R _z , yz

Representation on a 3N-dimensional basis

Character contributions of atoms situated on symmetry elements

R	χ(R)	R	χ(R)
C _n ^k	$1+2\cos(2\pi k/n)$	\mathbf{S}_{n}^{k}	$-1+2\cos(2\pi k/n)$
$E=C_1^k$	3	$\sigma = S_1^1$	1
C_{2}^{1}	-1	$i=S_{2}^{1}$	-3
C_{3}^{1}, C_{3}^{2}	0	S_{3}^{1}, S_{3}^{5}	-2
C_4^{1}, C_4^{3}	1	S_4^{1}, S_4^{3}	-1
C_6^{1}, C_6^{5}	2	S_6^{1}, S_6^{5}	0

Reduction

$$n_j = \frac{1}{h} \sum_R \chi_j(R)^* \chi(R)$$

For water, $\chi_r(E) = 9$, $\chi_r(C_2) = -1$, $\chi_r(\sigma_{xz}) = 1$, $\chi_r(\sigma_{yz}) = 3$. Applying the reduction formula and using the character table:

 $n(A_1) = 3$, $n(A_2) = 1$, $n(B_1) = 2$, $n(B_2) = 3$

C _{2v}	E	C ₂	σ _v (xz)	σ _v (yz)	
A ₁	1	1	1	1	z, x ² , y ² , z ²
A ₂	1	1	-1	-1	R _z , xy
B ₁	1	-1	1	-1	x, R _y , xz
B ₂	1	-1	-1	1	y, R _x , yz

		Е	C ₂	$\sigma_v(xz)$	σ _v (yz)
-	n	3	1	1	3
-	Γ	9	-1	1	3

Vibrational modes: $\Gamma = 2A_1 \oplus B_2$

Budapesti Műszaki és Gazdaságtudományi Egyetem

Normal vibrations of the water molecule

C₆₀, the truncated icosahedron

http://www.seed.slb.com/en/scictr/watch/fullerenes2/saved.htm

C₆₀

Vibrational modes of C₆₀

Character table:

$12C_5$ $12C_{5}^{2}$ $12S_{10}^{3}$ Е $20C_3$ $15C_2$ $20S_6$ $15\sigma_d$ I_h i $12S_{10}$ A_g 1 1 1 1 1 1 A_u -1 1 1 1 -1 -1 -1 -1 $\tfrac{(1-\sqrt{5})}{2}$ $(1 - \sqrt{5})$ $\frac{(1+\sqrt{5})}{2}$ $(1+\sqrt{5})$ 3 3 F_{1g} 0 -1 0 -1 2 $(1+\sqrt{5})$ $(1 - \sqrt{5})$ $(1 - \sqrt{5})$ $(1+\sqrt{5})$ 3 F_{1u} -3 0 -1 0 1 $(1+\sqrt{5})$ $(1 - \sqrt{5})$ $(1-\sqrt{5})$ $(1+\sqrt{5})$ F_{2g} $\mathbf{3}$ 3 0 -1 0 -1 2 2 2 2 $(1 - \sqrt{5})$ $(1 + \sqrt{5})$ $(1+\sqrt{5})$ $(1-\sqrt{5})$ 3 -3 F_{2u} 0 -1 0 1 2 $\mathbf{2}$ $\mathbf{2}$ G_{1g} 0 4 4 -1 1 -1 -1 1 0 G_{1u} 4-1 -1 1 0 -1 0 -4 1 1 H_g 51 50 0 0 0 -1 -1 1 5 H_u 0 0 -1 1 -5 0 0 1 -1

Optical spectroscopy in materials science 8.

Raman

rot

 IR

Raman

How many atoms are left in place?

Characters and reduction of 3N dimensional representation

Counting of C₆₀ vibrational modes:

Characters of representation defined by Cartesian unit vectors on atoms:

l _h	E	12C ₅	12C ₅ ²	20C ₃	15C ₂	i	12S ₁₀	12S ₁₀ ³	20S ₆	15σ _d
χ _Γ (R)	180	0	0	0	0	0	0	0	0	4

From here, using the reduction formula, we get for the A_q mode:

 $n(A_g) = 1/120(1*180) - 12(1*0) + 12(1*0) + 20(1*0) + 15(1*0) + 1*0 + 12(1*0) + 20(1*0) + 15(1*4) = 2$

The final result of the reduction is:

$$\Gamma = 2A_g \oplus 4T_{1g} \oplus 4T_{2g} \oplus 6G_g \oplus 8H_g \oplus 1A_u \oplus 5T_{1u} \oplus 5T_{2u} \oplus 6G_u \oplus 7H_u$$

Estimation of the number of vibrations

IR
$$\frac{\partial \mu}{\partial Q} \neq 0$$
 Raman $\frac{\partial \alpha}{\partial Q} \neq 0$

degeneration

Principle of mutual exclusion:

if the molecule possesses an inversion center, IR-active modes are not Raman active and vice versa

odd (ungerade) and even (gerade) modes are orthogonal

Symmetry analysis gives the maximum number of spectral lines (it can decrease by incidental degeneration, intensity below detection threshold)

Infrared spectrum of C₆₀

Budapesti Műszaki és Gazdaságtudományi Egyetem

Take-home message

- Point group: set of symmetry operations leaving at least one point in the object fixed
- Symmetry operations form a group in the mathematical sense
- Matrix representations reducible, irreducible
- Starting from the molecular structure, using the character tables and the reduction formula, the number of vibrational modes can be predicted
- IR and Raman activity: symmetry analysis – selection rules – principle of mutual exclusion

Összefoglalás

- Pontcsoport: azon szimmetriaműveletek halmaza, amik egy objektumban legalább egy pontot mozdulatlanul hagynak
- A szimmetriaműveletek matematikai értelemben csoportot alkotnak
- A szimmetriaműveletek mátrixokkal ábrázolhatók reducibilis, irreducibilis
- A szerkezetből kiindulva, a karaktertáblák és a redukciós formula alkalmazásával a rezgési módusok száma meghatározható
- IR és Raman-aktív módusok: szimmetria-analízis – kiválasztási szabályok – kölcsönös kizárás elve