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Solution:

Making a loop around 

k=0 induces a phase shift 

of π.

Similar to the 360° rotation 

of an 1/2 e spin

(SU(2) symmetry).

Massless Dirac fermions with 

Berry’s phase π

Berry’s phase of π



Shytov et al. PRL 101, 156804 (2008)

Interferences on P-N-P junction
When incidence angle, α is varied from positive 
to negative, phase of the reflection amplitude (R) 
jumps π. Its sign changes. (At α=0, R=0).

If α<0 → R>0, several scatterings in P-N- P → 
interference pattern
Accumulated phase in one circle:
 Δθ= 2θWBK+Δθ1+Δθ2 

where θWBK phase from travelling in N 
Δθ1,Δθ2  Klein back reflection phase of the 
interfaces 

At B=0 (see Fig. a) the incidence angles Δθ1(2) at P-N and N-P have opposite signs → jumps 
in  Δθ1, Δθ2 cancels

At B>0 (see Fig. b), trajectories are curved, → incidence angles at P-N and N-P can be equal
In this case one can show that Δθ1+Δθ2 = π  (It is the Berry phase previously derived!) 
Thus for B=0  and trajectories with small py  π shift is expected (i.e. sign change) in 
transmission amplitude 
(Fig.c) one can show, it is robust against barrier roughness
 

Klein backscattering & Fabry-Perot Interferences



Shytov et al. PRL 101, 156804 (2008)

Remark (Barry-phase):

Trajectory in Fig.a  corresponds to 1
Trajectory in Fig.b  corresponds to 3
The main difference that during one 
circle between P-N and N-P:
the k vector of 3 goes around k=0
while for 1 NOT.
This generates the Berry phase:
Due to the chiral symmetry, topological singularity
at degeneracy point of the band structure k=0.

Klein backscattering & Fabry-Perot Interferences



Young et al. Nature Physics 5, 222 (2009)

N-P-N device
Separate gating by backgate  and topgate 
Topgate width=20nm!→ ballistic

G vs. VTG vs. VBG

• Conductance is lower when N-
P-N setting instead of N-N-N
•Oscillations at N-P-N 
configuration:

- VTG varies pot. barrier → 
δθWBK → oscillations 
-Oscillatory G is induced by 
trajectories with incident 
angle where neither T, nor R 
is large (i.e. α not too small)

Klein backscattering & Fabry-Perot Interferences



~VTG

B=0

Young et al. Nature Physics 5, 222 (2009)

G oscillations vs. B (Dots experiment, line theory)
At different B fields (B=0, 200, 400, 600, 800mT from 
bottom to top) the oscillations of G. 
In this B range ≈ π shift is induced in the interference 
pattern.

N-P-N device
Separate gating by backgate  and topgate 
Topgate width=20nm!→ ballistic

Klein backscattering & Fabry-Perot Interferences



Graphene

Each filled Landau level 

with additional degeneracy 

g contributes conductance 

quantum ge2/h towards the 

Hall conductivity

Quantum Hall effect in graphene

Classical 2DEG



Novoselov et al, Nature 438, 197 (2005)

Graphene in Hall geometry
Sample width of 200nm

Longitudinal and Hall measurements vs B field
Conventional way of QHE measurement

QHE vs. density (gate voltage)

a

b

c

- Sample: Hall geometry is etched from 
graphene  flakes by oxygen plasma (a)

-In magnetic field Shubnikov-de Haas oscillations are 
present. (b) At large B field, ρxx gets zero as for QHE.
- Great advantage of graphene,  that the charge density  
(n) can be varied by gate voltage. QHE effect can be 
studied as a function of  n. 
-Figure c: QHE measurement at 14T, 4K. 

Half-Integer Quantum Hall effect
Properties:
- Height of the Hall plateaus is 4e2/h
- First e (h) plateau is at 2e2/h
- ρxx is zero at the place of the plateaus.

 σxy =  4e2/h(n+1/2)

ρxx  has maximum at n=0 → There is Landau level at zero 
energy.  Electrons or holes contribute? 

Half Integer Quantum Hall effect in graphene



N.Peres et al., PRB 73, 125411 (2006)

Solution of the graphene Hamiltonian in B field

Let us start with the effective Dirac Hamiltonian at the K point

𝐻 = 𝑣  𝜋+

𝜋
 ,          𝜋 = 𝑝𝑥 + 𝑖𝑝𝑦 ,     𝜋+ = 𝑝𝑥 − 𝑖𝑝𝑦 . 

Hint: Besides a constant 𝜋 and 𝜋+are the same operators as the raising and lowering 

operators of the harmonic oscillator Hamiltonian of the normal 2DEG in B field, i.e. 

( )
2

1ˆˆˆ += +aaH c .  

In case of magnetic field:  𝑝 = ℏ

𝑖
∇   − e

c
A   ,     ∇   × 𝐴 = 𝐵𝑒𝑧      

Let us use a gauge of 𝐴 =  −𝐵𝑦, 0,0  :    𝜋 = ℏ

𝑖
𝜕𝑥 + 𝑒

𝑐
𝐵𝑦 + ℏ𝜕𝑦 , 

                           𝜋+ = ℏ

𝑖
𝜕𝑥 + 𝑒

𝑐
𝐵𝑦 − ℏ𝜕𝑦 . 

Take the wave function ansatz,  𝛹 𝑟  =  𝑐1𝜙𝑛

𝑐2𝜙𝑛+1
 
𝑒 𝑖𝑘𝑥𝑥

 𝐿
 :  𝜋 = ℏ𝑘𝑥 + 𝑒

𝑐
𝐵𝑦 + ℏ𝜕𝑦 , 

                 𝜋+ = ℏ𝑘𝑥 + 𝑒

𝑐
𝐵𝑦 − ℏ𝜕𝑦 . 

Replacing 𝑦 by 𝑦′ , where   ℏ𝑘𝑥 + 𝑒

𝑐
𝐵𝑦 = 𝑒

𝑐
𝐵𝑦′  : 𝜋 = 𝑒

𝑐
𝐵𝑦′ + ℏ𝜕𝑦′ , 

            𝜋+ = 𝑒

𝑐
𝐵𝑦′ − ℏ𝜕𝑦′ . 

Half Integer Quantum Hall effect in graphene



N.Peres et al., PRB 73, 125411 (2006)

Solution of the graphene Hamiltonian in B field

Let us introduce 𝑎+,𝑎  which fulfills the algebra of the raising and lowering operators of the harmonic 

oscillator: 𝑎 = 𝜋+ 𝑐

𝑒𝐵
 1

 2𝑟𝑐
, 𝑎+ = 𝜋 𝑐

𝑒𝐵
 1

 2𝑟𝑐
, where 𝑟𝑐  is the cyclotron radius 𝑟𝑐

2 =
ℏ𝑐

𝑒𝐵
. 

It gives       

𝑎 =
1

 2𝑟𝑐
 𝑦′ + 𝑟𝑐

2𝜕𝑦′ , 

𝑎+ =
1

 2𝑟𝑐
 𝑦′ − 𝑟𝑐

2𝜕𝑦′ . 

These two operators fulfill:  𝑎,𝑎+ = 1. 

𝜙𝑛  is the eigenfunction of the 𝑎 related harmonic oscillator, i.e.  

𝑎|𝜙𝑛 =  𝑛|𝜙𝑛−1 ,   𝑎
+|𝜙𝑛 =  𝑛 + 1|𝜙𝑛+1 . 

Returning to the Dirac Hamiltonian: 

𝐻 = 𝑣  𝜋+

𝜋
 = −𝑣  

𝑐

𝑒𝐵
 

1

 2𝑟𝑐
 
−1

 𝑎
𝑎+  = −𝑣 2ℏ

𝑟𝑐
 𝑎
𝑎+   

Half Integer Quantum Hall effect in graphene



N.Peres et al., PRB 73, 125411 (2006)

Solution of the Hamiltonian of Dirac electrons in B field

Let us start with the wavefunction 𝛹𝑛 𝑟  =  𝜙𝑛
𝛼𝜙𝑛+1

 
𝑒 𝑖𝑘𝑥𝑥

 𝐿
  where 𝛼 = ±1. 

𝐻𝛹𝑛 →   𝑎
𝑎+   𝜙𝑛

𝛼𝜙𝑛+1
 =   𝑛+1𝛼𝜙𝑛

 𝑛+1 𝜙𝑛+1
 =  𝑛 + 1𝛼  𝜙𝑛

 𝛼𝜙𝑛+1
  

𝐻𝛹𝑛 = −𝑣 2ℏ

𝑟𝑐
 𝑛 + 1𝛼𝛹𝑛  

Landau levels in graphene: 𝑬𝒏 = ±𝒗 𝟐ℏ

𝒓𝒄
 𝒏 + 𝟏,     𝒏 = 𝟎,𝟏,𝟐,… 

There is an extra solution as well: 𝛹0 =  
0
𝜙0

 
𝑒 𝑖𝑘𝑥𝑥

 𝐿
 .                 𝐻𝛹0 =  

0
0
 = 𝐸𝛹0 → 𝑬𝟎 = 𝟎. 

Degeneracy of the levels:  

Similar to normal Landau Levels. 𝐿 > 𝑦 > 0 → 𝐿 > ℏ𝑐

𝑒𝐵
𝑘𝑥 > 0 and 𝑘𝑥 = 2𝜋

𝐿
𝑛  where 𝑛 is integer. 

→The degeneracy: 𝑁 = 𝐿2𝐵/𝑐

ℎ 𝑒 
  i.e. number of flux quantum 

 penetrating the sample. 

Solving the problem for the K’ effective Hamiltonian 

gives the same spectrum as the one for K. Therefore 

 each 𝐸𝑛  energy level has a degeneracy of 𝑁 ∗ 2 ∗ 2.  

2 from the two valleys, 2 from the real spin of the 

 electrons. 

Density of states
D

E

B=0

B>0

Half Integer Quantum Hall effect in graphene
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Single Landau level

At the upper edge: 0
1

0

enclosing
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=

y

U

eB
x -> motion in 

positive x
direction

Similarly: at the lower edge the electrons move along the 
negative x direction

The contribution of a d interval of an edge state to the current:

x

y

B

μ1

3 4

5

VXX

VH

μ2

y

E(y)
F

At the Fermi energy electron states are only available at the 
sample edges -> the current flows along the edges

Inside the sample no states are available at the Fermi 
energy, so the upper „edge states" cannot be scattered to 
the lower edge states and vice versa.

The electrons moving at the upper edge all come from the left electrode with m1 

chemical potential, whereas the electrons at the lower edge come from the right 
electrode with m2 chemical potential!
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At m1-m2=eV the upper edge state is 
occupied to an energy higher by eV than 
the lower edge state, thus the net current: h
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-Ly/2 Ly/2
y

EF

c

Bg Bm

E(y,n)
So far the spin was not considered. In a B field the Landau 

levels are split for ,  electrons (Zeeman splitting)

E = ℏ𝜔𝐶 n +
1

2
+ 𝑈confinement + 𝒈𝝁𝑩𝑩𝒔𝒛

In semiconductors ħωC >> gμBB, 

( ħωC[K] = 20∙B[T],  gμBB[K] = 0.3∙B[T] )

At large enough B the  and  spin electrons form well-

separated energy levels, the so-called spin polarized Landau 

levels.

In case of spin splitting the previous considerations for the edge states are not affected, only the 2x spin degeneracy factor 

should be omitted! 

This is observed in the measurements! 

The relative accuracy of RH is ~10-7

→ This demonstrates the perfect absence of backscattering

Multiple Landau levels, Zeeman splitting

With M spin polarized Landau levels crossing the Fermi energy at the edges (but non of them is close to the Fermi 

energy inside the sample):

M
h

e

V

I
G

H

H

2

==
Me

h
RH

1
2

=

Classical picture: an electron from the left 
electrode will always arrive at the right electrode, 
even if it scatters on impurities

1 2



Remark:
The edge states behave similar to the ones of QHE of normal 2DEGs.

On the two sides of the sample, they propagate to opposite direction

N.Peres et al., PRB 73, 125411 (2006)

Solution of the Hamiltonian of Dirac electrons in B field

Charge density of Landau levels

Half Integer Quantum Hall effect in graphene

𝑣𝑥 = 1
ℏ

𝜕𝐸
𝜕𝑘𝑥

 =
1
ℏ
𝜕𝐸
𝜕𝑦

𝜕𝑦
𝜕𝑘𝑥

 = 1
ℏ
𝜕𝐸
𝜕𝑦

1
𝑒𝐵/𝑐

 

Half-integer quantum Hall-effect:

Due to the 2 spin and 2 valley, there are 4-fold 
degenerate Landau levels. Each degeneracy 

provides a conductance channel with 𝐺 = 𝑒2

ℎ
. 

Therefore, each filled LL enhance the Hall 

conductance by 𝐺 = 2∙2∙𝑒2

ℎ
. When 𝐸𝐹  is placed on a 

LL, the  Hall conductance changes from a 
quantized plateau to the next one. Since there is a 
LL at ZERO ENERGY the first electron like Hall 

plateau is at 𝐺 = 2∙𝑒2

ℎ
 and the rest are at 

 𝐺 = 2∙2∙𝑒2

ℎ
𝑛 + 1

2
. The zero energy LL makes the 

QHE of graphene special.  It consist e and hole 
states as well.  



Comparing to GaAs based 2DEGs

Graphene:

E1(B=1T)≈350K

E1(B=10T)≈10
3K

μ≈104 cm2/Vs (2006) @4K

μ≈106 cm2/Vs (2010) @4K

GaAs/AlGaAs:

ħω(B=1T)≈20K

ħω(B=10T)≈200K

μ≈105 cm2/Vs (1980)

μ≈107 cm2/Vs (2004)

E1(29T)≈1800K  >>kT

μ≈104 cm2/Vs @RT (weak T dependence)

Limitation of B, that ωCτ>>1 (τ elastic mean free 

path). If the amount of scattering can be further 

decreased, QHE gets visible at lower B fields. → 

New possibilities for current standard, quantum 

circuits at room temperature

Bnve 2

n 2E =

Landau-levels

Experiment

( )21En += nC 2D free electrons

2D Dirac fermions (m=0)

Novoselov, Science 315, 1379 (2007)

Quantum Hall effect at room temperatureRoom-temperature Quantum Hall effect in graphene



Broken symmetries in QHE

Landau level degeneracies split up in high magnetic fields

4-fold degeneracy: spin and valley

Interactions:

 - Cyclotron gap

- Coulomb ( Exchange interactions)

- Zeeman – energy

- Disorder scale

Y. Zhang et al., PRL 96, 136806 (2006)

Complex phases appear (e.g. half filling, n=0):

Many possible ground states (e.g. Ferromagnet (FM), 

canted antiferromagnet (CAF), charge density wave)

Use tilted field measurements (only acts on Zeeman-

term, no orbital contribution)

-N=0, n=0 (half filling) – not spin polarized

Canted antiferromagnetic state

FM

CAF

A. F. Young et al., Nat. Phys. 8, 550 (2012)

...

CDW



QHE with non-uniform doping

Endre Tóvári PhD Thesis

In n-n’ or p-n junctions Quantum Hall 

channels flow in the bulk

Where bands meet Ef, quantum 

channels form in the bulk

S

D



Edge state equilibration What is the conductance in p,n a device?

𝐺𝑢𝑛𝑖𝑝 = 𝑒2/ℎ min 𝜈, 𝜈’ 

In bipolar regime 

electrons can 

scatter between 

edge states and 

current can be 

distributed between 

available channels.

E.g. source is biased, states from source are filled, but can be 

scattered to the states on the p –side (black channel)

Special state at zero energy (electron-hole state)

S

D

𝐺𝑏𝑖𝑝 =
𝑒2

ℎ

|𝜈 ∗ 𝜈’|

|𝜈| + |𝜈′|

Sample on SiO2 (low quality) 

shows full equilibration – 

fractional plateaus.

What happens in higher quality 

samples? 

J. R. Williams et al., Science 317, 638 (2007)



Edge state equilibration

Similar formulas for p-n-p 

type junctions can be made

For unipolar: equilibration 

along the edge (rough)

For bipolar: equilibration 

along the p-n interface 

(smooth)

Seems unipolar works 

better for good samples, 

more equilibration along 

the edges

High quality device: the all the degeraciess 

are split. It seems along the edge valley states 

equilibrate, spin not. Can be used also to 

figure out LL scenarios (e.g. here I.)

Clevin Handschin PhD Thesis

F. Amet et al., PRL., 112, 196601 (2014)



Edge state interferometers

S. Morikawa et al., Applied. Phys. Lett. 106, 183101 (2015)

S DF

𝐺~cos Φ 

Spin and valley is conserved in 

the bulk, but scattering can 

happen at the edge (valley)

Works as an Aharonov Bohm 

interferometer

Tunable AB interferometer

• Gate tune pn junction potential slope – 

position of edge states

• B field also tunes edge state position

What happens for the p-n regime?

For clean graphene, gapped region forms at the pn 

interface. 

Is it insulating? Not fully. 

n

Clevin Handschin PhD Thesis



Full lifting of degeneracy – only same spins can mix

Visible on gate-gate maps at large field

Temperature dependence – dephasing and/or relaxation

P. M. et al., PRB 2017

Edge state interferometers



Fabry-Perot 
interferometers

Idea: use split gates to make 

reflectors for edge states

Problem: graphene is not gapped

Equilibration physics appear 

with edge state below the gates.

Solution: use the gap at n=0

Can control number of channels one-by-one

L. A. Cohen et al., Nat. Phys. 19, 1502 (2023)

K. Zimmerman et al., Nat. Comm. 8, 14893 (2017)



Fabry-Perot 
interferometers

FP interferometer with QPCs

Different length of 

interferometers

Oscillation period is tuned 

by VPG2 – changes the 

position of the edge states, 

hence it changes the AB 

phase

No equilibration – there is a 

gapped region and good 

enough sample

C. Deprez et al., Nat. Nano 16, 555 (2021)



Fabry-Perot 
interferometers

With changing magnetic field or gate voltage 

oscillations appear. Line follow constant flux.

By applying a source-drain bias, the energy of the 

electrons are changed – lead to an oscillation 

pattern as well. From bias dependence the edge 

state velocity/Thouless energy can be obtained.

𝜑𝑑𝑖𝑛 =
2𝜋𝑒𝑉𝐷𝐶2𝐿

ℎ𝑣
= 4𝜋𝑒 𝑉𝐷𝐶/𝐸𝑇𝐻

𝛿𝑅𝐷~cos
2𝜋Φ

Φ0
cos 2𝜋𝑒𝑉𝐷𝐶/𝐸𝑇𝐻 

𝑉𝑃𝐺2
𝛿𝑅𝐷~exp −4𝜋2𝑘𝐵𝑇/𝐸𝑇𝐻 

From 

temperature 

dependence the 

Thouless 

energy can be 

obtained. 

Longer 

trajectories 

diphase faster

C. Deprez et al., Nat. Nano 16, 555 (2021)



Bilayer graphene

Images: V. Falko, Lecture notes



Bilayer graphene



3. Bilayer graphene [Bernal (AB) stacking]Bilayer graphene
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Single layer:

Bilayer:

under pseudospin 
conservation, 
helicity suppresses 
backscattering in a 
monolayer

 = 0

( ) ( ) ( )2/cos0 22

 ==

 = 0

Single layer: Bilayer:

no suppression 
of back-
scattering in a 
bilayer

( ) ( ) ( ) 22

cos0 ==



Effective 2x2 bilayer Hamiltonian acts on A1 
and B2 subblattices, where 1 and 2 are on
different layers. 
-> Applying an electric field perpendicular to
carbon plane generates a finite Δ term.
→ Band gap opens in K and K’ with size of 2Δ

J. B. Oostinga, Nature Mat., 7, 151 (2008) 

Bilayer graphene in electric fields



R. Kraft Phys. Rev. Lett. 121, 257703 (2018)

- High quality BLG due to hBN stack
- Electric field is defined by BG, TG and SG.
- SG and BG generate perpendicular E field 
and open gap and define confinement
- TG is used to set Fermi level 

- Conductance quantization 4e2/h
2spin x 2valley degree of freedom
- In B field 4 fold degeneracy changes. 

QPCs in bilayer graphene
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