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Andre Geim    Kostya Novoselov

“for groundbreaking experiments regarding 
the two dimensional material graphene”

  

Surprising, since growth of macroscopic 2D 
objects is strictly forbidden due to phonons 
(Mermin Wagner - theorem)

Graphene – Nobel Prize in Physics 2010



5 µm

How to make graphene?



For proper SiO2 thickness interference 
makes it visible by optical microscope
+ Even size of 1mm, + high quality, - 
low yield

+

M
anchester, Science 2004; PN

AS 2005

Mechanical exfoliation



Sonication + centrifugation,  often intercalation

 Submicrometer crystallites, mass production, industrial scale
 Good for polycrystalline films and composite materials. 
Suspension can be printed resulting highly conductive bendable 
film 

Growth of a monolayer of carbon

 CVD on Cu, Ni (Lower figs.): T + gas flow.  Self terminating 
process.  Result: single layer, - polycrystalline, it follows the 
crystallites of the metal surface, Use e.g. HCl to remove 
substrate. (commercially available)

Ruoff, Nature 2006, Manchester, Nanolett ’08,Coleman et al, Nature Nano ’08

Other methods



Raman spectroscopy measure the energy 
difference of reflected laser light 
e.g. layer thickness can be determined from 
   the 2D peak

STM e.g. exfoliated 
on metal substrate

TEM 
e.g. crystalite boarder SiC 

Optically 
Contrast of graphene
at diff.  SiO2 thickness.

Identification of graphene

AFM e.g. possible
 to determine thickness



StrongThin

GRAPHENE
IS…

Flexible ConductiveTransparent

Light 2DSelectively
permeable

Ultra High Frequency 
Transistors

Touch screenReinforcement

- Good electronic quality: 
submicrons without scattering 
mobility > 200000 cm2/Vs @ RT   
(Si: <1500 cm2/Vs)
- Quantum effect at RT
- Strongest material, 
- Most stretchable material
- Impermeable to gases (also He)

- Strain sensors
- Hall sensors
- Conductive coatings etc.

Properties, applications



Graphite

Three dimensional layered 
material with hexagonal 2D 
layers [shown here with 
Bernal (AB) stacking]

Monolayer

Two dimensional material;
zero gap semiconductor;
Dirac spectrum of electrons

Bilayer

Band structure of graphene

sp2 hybridisation
- single 2s and two 2p orbitals 
hybridise forming three “σ bonds” in 
the x-y plane

- remaining 2pz orbital [“π” orbital] exists 
perpendicular to the x-y plane, keep only this one 
orbital per site in the tight binding model

Carbon has 6 electrons: 2 core electrons,  4 valence 
electrons – one 2s and three 2p orbitals

Images: V. Falko, Lecture notes



2 different atomic sites – 2 triangular sub-lattices 

Tight-binding model of graphene

triangular reciprocal lattice
– hexagonal Brillouin zone 

Φ𝐴𝐴 𝑘𝑘, 𝑟𝑟 =
1
𝑁𝑁
�
𝑅𝑅𝐴𝐴

𝑁𝑁

𝑒𝑒𝑖𝑖𝑘𝑘.𝑅𝑅𝐴𝐴 𝜑𝜑𝐴𝐴 𝑟𝑟 − 𝑅𝑅𝐴𝐴Bloch functions 

Φ𝐵𝐵 𝑘𝑘, 𝑟𝑟 =
1
𝑁𝑁
�
𝑅𝑅𝐵𝐵

𝑁𝑁

𝑒𝑒𝑖𝑖𝑘𝑘.𝑅𝑅𝐵𝐵𝜑𝜑𝐵𝐵 𝑟𝑟 − 𝑅𝑅𝐵𝐵
sum over all type B 

atomic sites
in N unit cells atomic wavefunction

We take into account one π orbital per site, so 
there are two orbitals per unit cell.



Φ𝑗𝑗 𝑘𝑘, 𝑟𝑟 =
1
𝑁𝑁
�
𝑅𝑅𝑗𝑗

𝑁𝑁

𝑒𝑒𝑖𝑖𝑘𝑘.𝑅𝑅𝑗𝑗 𝜑𝜑𝑗𝑗 𝑟𝑟 − 𝑅𝑅𝑗𝑗

Bloch functions : label with j = 1 [A sites] or 2 [B sites]

Tight-binding model of graphene

𝐸𝐸𝑗𝑗 𝑘𝑘 =
Ψ𝑗𝑗 𝐻𝐻 Ψ𝑗𝑗
Ψ𝑗𝑗 Ψ𝑗𝑗

𝛹𝛹𝑗𝑗 𝑘𝑘, 𝑟𝑟 = �
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Eigenfunction Ψj (for j = 1 or 2) is written as a 
linear combination of Bloch functions:
Eigenvalue Ej (for j = 1 or 2) is written as :

liilliil SHH ΦΦ=ΦΦ= ;defining transfer integral 
matrix elements

and overlap 
integral matrix 

elements



22

,

*

22

,

*

2

,

*

2

*









−=

∂

∂

∑

∑∑

∑

∑

li
jljiil

l
jlml

li
jljiil

li
jljiil

l
jlml

jm

j

CCS

CSCCH

CCS

CH

C
E

( )
∑

∑
= 2

,

*

2

,

*

li
jljiil

li
jljiil

j

CCS

CCH
kE


We can find the energy by minimising with respect 
to 𝐶𝐶𝑗𝑗𝑗𝑗∗  :
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Tight-binding model of graphene

𝑚𝑚 = 1 ⇒ 𝐻𝐻11𝐶𝐶𝑗𝑗𝑗 + 𝐻𝐻12𝐶𝐶𝑗𝑗𝑗 = 𝐸𝐸𝑗𝑗  𝐶𝐶𝑗𝑗1
𝑚𝑚 = 2 ⇒ 𝐻𝐻21𝐶𝐶𝑗𝑗𝑗 + 𝐻𝐻22𝐶𝐶𝑗𝑗𝑗 = 𝐸𝐸𝑗𝑗  𝐶𝐶𝑗𝑗𝑗

𝐻𝐻11 𝐻𝐻12
𝐻𝐻21 𝐻𝐻22

𝐶𝐶𝑗𝑗𝑗
𝐶𝐶𝑗𝑗𝑗

= 𝐸𝐸𝑗𝑗
𝐶𝐶𝑗𝑗𝑗
𝐶𝐶𝑗𝑗𝑗

Explicitly write out sums:

𝐻𝐻𝐶𝐶𝑗𝑗 = 𝐸𝐸𝑗𝑗𝐶𝐶𝑗𝑗

det 𝐻𝐻 − 𝐸𝐸 = 0

Write as a matrix equation:

Secular equation gives the eigenvalues:

𝑆𝑆𝑖𝑖𝑖𝑖~1, 𝑆𝑆𝑖𝑖𝑖𝑖~0



Tight-binding model of graphene

0ε== BBAA HH
A and B sites are chemically identical:

Same site only:

Diagonal matrix element
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Off-diagonal matrix element
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Tight-binding model of graphene

𝐻𝐻𝐴𝐴𝐴𝐴 = �
𝛿𝛿𝑗𝑗=1
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𝑒𝑒𝑖𝑖𝑘𝑘.𝛿𝛿𝑗𝑗 𝜑𝜑𝐴𝐴 𝑟𝑟 − 𝑅𝑅𝐴𝐴𝐴𝐴 𝐻𝐻 𝜑𝜑𝐵𝐵 𝑟𝑟 − 𝑅𝑅𝐵𝐵𝐵𝐵
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Parameterise nearest neighbour transfer integral:

𝑓𝑓 𝑘𝑘 = 𝑒𝑒𝑖𝑖𝑘𝑘𝑦𝑦𝑎𝑎/ 3 + 2𝑒𝑒−𝑖𝑖𝑘𝑘𝑦𝑦𝑎𝑎/2 3 cos
𝑘𝑘𝑥𝑥𝑎𝑎

2

𝛿𝛿1 = 𝑅𝑅𝐵𝐵𝐵 − 𝑅𝑅𝐴𝐴𝐴𝐴 = 0,
𝑎𝑎
3

;

𝛿𝛿2 = 𝑅𝑅𝐵𝐵𝐵 − 𝑅𝑅𝐴𝐴𝐴𝐴 =
𝑎𝑎
2

,−
𝑎𝑎

2 3
;

 𝛿𝛿3 = 𝑅𝑅𝐵𝐵𝐵 − 𝑅𝑅𝐴𝐴𝐴𝐴 = −𝑎𝑎
2

,− 𝑎𝑎
2 3

𝐻𝐻 =
𝜀𝜀0 −𝛾𝛾0𝑓𝑓 𝑘𝑘

−𝛾𝛾0𝑓𝑓∗ 𝑘𝑘 𝜀𝜀0
; 𝐸𝐸 = 𝜀𝜀0 ± 𝛾𝛾0 𝑓𝑓 𝑘𝑘



Tight-binding model of graphene

 Gapless semiconductor

𝐸𝐸 = 𝜀𝜀0 ± 𝛾𝛾0 𝑓𝑓 𝑘𝑘 𝐸𝐸(𝐤𝐤) = 𝐸𝐸𝐹𝐹 ± 𝛾𝛾0 1 + 4 cos
3𝑘𝑘𝑥𝑥𝑎𝑎

2
cos

𝑘𝑘𝑦𝑦𝑎𝑎
2

+ 4 cos2
𝑘𝑘𝑦𝑦𝑎𝑎

2

𝜀𝜀0: = 0, 𝛾𝛾0 = 3.033𝑒𝑒𝑒𝑒, 𝑠𝑠 = 0.129

• Two non-equivalent valleys: K and K’, where the dispersion is linear
• 𝐸𝐸𝑓𝑓 = 0 for undoped graphene



Tight-binding model of graphene

Dispersion exactly at the K point

𝛿𝛿1 = 0,
𝑎𝑎
3

; ⇒ 𝐾𝐾𝛿𝛿1 = 0

𝛿𝛿2 =
𝑎𝑎
2
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2 3
; ⇒ 𝐾𝐾𝛿𝛿2 =
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𝑓𝑓 𝐾𝐾 = ∑
𝛿𝛿𝑗𝑗=1
3 𝑒𝑒𝑖𝑖𝐾𝐾.𝛿𝛿𝑗𝑗 = 𝑒𝑒0 + 𝑒𝑒2𝜋𝜋𝜋𝜋/3 + 𝑒𝑒−2𝜋𝜋𝜋𝜋/3 = 0

K points also referred to as “valleys”
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6 corners of the Brillouin zone (K points),  but 
only two are non-equivalent
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Expansion near the K points
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and small momentum near them:

Linear expansion in small momentum:

𝑣𝑣𝐹𝐹 =
3𝑎𝑎𝛾𝛾0
2ℏ

≈ 106𝑚𝑚/𝑠𝑠

p

Tight-binding model of graphene

𝐻𝐻𝐶𝐶𝑗𝑗 = 𝐸𝐸𝑗𝑗𝐶𝐶𝑗𝑗 ⇒ 𝑣𝑣𝐹𝐹
0 𝜉𝜉𝑝𝑝𝑥𝑥 − 𝑖𝑖𝑝𝑝𝑦𝑦

𝜉𝜉𝑝𝑝𝑥𝑥 + 𝑖𝑖𝑝𝑝𝑦𝑦 0
𝜓𝜓𝐴𝐴
𝜓𝜓𝐵𝐵
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1New notation for components 
on A and B sites











=

B

A

ψ
ψ

ψ

𝐻𝐻 = 𝑣𝑣𝐹𝐹
0 𝑝𝑝𝑥𝑥 − 𝑖𝑖𝑝𝑝𝑦𝑦

𝑝𝑝𝑥𝑥 + 𝑖𝑖𝑝𝑝𝑦𝑦 0 = 𝑣𝑣𝐹𝐹
0 𝜋𝜋+
𝜋𝜋 0

= 𝑣𝑣𝐹𝐹 𝜎𝜎𝑥𝑥𝑝𝑝𝑥𝑥 + 𝜎𝜎𝑦𝑦𝑝𝑝𝑦𝑦 = 𝑣𝑣𝐹𝐹𝜎⃗𝜎. 𝑝⃗𝑝

For one K point (e.g. ξ=+1) we have a 2-component wave function:

Effective Hamiltonian:

Bloch function amplitudes on the AB sites (‘pseudospin’) 
mimic spin components of  a relativistic Dirac fermion.

Pseudospin is an index that indicates on which of 
the two sublattices a quasi-particle is located

Tight-binding model of graphene – Dirac equation

𝜋𝜋 = 𝑝𝑝𝑥𝑥 + 𝑖𝑖𝑝𝑝𝑦𝑦 = 𝑝𝑝𝑒𝑒𝑖𝑖𝑖𝑖

𝜋𝜋+ = 𝑝𝑝𝑥𝑥 − 𝑖𝑖𝑝𝑝𝑦𝑦 = 𝑝𝑝𝑒𝑒−𝑖𝑖𝑖𝑖

To take into account both K points (ξ=+1 and ξ=-1) we can use a 4-component wave function:



















=

'

'

BK

AK

BK

AK

ψ
ψ
ψ
ψ

ψ 𝐻𝐻 = 𝑣𝑣𝐹𝐹

0 𝑝𝑝𝑥𝑥 − 𝑖𝑖𝑝𝑝𝑦𝑦 0 0
𝑝𝑝𝑥𝑥 + 𝑖𝑖𝑝𝑝𝑦𝑦 0 0 0

0 0 0 −𝑝𝑝𝑥𝑥 − 𝑖𝑖𝑝𝑝𝑦𝑦
0 0 −𝑝𝑝𝑥𝑥 + 𝑖𝑖𝑝𝑝𝑦𝑦 0

Isospin: K and K’ valleys are also called isospin.



𝐻𝐻 = 𝑣𝑣𝐹𝐹
0 𝜋𝜋+
𝜋𝜋 0

= 𝑣𝑣𝐹𝐹𝜎⃗𝜎 ⋅ 𝑝⃗𝑝 = 𝑣𝑣𝐹𝐹𝑝𝑝𝜎⃗𝜎 ⋅ 𝑛𝑛

Chiral electrons/helical
pseudospin direction  is 

linked to an axis 
determined by electronic 

momentum.

for conduction band 
electrons,

valence band (‘holes’)
1=⋅ n

σ

1−=⋅n
σ

It is due to symmetry 
of the honeycomb 
lattice

smcvF
610300/ ==

Dirac equation

ℎ = 1
2
𝜎𝜎 𝑝⃗𝑝
𝑝𝑝

  Helicity:




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




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ψ
ψ

ψ

𝐻𝐻 = 𝑣𝑣𝐹𝐹
0 𝜉𝜉𝑝𝑝𝑥𝑥 − 𝑖𝑖𝑝𝑝𝑦𝑦

𝜉𝜉𝜉𝜉𝑥𝑥 + 𝑖𝑖𝑝𝑝𝑦𝑦 0 = 𝑣𝑣𝐹𝐹𝑝𝑝
0 ±𝑒𝑒∓𝑖𝑖𝑖𝑖

±𝑒𝑒±𝑖𝑖𝑖𝑖 0
= 𝑣𝑣𝐹𝐹𝝈𝝈𝝈𝝈

Effective Hamiltonian in K/K’ valley (𝜉𝜉 = ±):

Eigenfunctions

𝜓𝜓𝑒𝑒 𝜑𝜑 =
1
2
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒∓𝑖𝑖𝜑𝜑/2

𝑒𝑒±𝑖𝑖𝜑𝜑/2
𝜓𝜓ℎ 𝜑𝜑 =

1
2
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒∓𝑖𝑖𝜑𝜑/2

−𝑒𝑒±𝑖𝑖𝜑𝜑/2𝐸𝐸𝑒𝑒/ℎ = ±v|𝐩𝐩|

𝜎𝜎 =
𝜉𝜉𝜎𝜎𝑥𝑥
𝜎𝜎𝑦𝑦

𝜑𝜑 = arctan(𝑝𝑝𝑦𝑦/𝑝𝑝𝑥𝑥)

In K valley conduction band k parallel to pseudospin, in valance band it is opposite. It 
inverts in K valley.  This prevents backscattering: pseudospin is conserved. Intervalley 
scattering needs large momentum.

e.g. 𝑝𝑝𝑦𝑦= 0, 𝜓𝜓𝐵𝐵,𝐾𝐾 𝜑𝜑 =
1
2
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 1

1

𝜓𝜓𝐴𝐴𝐴𝐴,𝐾𝐾 𝜑𝜑 =
1
2
𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 1

−1

Helicity eigenfunctions with ±1 eigenvalues
𝜓𝜓𝐵𝐵,𝐾𝐾/𝐾𝐾𝐾 𝜑𝜑  is an eigenfunction of 𝜎⃗𝜎 with ± 1 
in K/K’ valleys (blue arrows)  P/AP to 
momentum (black arrows)
Same for anti-bonding wave-functions

Inverts for opposite momentum



Eigenfunctions

Since pseudo-spin is conserved 
intravalley backscattering is 
prohibited.
For intervalley scattering large 
momentum – atomic defects are 
required.under pseudospin 

conservation, 
helicity suppresses 
backscattering in a 
monolayer

ϕ = 0

𝜓𝜓 𝜙𝜙 𝜓𝜓 𝜙𝜙 = 0 2~ cos2 𝜙𝜙/2

𝜓𝜓𝑒𝑒,𝐾𝐾 𝜑𝜑 =
1
2
𝑒𝑒−𝑖𝑖𝜑𝜑/2

𝑒𝑒𝑖𝑖𝜑𝜑/2

𝜓𝜓𝑒𝑒,𝐾𝐾 𝜑𝜑 = 0 =
1
2

1
1

If the scattering potential is pseudo-spin 
conserving, i.e. it does not contain 𝜎𝜎:

𝜓𝜓 𝜙𝜙 𝑉𝑉|𝜓𝜓 𝜙𝜙 = 0 2

= 𝑉𝑉 2 𝜓𝜓 𝜙𝜙 𝜓𝜓 𝜙𝜙 = 0

Scattering angular distribution



Pseudospin

Michael Fuhrer

A
B

A
B
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






0
1









1
0

FA(r),    or 

FB(r),    or

“anti-bonding”
E = +γ0

“bonding”
E = -γ0









−1
1

2
1









1
1

2
1

Γ point:
k = 0

Visualization of the phase of the pseudospin on lattice



Pseudospin Visualization of the phase of the pseudospin on lattice

3
4

3
2

1

π

π

i

i

e

e

λ

K

K

K









0
1FA(r),    or 









1
0FB(r),    or

Phase:

K
2

3a
=λ

a3
4π

=K

The phase modulates on the lattice on short length 
scale due to 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 phase of the wavefunction



Pseudospin









0
1

FA(r),    or 









1
0

FB(r),    or

K

2
3a

=λ
a3

4π
=K

0
π/3

2π/3
π

5π/3

4π/3

“anti-bonding”

“bonding”









−1
1

2
1









1
1

2
1

K point:
Bonding and anti-bonding 

are degenerate!

Visualization of the phase of 
the pseudospin on lattice



Pseudospin

30 degrees

390 degrees

0
π/3

2π/3
π

5π/3

4π/3

360 rotations does not give the same!



Pseudospin

K’ K

K: k||-x K: k||xK’: k||-x

real-space
wavefunctions
(color denotes
phase)

k-space
representation

bonding
orbitals

bonding
orbitals

anti-bonding
orbitals

bonding

anti-bonding

Intervalley: just a mirroring of phases, intravalley scattering should change relative amplitude 
on A and B



Nature 438, 201 (2005)
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Measurement of Hall resistance allows to  determine n. 
Combining it with ρ, μ can be derived. 

Measurement:
Graphene (blue) is etched to a Hall bar shape  and 
contacted by metal leads (yellow). Si layer is doped,
used as a backgate (G) . By applying voltage on G the 
chemical potential of graphene can be varied.

Drude model:

R vs. Vg characteristics

Basic transport characteristics

Effect of gate voltage, Vg? 

               

x
y

Fig. a: longitudinal resistance vs. Vg,  ΔR≈ 100 times!
Fig. b: mobility and charge carrier density vs. Vg 
- At Vg=0, RH (and n) changes sign  border between e 
and h bands
- If Vg 0 R , however R is finite (≈4kOhm) at Dirac 
point  although n=0. (No real OFF state.)

holes electrons

Basic transport properties

𝐸𝐸 = ±ℏ𝑣𝑣𝑓𝑓 𝑘𝑘
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Problem: charge traps in SiO2 substrate decreases mobility of graphene at low temperature 
(at high T phonons also play a role)
To improve mobility, eliminate the substrate.  Suspended graphene samples
Two techniques:
- Etched SiO by BHF   -

High-quality graphene structures - suspension

Use an organic polymer 
bellow, expose and dissolve 

Suspended devices
• Can have ultra-low residual disorder
• High mobility, electron optical experiments (also 
electro-mechanical)
• Fragile, have to be current annealed

R. Maurand, et al., Carbon  79, 486 (2014)

http://xxx.lanl.gov/abs/1009.4213


Advantages:
- Atomically smooth surface that is relatively free 
of dangling bonds and charge traps. 
- Lattice constant similar to that of graphite and 
has optical phonon modes at large energy and has 
a large electrical bandgap.

Dean et. al., Nature Nanotech 5, 722 (2010), L. Wang Science 01 Nov 2013:
Vol. 342, Issue 6158, pp. 614-617D. G. Purdie et al., arXiv:1803.00912 (2018)

room-T mobility close to 100,000 cm2/V·s

High-quality graphene structures – hBN substrate



High-quality graphene structures – hBN substrate

Fabrication of 
encapsulated devices
• encapsulation in hBN using 
van der Waals pickup
• AFM to characterize the stack
• e-beam lithography and 
evaporation

L. Wang et al., Science 
342, 614 (2013)



High-quality graphene structures – hBN substrate

New technique with SiNx 
membrane
Ultra-clean assembly of devices
Up to 20 𝜇𝜇𝜇 mean-free path (l) 
can be achieved!

W. Wang et al., Nature Electronics  6,  981–990 (2023)



Reduced disorder

hBN as an ideal substrate
Step forward: fully encapsulate graphene in 
hBN – high quality but hard to access – side 
contacts are needed
Clean interfaces (see next slide)

Higher quality since:
Reduced charge fluctuation
Measurement: STM spectroscopy 
measurement
Plotted is the spatial fluctuation of 
the CNP (measured by spectroscopy 
mode)
Graphite gate: flat surface and 
screens additional fluctuations

M. Yankowitz et al., Nat. Rev. Phys. 1, 
112 (2019)



High quality devices with sample size < Le 
Ballistic electron trajectories, no scattering. 
Similar motion as ray of light. ~ optics
 

Nature Physics 9, 225–229 (2013)

Electron optics in graphene 

- Electrically tunable 
transverse magnetic 
focusing in graphene
Graphene stacked in hBN 
protection layers
Electron velocity and B field 
sets the radius of circular 
trajectories
Velocity opposite for electrons 
and holes (radially outward or 
inward, respectively)

𝑅𝑅𝑐𝑐 =
ℏ𝑘𝑘𝑓𝑓
𝑒𝑒𝑒𝑒

=
ℏ 𝑛𝑛𝑛𝑛
𝑒𝑒𝑒𝑒

𝑘̇𝑘 = −
𝑒𝑒
ℏ

(𝐸𝐸 + 𝑟̇𝑟 × 𝐵𝐵) Novel, ultraclean 
devices: focusing on 
30 𝜇𝜇𝜇 length scale

W. Wang et al., 
Nature Electronics  
6,  981–990 (2023)



Massless Dirac Fermions?

Consider Quasi Classical Dynamics of  Dirac electrons (pos. sign)

𝑣⃑𝑣 ≡ 1
ℏ
𝜕𝜕𝜕𝜕
𝜕𝜕𝑘𝑘

= 1
ℏ
ℏ𝑣𝑣𝐹𝐹

𝑘𝑘
𝑘𝑘

= 𝑣𝑣𝐹𝐹𝑒𝑒𝑘𝑘 = 𝑣𝑣𝐹𝐹2
𝑘𝑘
𝐸𝐸

,  

thus 𝑣𝑣 = 𝑣𝑣𝐹𝐹, 𝑣⃑𝑣||𝑘𝑘 

Speed of e is constant independent of
momentum, like photons (vF c)

What is m, effective mass?

1
𝑚𝑚

=
1
𝑚𝑚𝑥𝑥𝑥𝑥

=
1
ℏ2
𝜕𝜕2𝐸𝐸
𝜕𝜕𝑘𝑘𝑥𝑥2

For quadratic dispersion: 𝐸𝐸 = ℏ2𝑘𝑘2

2𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒
, 𝑚𝑚 = 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒

For Dirac electrons, where 𝐸𝐸 𝑘𝑘 =  ℏ𝑣𝑣𝐹𝐹 𝑘𝑘   ?

Naively 1/m= 0, but NOT. To calculate 1/m:

𝜕𝜕2 𝑘𝑘
𝜕𝜕𝑘𝑘𝑥𝑥2

= ⋯ = 𝑘𝑘𝑦𝑦2

𝑘𝑘 3  1
𝑚𝑚𝑥𝑥𝑥𝑥

= 1
ℏ
𝑣𝑣𝐹𝐹

𝑘𝑘𝑦𝑦2

𝑘𝑘3

𝜕𝜕 𝑘𝑘
𝜕𝜕𝑘𝑘𝑥𝑥

= 1
2
2𝑘𝑘𝑥𝑥
𝑘𝑘

    Effective mass depends on k Beenakker, Reviews of Modern Physics,  80, 1337 (2008)

𝐸𝐸 = ±ℏ𝑣𝑣𝑓𝑓 𝑘𝑘



N-P junction:
Potential profile with 
a step of U0 at a distance d

Klein scattering: 
perfect transmission 
 at normal incident
This is again pseudo-spin 
conservation

Evolution of group velocity:

𝑑𝑑𝑣𝑣𝑥𝑥
𝑑𝑑𝑑𝑑

≡
1
𝑚𝑚𝑥𝑥𝑥𝑥

𝐹𝐹𝑥𝑥 =
1
𝑚𝑚𝑥𝑥𝑥𝑥

(−𝑒𝑒)𝐸𝐸0 (∗)

In linear electrostatic potential (e.g. slope in Figure) : 

𝑈𝑈 = 𝐸𝐸0𝑥𝑥,  𝐸𝐸𝑥𝑥 = 𝐸𝐸0,  𝐹𝐹𝑥𝑥 = −𝑒𝑒𝐸𝐸0

At normal incidence:  𝑘𝑘𝑦𝑦 = 0  𝑑𝑑𝑣𝑣𝑥𝑥
𝑑𝑑𝑑𝑑

= 0  backscattering is 
avoided. Electron can propagate through an infinite high potential 
barrier.

ℏ𝑘̇𝑘 ≡ 𝐹⃑𝐹 = −𝑒𝑒𝐸𝐸0𝑒𝑒𝑥𝑥  (∗∗)

Effect of the potential profile, U (see figure):

- k decreases and changes sign (**)

- based on (*), 𝑣⃑𝑣 stays constant, i.e. 𝑣⃑𝑣 = 𝑣𝑣𝐹𝐹𝑒𝑒𝑥𝑥.

 e ends up in the valence band

1
𝑚𝑚𝑥𝑥𝑥𝑥

=
𝑣𝑣𝐹𝐹
ℏ

𝑘𝑘𝑦𝑦2

𝑘𝑘 3

𝒗𝒗

𝒌𝒌
𝒌𝒌
𝒗𝒗𝐸𝐸 = +ℏ𝑣𝑣𝑓𝑓 𝑘𝑘 𝐸𝐸 = −ℏ𝑣𝑣𝑓𝑓 𝑘𝑘

Fermi surfaces



Beenakker, Reviews of Modern Physics,  80, 1337 (2008) Geim, Kim, Sci.Am. 298,  90 (2008)

Klein tunneling and backscattering



Klein tunneling and backscattering

Electron reflection and 
refraction
1D potential – invariant in the y 
direction, 𝑘𝑘𝑦𝑦 is conserved

Snell’s law can be derived - ratio 
of k vectors gives the refraction 
angles (densities).
For p-n junctions negative 
refraction!

Idea: Veselago lens

Flat lens cane be made for 
focusing

H. Chakraborti et al., arxiv:2401.04233



- Negative refraction.
In p-n junctions the refraction is 
unconventional!
Can be seen e.g. in a focusing 
experiment.

S.Chen et al., Science 353, 1522 (2016)



Klein tunneling and backscattering

Sharp p-n junction Smooth p-n junction

From focusing measurement 
on p-n junction:

Dashed analytic, 
blue numerical

Smooth p-n junctions act as collimator 
(narrow angular distribution)

S.Chen et al., Science 353, 1522 (2016)

H. Chakraborti et al., arxiv:2401.04233



Suspended graphene sample, with two gates bellow.
Half of the sample electron (red) and half of it hole (blue) doped.
Snake state propagates at the border.

P. M., et al., PRB. 98, 035413 (2018) 
P. Rickhaus, et al. Nature Comm. 6, 6470 (2015)

Snake states



Transmission probability T 
through a 100-nm-wide 
barrier as a function of the 
incident angle, two different 
barrier height

Katsnelson et al Nature Physics, 2, 620 (2006)

Transmission probability vs. D
of normally incident electrons
- in single- and bi-layer graphene (red and 
blue curves, respectively) and in a non-chiral 
zero-gap semiconductor (green curve)

 Difficult to measure whether it 
is 100%, since e-s out of normal 
incident also arrive

Result of proper calculation
Wave function matching

Klein tunneling and backscattering



Fabry-Perot interferences

Positive interference:

For graphene:

n - n’ - n

n - p’ - n

p - n - p

p- p’ - p
With two gate p-n-p junction can be realized
Lower conductance in bipolar regime.
Oscillations show up!



C. Handschin, et al., Nano Lett., 17, 328 (2017)

Fabry-Perot interferences

Oscillations in 
different regimes
Bipolar oscillations 
are the most visible 
(blue)

Filtering of trajectories: only close to perpendicular 
trajectories are important in the oscillation
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