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‘ Graphene — Nobel Prize in Physics 2010 ‘

Electric Field Effect in Atomically
Thin Carbon Films

K. S. Novoselov,1 A. K. Geirn,1* S. V. Morozov,z D. Ji:-:ng,-I
Y. Zhamg,1 S. V. Dubonos 2 I. V. Grigt:wi:e\.ra,1 A. A. Firsov®

We describe monocrystalline graphitic films, which are a few atorns thick but are
nonetheless stable under ambient conditions, metallic, and of remarkably high
quality. The films are found to be a two-dimensional semimetal with a tiny overlap
between valence and conductance bands, and they exhibit a strong ambipolar
electric field effect such that electrons and holes in concentrations up to 107 per

Andre Geim KOStya NOVOSEIOV square centimeter and with room-temperature mobilities of ~ 10,000 square

centimeters per volt-second can be induced by applying gate voltage.

“« . . . 22 OCTOBER 2004 VOL 306 SCIENCE wwsciencemag.orgE
for groundbreaking experiments regarding o =

the two dimensional material graphene” =

20 um

Surprising, since growth of macroscopic 2D
objects is strictly forbidden due to phonons
(Mermin Wagner - theorem)



How to make graphene?




Mechanical exfoliation

Scotch
e Ti

S00Z SYNd “Y00T 92U31S 421SaYdUeA

Scotch tape piece of graphite

W STrppedsCience.com

Graphene

For proper SiO, thickness interference
makes it visible by optical microscope
+ Even size of 1mm, + high quality, -
low yield



Other methods

Graphene

Sonication + centrifugation, often intercalation e

i /HH[HHIIH
- Submicrometer crystallites, mass production, industrial scale ki MM 1/Cm
- Good for polycrystalline films and composite materials. 1 LT 4
Suspension can be printed resulting highly conductive bendable
film

Graphene l '

Growth of a monolayer of carbon

- CVD on Cu, Ni (Lower figs.): T + gas flow. Self terminating
process. Result: single layer, - polycrystalline, it follows the
crystallites of the metal surface, Use e.g. HCl to remove
substrate. (commercially available)

Ruoff, Nature 2006, Manchester, Nanolett ‘08,Coleman et al, Nature Nano ‘08




‘ |dentification of graphene

__ Optically

—
f\—\_\. Contrast of graphene

o at diff. SiO, thickness.

e

Raman spectroscopy measure the energy
difference of reflected laser light
e.g. layer thickness can be determined from

R the 2D peak
E}L = 560nm Microscope II
_ mj _ . _
-E- ; % r‘ Laser beam in
- E‘ 2z _.
500
é g Spectrograph
and detector
” Sample
400 - e
0 100 200 o 2800 2080 2700 zvfo 2s00 2880
Si0, thickness {nm) Raman shit fom ]
AFM e.g. possible STM e.g. exfoliated TEM
to determine thickness on metal substrate e.g. crystalite boarder SiC




Properties, appli

cations

Transparent

Gorductive

Light Selectively

permeable

2D

Reinforcement

- Good electronic quality:
submicrons without scattering
mobility > 200000 cm?/Vs @ RT
(Si: <1500 cm?/Vs)

- Quantum effect at RT

- Strongest material,

- Most stretchable material

- Impermeable to gases (also He)

- Strain sensors
- Hall sensors
- Conductive coatings etc.

SPORT BOOSTED WITH
GRAPHENE

FASTER RACQUET

FASTER GAME

™ transparent
2 polymer film

9/3 liquid crystal

active layer

graphene
electrodes

Ultra High Frequency
Transistors

Touch screen




‘ Band structure of graphene

Graphite

Three dimensional layered
material with hexagonal 2D
layers [shown here with
Bernal (AB) stacking]

8] b on d S

sp? hybridisation

- single 2s and two 2p orbitals
hybridise forming three “c bonds” in

the x-y plane

Monolayer

Bilayer

A B _Oo—— S

Two dimensional material;
Zero gap semiconductor;
Dirac spectrum of electrons

Images: V. Falko, Lecture notes

Carbon has 6 electrons: 2 core electrons, 4 valence
electrons —one 2s and three 2p orbitals

7t bonds

remaining 2p, orbital [“=” orbital] exists
perpendicular to the x-y plane, keep only this one

orbital per site in the tight binding model



‘ Tight-binding model of graphene ‘

"conventional"
unit cell

Wigner-Seitz
unit cell

2 different atomic sites — 2 triangular sub-lattices : : :
triangular reciprocal lattice

We take into account one = orbital per site, so — hexagonal Brillouin zone
there are two orbitals per unit cell.

N
: 5 1 = =
Bloch functions o, (k,7) = \/_Nz etkRa g, (7 —Ry)
Ra

N
- 1 P4 -
Dp(k7) = e®Rogy (7 = Ry)
sum over all type B VN Rp

atomic sites ___— \

in N unit cells atomic wavefunction



‘ Tight-binding model of graphene ‘

Bloch functions : label with j = 1 [A sites] or 2 [B sites]
N
- 1 =4 —
cbj(k, 77')) = —z elk'RJ' QDJ(F — R])
VN =

Eigenfunction ¥; (forj=Lor2)iswrittenasa (%, 7) = Z ¢, (k) @, (k. 7)
linear combination of Bloch functions:
Eigenvalue E; (for j = 1 or 2) is written as :

(9| H ;)

ZCJI Jl<q)i‘H‘(Dl> ZZ:HICJICJI
(w]w) '

£(6) - b (§) .

ZCJI J|< i‘q)l> isn ji J|

defining transfer integral _ and overlap
matrix elements H; = <cDi ‘H ‘ D, >’ integral matrix Sy = <cDi ‘CDI>

elements



‘ Tight-binding model of graphene ‘

2

Z H,C:C, We can find the energy by minimising with respect
i1~ ji™ ] . .
EJ(E): i,; '[O C]l - 2 C*C ’ < o
. H,.C, H,C;C, > S.C,
Si,CjiCj, OE; ~ Z‘ mi™ ji _iZJ: 1™~ "Z‘ 1~ i
! oC’

. 2 * 2 2

J iZI:S"CJ'iCJ' (ZSHC;CJIJ
OE. 2 2 )
oC, =0 = IZ:;Hmlcjl = Ejésm,cj, S;i~1,5;~0

Explicitly write out sums:

m = 1 = H11Cj1 + H12Cj2 — E] le
m=2 = H21Cj1 + H22Cj2 — E] C]Z

(Hn H12) 9 _ Cja

Secular equation gives the eigenvalues:

Write as a matrix equation:

det(H—-E)=0



‘ Tight-binding model of graphene ‘

Diagonal matrix element

Hop = <(DA ‘H ‘CDA> = %QZN:FQZN:eiE'(ﬁAjFEMK(DA(F_ ﬁAi )‘H‘CDA(F_ ﬁAj )>
Same site only: | 1 & B B
Ha = %Z<¢A(F_ ﬁAi )‘H‘gpA(F_ IiAi )> S s :W;<¢A(F_ Ra )‘ ¢A(F_ Ra )>
5 i
= <(0A(F - F_éAi )‘H‘CDA(F o IiAi )> B <¢A(F_ RAi )‘ Pa - RAi )>
=1

=g
A and B0 sites are chemically identical:
Ha=Hgs =& San =g =1

Off-diagonal matrix element

H = (@, [H| D, ) = ZZe {Fa R< (P Ry JH| s (F-Ry;)

Every A site has 3 B nearest neighbours:

AB_%Ri Z ‘ < ( Ai)‘H‘(oB(F_ﬁBj» :ieiﬁlg%(ﬁA(F_ i

5;=1 5=1



‘ Tight-binding model of graphene ‘

3
Hyp = z etk9] <(,0A(T' RAL)|H|(pB(r RBJ))

Parameterise nearest neighbour transfer integral:

Yo = —<¢A(F ~ Ry )‘H r (F-R, )>

3.

— HAB =—%0 f (E), f(|2): Zelk.aj
d;=1

a a - . . k,a
8, = Rpy — Rp; = (E' _ﬁ>; f(k) = elkya/\3  g—ikya/2V3 (g (%)

53 = Rp3 — Ry; = (—%;_%)

€0 —Vof(l_é)> =
H = S ; E =g+ yo|f (k)|
(‘Vof*(k) €0




‘ Tight-binding model of graphene ‘

V3k,a

E=€0iyo|f(l_c>)| E(k)=EF-I_-yO\/1+4cos<

ey A
by
‘-
E
r M r "
K
by
£:=0, o = 3.033eV, s = 0.129 ' .
° ° - Gapless semiconductor

 Two non-equivalent valleys: K and K’, where the dispersion is linear
* Ef = 0forundoped graphene



Tight-binding model of graphene ‘

: : : _ (4 _ 4
Dispersion exactly at the K point K =(—Z,Oj; K'=(—£,Oj
Brillouin - a o
Zone L= (O'ﬁ)‘ > K6, =0
> f[a a \ SRR - 21
2 = 21 2\/§ ’ 2 = 3
> a a \ SRR = 21
3 — 2’ 2\/§ ) 3 — 3
Two non-equivalent f(]‘(’) = Z%__le”?-gj — e0 4 o2mi/3 4 o—2mi/3 _
K-points 7
E 4 6 corners of the Brillouin zone (K points), but
o only two are non-equivalent

K points also referred to as “valleys”

Two bands: no energy gap at the K-points



‘ Tight-binding model of graphene ‘

Expansion near the K points
Brillouin

zone Consider two non-equivalent K points:
S = A
K,K'=¢| —,01; =41
K CE( 3a j -
K' K and small momentum near them:
M K k= 5(4—”,0}3
| 3a h
Two non-equivalent Linear expansion in small momentum:
K-points \/ga
— . 2
f(k)z—ﬁ(épx —ip, )+O(pa/n)
—y flk 0 — I
H 0*_’ 7of(k) ~V . ey —1p, _\/§ay0~106
') o P, +ip, 0 V=g < 10m/s

New notation for components  C. = [CilJ & p= [WA)
on A and B sites



| Tight-binding model of graphene — Dirac equation |

- : 4
For one K point (e.g. E&=+1) we have a 2-component wave function: W= (V/A]
B

Effective Hamiltonian:

0 px—ip 0 m* -
HZUF(px+ipy i 0 y):VF(n no):vF(prx+‘7ypy):vFU-P

T =py+ipy, = pew_ /Bloch function amplitudes on the AB sites (‘pseudospin’)
nt=p, — ip, = pe™'? mimic spin components of a relativistic Dirac fermion.

Pseudospin is an index that indicates on which of
the two sublattices a quasi-particle is located

To take into account both K points (§=+1 and £=-1) we can use a 4-component wave function:

W Ak 0 Px — ipy 0 0
Ve Dx T 1Dy 0 0 0
W= ‘ H=v :
¥ ax: F 0 0 0 —DPx — Dy
Vek: 0 0 —Dx T ipy 0

Isospin: K and K’ valleys are also called isospin.



Dirac equation Chiral electrons/helical

pseudospin direction is

0 T[+ > - N linked to an axis
H=UF( = Vg0 P = VUpPo N

T 0 determined by electronic
momentum.
. - 10p
Helicity: h=-—
Y 2 |pl for conduction band
electrons,
“Schrédinger ultra-relativistic massless o-N=1
fermions” articles Dirac fermions
~ g . P . . . valence band (‘holes’)
H=p"/2m H=cac-p H=v.G-p

Gii=-1

It is due to symmetry
of the honeycomb
lattice

monolayer graphene
metals neutron stars OB

| L
Y

and and

iconduct lerat S S S8 _ _ 106
SemIconauciors dacceleralors SO0 VF — C/BOO — 10 m/S

s s et



Eigenfunctions ‘ (WA]

Effective Hamiltonian in K/K” valley (¢ = +):

0 fpx o ipy 0 +e¢"‘p fO'
H=v : =V L = VpO = X
F (fpx +ipy 0 FP\tetie FoP d ( gy )

1 . Fip/2 1 " ( e Fio/2 )
Ee/h ilel 1/)e(go) \/76 ( iiQD/Z) lph(‘p) /2 _eil(p/z ( / )
@ = arctan py Dx

Inverts for opposite momentum

In K valley conduction band k parallel to pseudospin, in valance band it is opposite. It
inverts in K valley. This prevents backscattering: pseudospin is conserved. Intervalley
scattering needs large momentum.

1 . 1
e.g. py=0, Yp k(@) = ﬁelkx (1)

lpAB,K((P) = \/iie—ikx (_11)

Helicity eigenfunctions with +1 eigenvalues
Vg k/k: (@) is an eigenfunction of ¢ with + 1
in K/K” valleys (blue arrows) = P/AP to
momentum (black arrows)

Same for anti-bonding wave-functions

bonding



Eigenfunctions If the scattering potential is pseudo-spin

conserving, i.e. it does not contain o:

[P (DIV (¢ = 0))|?
= VI? ()P (p = 0))]

Ve (@) = % (ee_l:p/;)
lpe,K(q) =0) = \/_15(1)

[P (D) (¢ = 0))|*~ cos?(¢/2)

bonding
Scattering angular distribution

Since pseudo-spin is conserved
intravalley backscattering is
prohibited.

For intervalley scattering large

momentum — atomic defects are
under pseudospin required.

conservation,
helicity suppresses
backscattering in a
monolayer




Pseudospin ‘ Visualization of the phase of the pseudospin on lattice

“anti-bonding”
E = +y,

)

I" point:
k=0

“bonding”
E =-v,

s

Michael Fuhrer



Pseudospin ‘ Visualization of the phase of the pseudospin on lattice

4—ﬁ~/1=§

‘K‘: 3a 2

The phase modulates on the lattice on short length
phase of the wavefunction

scale due to e'&*

Lolytpiedy
SN LN
P XXX BEEL
#8005 8.
ryorty




o

“anti-bonding”
1 (1
2
K point
Bonding and anti-bonding

Qﬂ
...“. ..........c..
8302000
...03 b3

’.
vl

Pseudospin

are degenerate!
Visualization of the phase of

the pseudospin on lattice

Fels
2008
18008
“’“’3 o
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47t/3O O O 2n/3
T

30 deqrees

Pseudospin

o e et
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#

..?.

360 rotations does not give the same!




Pseudospin

bonding
orbitals

orbitals

bonding anti-bonding

orbitals

7))
)
+—
@)
(-
)
©
| -
9o
@)
o
N

)

c

O
86
T 5
p Y

Y— (D]
2% 5 8
© © mlla
Q= o
| -

9
~
~
-
-

anti-bondin

representation

k-space

Intervalley: just a mirroring of phases, intravalley scattering should change relative amplitude

onAandB



Basic transport properties

Measurement:

Graphene (blue) is etched to a Hall bar shape and
contacted by metal leads (yellow). Si layer is doped,
used as a backgate (G) . By applying voltage on G the
chemical potential of graphene can be varied.

Effect of gate voltage, V,?

N=CVyle > n~V; > kp~[V,
Drude model:

vg = UE, j = envy = enuE = oE, 0 = enu

2
. __e‘nt et _Vy_Ey_ B

Measurement of Hall resistance allows to determine n.

Combining it with p, i can be derived.

Fig. a: longitudinal resistance vs. Vg, AR= 100 times!
Fig. b: mobility and charge carrier density vs. Vg

- At V=0, Ry, (and n) changes sign = border between e
and h bands

- If V, 20 RA, however R is finite (x4kOhm) at Dirac
point although n=0. (No real OFF state.)

Ry (k)

u (108 cm2 V=1 g=1)

graphene

R vs. Vg characteristics

electrons

(g-wo,,04) *u

V, (V)
Nature 438, 201 (2005)



High-quality graphene structures - suspension

Problem: charge traps in SiO2 substrate decreases mobility of graphene at low temperature
(at high T phonons also play a role)

To improve mobility, eliminate the substrate. 2 Suspended graphene samples

Two techniques:

 Etched SiO by BHF _ Suspended devices

e Can have ultra-low residual disorder

= 23 . - . .
2 ; * High mobility, electron optical experiments (also
(@) . .
Ly electro-mechanical)
3 D * Fragile, have to be current annealed
Y C i
_ 3
v =
T Op
2 3
<< ©
Use an organic polymer
g bellow, expose and dissolve
<
(@)
()
o
=
=
=
Q0]
(%]
o
o]
=
2
Z

T WD R. Maurand, et al., Carbon 79, 486 (2014)


http://xxx.lanl.gov/abs/1009.4213

‘ High-quality graphene structures — hBN substrate

room-T mobility close to 100,000 cm2/V's
Advantages:
- Atomically smooth surface that is relatively free
of dangling bonds and charge traps.
- Lattice constant similar to that of graphite and
has optical phonon modes at large energy and has
a large electrical bandgap.

edge contact

7 Metal Lead

graphene

Dean et. al., Nature Nanotech 5, 722 (2010), L. Wang Science 01 Nov 2013:
Vol. 342, Issue 6158, pp. 614-617D. G. Purdie et al., arXiv:1803.00912 (2018)



‘ High-quality graphene structures — hBN substrate

Fabrication of

encapsulated devices

* encapsulation in hBN using

van der Waals pickup

* AFM to characterize the stack
e-beam lithography and

evaporation

L. Wang et al., Science
342, 614 (2013)




High-quality graphene structures — hBN substrate

SiN, (500 nm)

Ta(1nm)
Pt (5 nm)
Au (0.75 nm)

|

W. Wang et al., Nature Electronics 6, 981-990 (2023)

‘I_P_‘\
w
T
=
o™~
£
(@]
L(e]
=)
ERE
=
@]
£
@
@
O

New technique with SiNx
membrane

Ultra-clean assembly of devices
Up to 20 um mean-free path (/)
can be achieved!




| Reduced disorder

hBN-graphene-hBN

hBN as an ideal substrate

Step forward: fully encapsulate graphene in
hBN - high quality but hard to access — side
contacts are needed

Clean interfaces (see next slide)

Higher quality since:
Reduced charge fluctuation
Measurement: STM spectroscopy 2 Graphene :

measurement
Plotted is the spatial fluctuation of Graphite

the CNP (measured by spectroscopy
mode)

Graphite gate: flat surface and
screens additional fluctuations

E (meV)

I =100

M. Yankowitz et al., Nat. Rev. Phys. 1,
112 (2019)

20 nm 20 nm I




Electron optics in graphene

V./ ()

High quality devices with sample size < L,
Ballistic electron trajectories, no scattering.
Similar motion as ray of light. ~ optics

- Electrically tunable
transverse magnetic
focusing in graphene
Graphene stacked in hBN
protection layers

Electron velocity and B field
sets the radius of circular
trajectories

\elocity opposite for electrons
and holes (radially outward or
inward, respectively)

k= —S(E+7xB)

h
L
¢  eB eB

Nature Physics 9, 225-229 (2013)

Density (10" cm2)

Novel, ultraclean
devices: focusing on
30 um length scale

W. Wang et al.,
Nature Electronics
6, 981-990 (2023)

Hole density (107 cm™)

-5

-20 =

25

-50 -25
Magnetic field (mT)



Massless Dirac Fermions?

Consider Quasi Classical Dynamics of Dirac electrons (pos. sign)

—_ —

N k
— =-hvp— = vpe, = Vg =

thus |v| = vp, D[k

—>Speed of e is constant independent of
momentum, like photons (v«c)

What is m, effective mass?

1 1 10%
m m, h2ok2

h2k?
Zmeff

For quadratic dispersion: E = , M = Mgy

For Dirac electrons, where E(E) = th|E| ?

Naively 1/m= 0, but NOT. To calculate 1/m:

0%|k| k5 N 1 —117 K3
k2 T |k|3 Myy R T k3
dlkl _ 12ky

ok, — 2 1K - Effective mass depends on k

o

conduction band

Beenakker, Reviews of Modern Physics, 80, 1337 (2008)



1 vp Ky
My h kI3

N-P junction:
Potential profile with
a step of Uoat a distance d

T ——J—F—p

conduction band

valancea band

Klein scattering:
perfect transmission

at normal incident
This is again pseudo-spin

Evolution of group velocity:

(—e)Ey, (%)

dt My My

In linear electrostatic potential (e.g. slope in Figure) :
U= on, Ex = Eo, Fx = _eEO

At normal incidence: k, = 0 - % = 0 - backscattering is

avoided. Electron can propagate through an infinite high potential
barrier.

hk=F = —eEge, (%)
Effect of the potential profile, U (see figure):
- k decreases and changes sign (**)
- based on (*), ¥ stays constant, i.e. U = vge,.
— e ends up in the valence band
Fermi surfaces

1

conservation E = +hvf|/_<>| K | E = —hvf|l_(>|



Klein tunneling and backscattering

Beenakker, Reviews of Modern Physics, 80, 1337 (2008)

1 CLASSICAL PHYSICS

Electron as
low-energy
particle

O

— Barrier

2 QUANTUM MECHANICS

Electran as
“slow-
moving”
wave

Jar

3 QUANTUM ELECTRODYNAMICS

Electran as
high-speed

Jil

Geim, Kim, Sci.Am. 298, 90 (2008)

No chance of
penetrating
barrier

Some
chance of
penetrating
barrier

|

100%
chance of
Eenetrating

arrier |




Klein tunneling and backscattering ‘

Electron reflection and
refraction

k1D potential — invariant in the y
j direction, k,, is conserved

Snell’s law can be derived - ratio

of k vectors gives the refraction
, angles (densities).

" For p-n junctions negative

. refraction!

Incoming Qutgoing

Idea: Veselago lens

Flat lens cane be made for
focusing

H. Chakraborti et al., arxiv:2401.04233



- Negative refraction.

A . N el T B _ _ In p-n junctions the refraction is
’ Zd. T PP unconventional!
ordinary g - Can be seen e.g. in a focusing
refraction ? ~P P, =P, experi ment
":tF____ ) "
E{k)
E:tllf 0 negative %ﬁ'i (d)
refraction "V~ *on
n, n,
"R 5
\
B® 2.
w . O,
ol
@\I‘ [ L

S.Chen et al., Science 353, 1522 (2016)



Klein tunneling and backscattering

02F ; 02F T T 7 0.2F
| | |
— — | —
> > >
S" 0 L S 0 __i/i—_ :"S' O L
| | |
02k I . o2kt . ] 0.2 b= . .
20 0 20 20 0 20 20 0 20
x (nm) x (nm) X (nm)
1 —~ 1 ~ 1f A
// \\ f! \\ 1.* ‘\
\ ! ke I 1
ff \\ ;; \\ f: '.‘
~ost  / \ ~o05F [ ) ~05¢ [
/ \ 4 “\ / \
! % ' LY ') \
'y S v, L ' \
J N - — / \
o~ . ™ ] ) et —
90 -45 0 45 90 90 -45 0 45 90 90 45 0 45 90
0 (deg) 6 (deg) (deg)
. ‘ krd
T(6) = cos® 0 T(0) = exp ( ?TT sin’ 6)
Sharp p-n junction Smooth p-n junction
e

Smooth p-n junctions act as collimator
(narrow angular distribution)

From focusing measurement
on p-n junction:

H. Chakraborti et al., arxiv:2401.04233
S.Chen et al., Science 353, 1522 (2016)

0.2F ; |
| |
= I I
=° /]
| |
| |
-0.2 - . s ! L4
-20 0 20
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T A |
i
v "
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05 b 1
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blue numerical
2 osf /s o
¢ " \d'\
@ 04 ./ /
0.2+ / o experiment d\
L / — simulation (d=70nm) \\
—anah,'hcal(d Onm} 'Y
0.0
%0 80 20 10 0 10 20

Incident Angle (degrees)



Snake states

Suspended graphene sample, with two gates bellow.

Half of the sample electron (red) and half of it hole (blue) doped.
Snake state propagates at the border.

[ h/nm
¢~ eB
|44
G(E) ~
(E) ~ cos [WRC,p+RC,n]

Vo (V)

P. M., et al., PRB. 98, 035413 (2018)
P. Rickhaus, et al. Nature Comm. 6, 6470 (2015)



Klein tunneling and backscattering

Result of proper calculation Transmission probability vs. D
Wave function matching - - of normally incident electrons
b| - in single- and bi-layer graphene (red and
IEJ—kv ---------- o Voo blue curves, respectively) and in a non-chiral
< zero-gap semiconductor (green curve)

1.0

0.8 1

0.6

0.4 1

0.2

0.2 \\h
Transmission probability T 0
through a 100-nm-wide D (am)
barrier as a function of the
incident angle, two different —> Difficult to measure whether it
barrier height is 100%, since e-s out of normal

incident also arrive

0.4+

D.ﬁ.. -

0.8

10—
-90°

Katsnelson et al Nature Physics, 2, 620 (2006)



Fabry-Perot interferences ‘

0<T<1 0<T<1 E

> ¥

L
<>
Positive in)'ierference:
L—j— where 7 = 1,2, 3...
For graph
T o
v >.§

With two gate p-n-p junction can be realized
Lower conductance in bipolar regime.
Oscillations show up!

Z

== F:sharp

= F:smooth

ﬂ

n

< (

0.01

-0.01

’/h

)



Fabry-Perot interferences

Oscillations in
different regimes
Bipolar oscillations
are the most visible
(blue)

0.01
== F:sharp

= F:smooth

-0.01

§50f AG/(2(G})~0.8%
‘© 30f
Q) 10}
-30 -15 0 15 730

Vae (V)
=22 " AGI(2(G))~4%
%‘21-
~20}
O 10

-12 -11 -10 -

BG corr.
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Filtering of trajectories: only close to perpendicular
trajectories are important in the oscillation

C. Handschin, et al., Nano Lett., 17, 328 (2017)
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