Bilayer graphene

$$
\begin{array}{ll}
\\
4 \text { atoms } \\
\text { per unit cell }
\end{array} \quad \mathcal{H}=\left(\begin{array}{llll}
\text { A } & \widetilde{\mathrm{B}} & \widetilde{\mathrm{~A}} & \mathrm{~B} \\
& & & \\
& & &
\end{array}\right.
$$

Bilayer graphene

(B to A) and $(\widetilde{B}$ to $\widetilde{A}) \quad A \quad \widetilde{B} \quad \widetilde{A} \quad B$ hopping given by $\quad \mathrm{H}=$ $\pi^{+}=p_{x}-\mathrm{ip}_{\mathrm{y}}$

$$
\mathrm{H}=\left(\begin{array}{ccc}
& & v \pi^{+} \\
& & v \pi \\
& & v \pi^{+} \\
& & \\
& & \\
& \widetilde{\mathrm{B}} \\
\widetilde{\mathrm{~A}} \\
\mathrm{~B}
\end{array}\right.
$$

Bilayer graphene

A $\widetilde{\mathrm{B}} \widetilde{\mathrm{A}} \quad \mathrm{B}$
Bilayer Hamiltonian $\mathrm{H}=$
$\left(\begin{array}{cccc}0 & 0 & 0 & v \pi^{+} \\ 0 & 0 & v \pi & 0 \\ 0 & v \pi^{+} & 0 & \gamma_{1} \\ v \pi & 0 & \gamma_{1} & 0\end{array}\right) \stackrel{A}{\mathrm{~A}}$

Backscattering?

Single layer:

$$
H=v\left(\begin{array}{cc}
0 & \pi^{+} \\
\pi & 0
\end{array}\right)=v p\left(\begin{array}{cc}
0 & e^{-i \varphi} \\
e^{i \varphi} & 0
\end{array}\right) ; \quad E=v p \quad \Leftrightarrow \quad \psi(\varphi)=\frac{1}{\sqrt{2}}\binom{e^{-i \varphi / 2}}{e^{i \varphi / 2}}
$$

Bilayer:

$$
H=-\frac{1}{2 m}\left(\begin{array}{cc}
0 & \left(\pi^{+}\right)^{2} \\
\pi^{2} & 0
\end{array}\right)=-\frac{p^{2}}{2 m}\left(\begin{array}{cc}
0 & e^{-2 i \varphi} \\
e^{2 i \varphi} & 0
\end{array}\right) ; \quad E=\frac{p^{2}}{2 m} \Leftrightarrow \psi(\varphi)=\frac{1}{\sqrt{2}}\binom{e^{-i \varphi}}{e^{i \varphi}}
$$

Single layer:

$$
|\langle\psi(\varphi) \mid \psi(\varphi=0)\rangle|^{2}=\cos ^{2}(\varphi / 2)
$$

Bilayer:

$$
|\langle\psi(\varphi) \mid \psi(\varphi=0)\rangle|^{2}=\cos ^{2}(\varphi)
$$

Bilayer graphene in electric fields

Effective 2×2 bilayer Hamiltonian acts on A1 and B2 subblattices, where 1 and 2 are on different layers.
-> Applying an electric field perpendicular to carbon plane generates a finite Δ term (breaks inversion). \rightarrow Band gap opens in K and K^{\prime} with size of 2Δ

$$
H=\left(\begin{array}{cc}
\Delta & -\frac{\hbar^{2}}{2 m}\left(k_{x}-i k_{y}\right)^{2} \\
-\frac{\hbar^{2}}{2 m}\left(k_{x}+i k_{y}\right)^{2} & -\Delta
\end{array}\right)
$$

$$
\psi=\binom{\phi_{A 1}}{\phi_{B 2}}
$$

b $\quad T=50 \mathrm{mK}$

J. B. Oostinga, Nature Mat., 7, 151 (2008)

hBN encapsulated samples with high quality and graphite gates have large, "clean" gaps with resistance up to 10^{10} Ohm

Thermal activation measurements on different devices Graphite gates give best devices

E. Icking et al., Adv. Electron. Mater. 8, 2200510 (2022)

Disorder model

Imperfect substrates induce potential fluctuation which lead to local modulation of the gap and disorder-based hopping

Bias spectroscopy to address the gap Diamond-like structures (like for QD)
Grows with displacement field

QPCs in bilayer graphene

- High quality BLG due to hBN stack
- Electric field is defined by BG, TG and SG.
- SG and BG generate perpendicular E field and open gap and define confinement
- TG is used to set Fermi level
- Conductance quantization $4 e 2 / h$

2 spin x 2 valley degree of freedom

- In B field 4 fold degeneracy changes.

R. Kraft Phys. Rev. Lett. 121, 257703 (2018)

QPCs in bilayer graphene

Simple theory (e.g. GaAs):
Transition from QPC to QHE

$$
\begin{aligned}
& V(y)=\frac{1}{2} m \omega_{0} y^{2} \\
& \omega(B)=\sqrt{\left(\omega_{0}^{2}+\omega_{c}^{2}\right)} \\
& E=\hbar \omega(B)\left(n+\frac{1}{2}\right)
\end{aligned}
$$

- Graphene: more complicated: splitting and crossing and merging again and high magnetic field.
- Can be nicely reproduced theoretically

Quantum dots in BLG

a)

c)

Dots can be formed by adding finger gates on split gates
Finger gate pushes down conduction band and forms electron dot with p-type leads

Opposite configuration can be formed as well - hole dots, with electron leads
M. Eich et al., PRX, 031023 (2018)

By proper setting of the gates - electron- hole crossover can be achieved

- Every fourth spacing is larger (addition energy)
- Investigate in perpendicular field
- See lines going towards each other and almost showing avoided crossing - their distance is the charging energy
- Using these charging energies level spacing can be obtained
- For full shell (valley and spin - large level spacing is visible)

- If inversion symmetry is broken finite Berry curvature arises close to the gap edge. Opposite in the two valleys

$$
\Omega=i \hbar^{2}\left\langle\nabla_{\mathrm{k}} \Psi(\mathbf{k})\right| \times\left|\nabla_{\mathrm{k}} \Psi(\mathbf{k})\right\rangle \mathbf{e}_{z} .
$$

- This leads to a finite magnetization, which can couple to magnetic fields

$$
\begin{aligned}
\mathbf{M}=-i e \hbar\left\langle\nabla_{\mathrm{k}} \Psi(\mathbf{k})\right| & \times(\varepsilon(\mathbf{k})-H(\mathbf{k}))\left|\nabla_{\mathrm{k}} \Psi(\mathbf{k})\right\rangle \mathbf{e}_{\mathbf{z}} \\
& \\
\Delta E_{\mathrm{v}} & = \pm \frac{1}{2} g_{\mathrm{v}} \mu_{\mathrm{B}} B_{\mathrm{z}} \quad \text { Valley splitting }
\end{aligned}
$$

Expected level evolution including spin Zeemann, valley coupling and spin orbit coupling

