Graphene

Outline:

- Introduction (Making graphene, Applications, etc.)
- Band structure
- Physics of Dirac electrons (Barry phase, Klein tunneling)
- Half-Integer Quantum Hall Effect
- High quality graphene structures

References:

...

- E. McCann Graphene monolayers Lancaster University, UK Tight-binding model, QHE
- C. Beenakker, Reviews of Modern Physics, 80, 1337 (2008)
- L. Tapaszto & J. Cserti talks, MAFIHE Teli Iskola a Grafenrol 2011, ELTE
- A. Geim talk, TNT Conference 2010
 <u>http://www.tntconf.org/2010/Presentaciones/TNT2010_Geim.pdf</u>

Graphene

Graphene 2D

1985 H.W.Kroto Mass spectrometer **1991** S lijima Electron microscope **2004** K. S. Novoselov Optical microscope

Graphene – Nobel Prize in Physics 2010

Andre Geim

Kostya Novoselov

"for groundbreaking experiments regarding the two dimensional material graphene"

Surprising, since growth of macroscopic 2D objects is strictly forbidden due to phonons (Mermin Wagner - theorem)

Electric Field Effect in Atomically Thin Carbon Films

K. S. Novoselov, ¹ A. K. Geim, ¹* S. V. Morozov, ² D. Jiang, ¹ Y. Zhang, ¹ S. V. Dubonos, ² I. V. Grigorieva, ¹ A. A. Firsov²

We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10^{13} per square centimeter and with room-temperature mobilities of ~ 10,000 square centimeters per volt-second can be induced by applying gate voltage.

How to make graphene?

Mechanical exfoliation

MacGyver in the physics (ab

For proper SiO₂ thickness interference makes it visible by optical microscope + Even size of 1mm, + high quality, low yield

Other methods

Sonication + centrifugation, often intercalation

→ Submicrometer crystallites, mass production, industrial scale
 → Good for polycrystalline films and composite materials.
 Suspension can be printed resulting highly conductive bendable film

Growth of a monolayer of carbon

→ CVD on Cu, Ni (Lower figs.): T + gas flow. Self terminating process. Result: single layer, - polycrystalline, it follows the crystallites of the metal surface, Use e.g. HCl to remove substrate. (commercially available)

Graphene growth front 0.2 mm 1 CM SiO2 Graphene Composition of the second s

Identification of graphene

AFM *e.g. possible to determine thickness*

STM e.g. exfoliated on metal substrate

nsity [a.u.]

2550

Raman spectroscopy *measure the energy difference of reflected laser light*

e.g. layer thickness can be determined from

the 2D peak

TEM

e.g. crystalite boarder SiC

Properties, applications

Good electronic quality:
 submicrons without scattering
 mobility > 200000 cm²/Vs @ RT
 (Si: <1500 cm²/Vs)

- Quantum effect at RT
- Strongest material,
- Most stretchable material
- Impermeable to gases (also He)
- Strain sensors
- Hall sensors
 - Conductive coatings etc.

Ultra High Frequency Transistors

Touch screen

Band structure of graphene

Graphite

Three dimensional layered material with hexagonal 2D layers [shown here with Bernal (AB) stacking]

Two dimensional material; zero gap semiconductor; Dirac spectrum of electrons

Bilayer

Images: V. Falko, Lecture notes

σ bonds

sp² hybridisation
single 2s and two 2p orbitals
hybridise forming three "σ bonds" in the x-y plane

Carbon has 6 electrons: 2 core electrons, 4 valence electrons – one 2s and three 2p orbitals

remaining $2p_z$ orbital [" π " orbital] exists perpendicular to the x-y plane, keep only this one orbital per site in the tight binding model

2 different atomic sites – 2 triangular sub-lattices

We take into account one π orbital per site, so there are two orbitals per unit cell.

Bloch functions

sum over all type B atomic sites in N unit cells b₁ M K b₂ 1st Brillouin zone

triangular reciprocal lattice – hexagonal Brillouin zone

atomic wavefunction

Bloch functions : label with j = 1 [A sites] or 2 [B sites]

$$\Phi_j(\vec{k},\vec{r}) = \frac{1}{\sqrt{N}} \sum_{\vec{R}_j}^N e^{i\vec{k}.\vec{R}_j} \varphi_j(\vec{r}-\vec{R}_j)$$

Eigenfunction Ψ_j (for j = 1 or 2) is written as a linear combination of Bloch functions: **Eigenvalue** E_j (for j = 1 or 2) is written as :

$$\Psi_j(\vec{k},\vec{r}) = \sum_{j'=1}^2 C_{jj'}(\vec{k}) \, \Phi_{j'}(\vec{k},\vec{r})$$

defining transfer integral matrix elements

$$H_{il} = \left\langle \Phi_i \left| H \right| \Phi_l \right\rangle;$$

and overlap integral matrix elements

 $S_{il} = \left\langle \Phi_i \left| \Phi_l \right\rangle \right.$

Explicitly write out sums:

 $m = 1 \quad \Rightarrow \quad H_{11}C_{j1} + H_{12}C_{j2} = E_j C_{j1}$ $m = 2 \quad \Rightarrow \quad H_{21}C_{j1} + H_{22}C_{j2} = E_j C_{j2}$

Write as a matrix equation:

$$\begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} \begin{pmatrix} C_{j1} \\ C_{j2} \end{pmatrix} = E_j \begin{pmatrix} C_{j1} \\ C_{j2} \end{pmatrix}$$

$$HC_j = E_jC_j$$

Secular equation gives the eigenvalues:

$$\det(H-E)=0$$

Diagonal matrix element

$$H_{AA} = \left\langle \Phi_A \left| H \right| \Phi_A \right\rangle = \frac{1}{N} \sum_{\vec{R}_{Ai}}^{N} \sum_{\vec{R}_{Aj}}^{N} e^{i\vec{k} \cdot (\vec{R}_{Aj} - \vec{R}_{Ai})} \left\langle \varphi_A \left(\vec{r} - \vec{R}_{Ai} \right) \right| H \left| \varphi_A \left(\vec{r} - \vec{R}_{Aj} \right) \right\rangle$$

Same site only:

$$H_{AA} = \frac{1}{N} \sum_{\vec{R}_{Ai}}^{N} \left\langle \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \middle| H \middle| \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \right\rangle \qquad S_{AA} = \frac{1}{N} \sum_{\vec{R}_{Ai}}^{N} \left\langle \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \middle| \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \right\rangle \\ = \left\langle \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \middle| H \middle| \varphi_{A} \left(\vec{r} - \vec{R}_{Ai} \right) \right\rangle \\ \equiv \varepsilon_{0} \qquad \equiv 1$$

A and B sites are chemically identical:

$$H_{AA} = H_{BB} = \varepsilon_0 \qquad \qquad S_{AA} = S_{BB} = 1$$

Off-diagonal matrix element

$$H_{AB} = \left\langle \Phi_A \left| H \right| \Phi_B \right\rangle = \frac{1}{N} \sum_{\vec{R}_{Ai}}^N \sum_{\vec{R}_{Bj}}^N e^{i\vec{k} \cdot \left(\vec{R}_{Bj} - \vec{R}_{Ai}\right)} \left\langle \varphi_A \left(\vec{r} - \vec{R}_{Ai}\right) \right| H \left| \varphi_B \left(\vec{r} - \vec{R}_{Bj}\right) \right\rangle$$

Every A site has 3 B nearest neighbours:

$$H_{AB} = \frac{1}{N} \sum_{\vec{R}_{Ai}}^{N} \left[\sum_{\vec{\delta}_{j}=1}^{3} e^{i\vec{k}.\vec{\delta}_{j}} \left\langle \varphi_{A}\left(\vec{r}-\vec{R}_{Ai}\right) \middle| H \middle| \varphi_{B}\left(\vec{r}-\vec{R}_{Bj}\right) \right\rangle \right] = \sum_{\vec{\delta}_{j}=1}^{3} e^{i\vec{k}.\vec{\delta}_{j}} \left\langle \varphi_{A}\left(\vec{r}-\vec{R}_{Ai}\right) \middle| H \middle| \varphi_{B}\left(\vec{r}-\vec{R}_{Bj}\right) \right\rangle$$

$$H_{AB} = \sum_{\vec{\delta}_j=1}^{3} e^{i\vec{k}\cdot\vec{\delta}_j} \left\langle \varphi_A(\vec{r}-\vec{R}_{Ai}) | H | \varphi_B(\vec{r}-\vec{R}_{Bj}) \right\rangle$$

Parameterise nearest neighbour transfer integral:

$$\gamma_{0} = -\left\langle \varphi_{A}\left(\vec{r} - \vec{R}_{Ai}\right) \middle| H \middle| \varphi_{B}\left(\vec{r} - \vec{R}_{Bj}\right) \right\rangle$$
$$H_{AB} = -\gamma_{0} f\left(\vec{k}\right); \qquad f\left(\vec{k}\right) = \sum_{\vec{\delta}_{j}=1}^{3} e^{i\vec{k}.\vec{\delta}_{j}}$$

$$\vec{\delta}_{1} = R_{B1} - R_{Ai} = \left(0, \frac{a}{\sqrt{3}}\right);$$

$$\vec{\delta}_{2} = R_{B2} - R_{Ai} = \left(\frac{a}{2}, -\frac{a}{2\sqrt{3}}\right);$$

$$\vec{\delta}_{3} = R_{B3} - R_{Ai} = \left(-\frac{a}{2}, -\frac{a}{2\sqrt{3}}\right)$$

$$f(\vec{k}) = e^{ik_{y}a/\sqrt{3}} + 2e^{-ik_{y}a/2\sqrt{3}}\cos\left(\frac{k_{x}a}{2}\right)$$

$$H = \begin{pmatrix} \varepsilon_0 & -\gamma_0 f(\vec{k}) \\ -\gamma_0 f^*(\vec{k}) & \varepsilon_0 \end{pmatrix}; \qquad \qquad E = \varepsilon_0 \pm \gamma_0 |f(\vec{k})|$$

$$E = \varepsilon_0 \pm \gamma_0 |f(\vec{k})| \qquad E(\mathbf{k}) = E_F \pm \gamma_0 \sqrt{1 + 4\cos\left(\frac{\sqrt{3}k_x a}{2}\right)\cos\left(\frac{k_y a}{2}\right) + 4\cos^2\left(\frac{k_y a}{2}\right)}$$

- Two non-equivalent valleys: K and K', where the dispersion is linear
- $E_f = 0$ for undoped graphene

Dispersion exactly at the K point

 $\vec{K} = \left(\frac{4\pi}{3a}, 0\right); \quad \vec{K}' = \left(-\frac{4\pi}{3a}, 0\right)$

$$\begin{split} \vec{\delta}_1 &= \left(0, \frac{a}{\sqrt{3}}\right); \qquad \Rightarrow \quad \vec{K}\vec{\delta}_1 = 0\\ \vec{\delta}_2 &= \left(\frac{a}{2}, -\frac{a}{2\sqrt{3}}\right); \qquad \Rightarrow \quad \vec{K}\vec{\delta}_2 = \frac{2\pi}{3}\\ \vec{\delta}_3 &= \left(-\frac{a}{2}, -\frac{a}{2\sqrt{3}}\right); \qquad \Rightarrow \quad \vec{K}\vec{\delta}_3 = -\frac{2\pi}{3} \end{split}$$

$$f(\vec{K}) = \sum_{\vec{\delta}_j=1}^3 e^{i\vec{K}.\vec{\delta}_j} = e^0 + e^{2\pi i/3} + e^{-2\pi i/3} = 0$$

6 corners of the Brillouin zone (K points), but only two are non-equivalent

K points also referred to as "valleys"

Two non-equivalent K-points

Expansion near the K points

Consider two non-equivalent K points:

$$\vec{K}, \vec{K}' = \xi \left(\frac{4\pi}{3a}, 0\right); \qquad \xi = \pm 1$$

and small momentum near them:

$$\vec{k} = \xi \left(\frac{4\pi}{3a}, 0\right) + \frac{\vec{p}}{\hbar}$$

Linear expansion in small momentum:

$$f\left(\vec{k}\right) = -\frac{\sqrt{3a}}{2\hbar} \left(\xi p_x - ip_y\right) + O\left(\frac{pa}{\hbar}\right)^2$$

 C_i

$$H = \begin{pmatrix} 0 & -\gamma_0 f(\vec{k}) \\ -\gamma_0 f^*(\vec{k}) & 0 \end{pmatrix} \approx v \begin{pmatrix} 0 & \xi p_x - ip_y \\ \xi p_x + ip_y & 0 \end{pmatrix} \qquad v_F = \frac{\sqrt{3}a\gamma_0}{2\hbar} \approx 10^6 m/s$$

New notation for components on A and B sites

$$= \begin{pmatrix} C_{j1} \\ C_{j2} \end{pmatrix} \iff \psi = \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}$$

$$HC_{j} = E_{j}C_{j} \quad \Rightarrow \quad v_{F}\begin{pmatrix} 0 & \xi p_{x} - ip_{y} \\ \xi p_{x} + ip_{y} & 0 \end{pmatrix} \begin{pmatrix} \psi_{A} \\ \psi_{B} \end{pmatrix} = E\begin{pmatrix} \psi_{A} \\ \psi_{B} \end{pmatrix}$$

Tight-binding model of graphene – Dirac equation

For one K point (e.g. ξ =+1) we have a 2-component wave function: Effective Hamiltonian:

$$H = v_F \begin{pmatrix} 0 & p_x - ip_y \\ p_x + ip_y & 0 \end{pmatrix} = v_F \begin{pmatrix} 0 & \pi^+ \\ \pi & 0 \end{pmatrix} = v_F (\sigma_x p_x + \sigma_y p_y) = v_F \vec{\sigma} \cdot \vec{p}$$

 $\pi = p_x + ip_y = pe^{i\varphi}$ $\pi^+ = p_x - ip_y = pe^{-i\varphi}$

Bloch function amplitudes on the AB sites ('pseudospin') mimic spin components of a relativistic Dirac fermion.

 $\psi = \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}$

Pseudospin is an index that indicates on which of the two sublattices a quasi-particle is located

To take into account both K points (ξ =+1 and ξ =-1) we can use a 4-component wave function:

$$\psi = \begin{pmatrix} \psi_{AK} \\ \psi_{BK} \\ \psi_{AK'} \\ \psi_{BK'} \end{pmatrix} \longrightarrow H = v_F \begin{pmatrix} 0 & p_x - ip_y & 0 & 0 \\ p_x + ip_y & 0 & 0 & 0 \\ 0 & 0 & 0 & -p_x - ip_y \\ 0 & 0 & -p_x + ip_y & 0 \end{pmatrix}$$

Isospin: K and K' valleys are also called isospin.

Dirac equation

$$H = v_F \begin{pmatrix} 0 & \pi^+ \\ \pi & 0 \end{pmatrix} = v_F \vec{\sigma} \cdot \vec{p} = v_F p \vec{\sigma} \cdot \vec{n}$$

Helicity:

$$\vec{h} = \frac{1}{2} \frac{\vec{\sigma} \, \vec{p}}{|p|}$$

Chiral electrons/helical pseudospin direction is linked to an axis determined by electronic momentum.

for conduction band electrons,

 $\vec{\sigma} \cdot \vec{n} = 1$

valence band ('holes')

 $\vec{\sigma} \cdot \vec{n} = -1$

It is due to symmetry of the honeycomb lattice

 $v_F = c/300 = 10^6 m/s$

Eigenfunctions

Effective Hamiltonian in K/K' valley ($\xi = \pm$):

$$H = v_F \begin{pmatrix} 0 & \xi p_x - ip_y \\ \xi p_x + ip_y & 0 \end{pmatrix} = v_F p \begin{pmatrix} 0 & \pm e^{\mp i\varphi} \\ \pm e^{\pm i\varphi} & 0 \end{pmatrix} = v_F \sigma p \qquad \sigma = \begin{pmatrix} \xi \sigma_x \\ \sigma_y \end{pmatrix}$$

$$E_{e/h} = \pm \mathbf{v}|\mathbf{p}| \qquad \psi_e(\varphi) = \frac{1}{\sqrt{2}} e^{ikr} \begin{pmatrix} e^{+i\varphi/2} \\ e^{\pm i\varphi/2} \end{pmatrix} \qquad \psi_h(\varphi) = \frac{1}{\sqrt{2}} e^{ikr} \begin{pmatrix} e^{-ix} \\ -e^{\pm i\varphi/2} \end{pmatrix} \qquad \varphi = \arctan(p_y/p_x)$$

Inverts for opposite momentum

In K valley conduction band **k** parallel to pseudospin, in valance band it is opposite. It inverts in K valley. This prevents backscattering: pseudospin is conserved. Intervalley scattering needs large momentum.

e.g.
$$p_y = 0$$
, $\psi_{B,K}(\varphi) = \frac{1}{\sqrt{2}} e^{ikx} \begin{pmatrix} 1\\1 \end{pmatrix}$
 $\psi_{AB,K}(\varphi) = \frac{1}{\sqrt{2}} e^{-ikx} \begin{pmatrix} 1\\-1 \end{pmatrix}$

 $\psi = \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}$

Helicity eigenfunctions with ± 1 eigenvalues $\psi_{B,K/K'}(\varphi)$ is an eigenfunction of $\vec{\sigma}$ with ± 1 in K/K' valleys (blue arrows) \rightarrow P/AP to momentum (black arrows) Same for anti-bonding wave-functions

If the scattering potential is pseudo-spin conserving, i.e. it does not contain σ :

$$\begin{split} |\langle \psi(\phi) | V | \psi(\phi = 0) \rangle|^2 \\ &= |V|^2 |\langle \psi(\phi) | \psi(\phi = 0) \rangle| \\ \psi_{e,K}(\varphi) &= \frac{1}{\sqrt{2}} {e^{-i\varphi/2} \choose e^{i\varphi/2}} \\ \psi_{e,K}(\varphi = 0) &= \frac{1}{\sqrt{2}} {1 \choose 1} \end{split}$$

 $|\langle \psi(\phi)|\psi(\phi=0)\rangle|^2 \sim \cos^2(\phi/2)$

Since pseudo-spin is conserved intravalley backscattering is prohibited.

For intervalley scattering large momentum – atomic defects are required.

Michael Fuhrer

Pseudospin

Visualization of the phase of the pseudospin on lattice

$$\left|\mathbf{K}\right| = \frac{4\pi}{3a} \implies \lambda = \frac{3a}{2}$$

The phase modulates on the lattice on short length scale due to e^{iKx} phase of the wavefunction

"anti-bonding"

 $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

K point: Bonding and anti-bonding are degenerate!

"bonding"

Visualization of the phase of the pseudospin on lattice

360 rotations does not give the same!

Intervalley: just a mirroring of phases, intravalley scattering should change relative amplitude on A and B

Basic transport properties

Measurement:

Graphene (blue) is etched to a Hall bar shape and contacted by metal leads (yellow). Si layer is doped, used as a backgate (G). By applying voltage on G the chemical potential of graphene can be varied.

Effect of gate voltage, V_g ?

$$N = C_g V_g / e \rightarrow n \sim V_g \rightarrow k_F \sim \sqrt{V_g}$$

Drude model:

$$v_d \equiv \mu E, \ j \equiv env_d = en\mu E = \sigma E, \ \sigma = en\mu$$

 $\sigma = 1/\rho = \frac{e^2 n\tau}{m}, \ \mu = \frac{e\tau}{m}, \ R_H = \frac{V_y}{I} = \frac{E_y}{j_x} = -\frac{B}{ne}$

Measurement of Hall resistance allows to determine n.

Combining it with ρ , μ can be derived.

Fig. a: longitudinal resistance vs. Vg, $\Delta R \approx 100$ times! Fig. b: mobility and charge carrier density vs. Vg - At V_g=0, R_H (and n) changes sign \rightarrow border between e and h bands

- If $V_g \rightarrow 0 R \nearrow$, however R is finite ($\approx 4kOhm$) at Dirac point although n=0. (No real OFF state.)

High-quality graphene structures - suspension

Problem: charge traps in SiO2 substrate decreases mobility of graphene at low temperature (at high T phonons also play a role)

To improve mobility, eliminate the substrate. \rightarrow Suspended graphene samples Two techniques:

- Etched SiO by BHF

Use an c

Use an organic polymer bellow, expose and dissolve

Suspended devices

- Can have ultra-low residual disorder
- High mobility, electron optical experiments (also electro-mechanical)
- Fragile, have to be current annealed

R. Maurand, et al., Carbon 79, 486 (2014)

High-quality graphene structures – hBN substrate

Е

room-T mobility close to 100,000 cm2/V[.]s Advantages:

- Atomically smooth surface that is relatively free of dangling bonds and charge traps.

- Lattice constant similar to that of graphite and has optical phonon modes at large energy and has a large electrical bandgap.

Dean et. al., Nature Nanotech 5, 722 (2010), L. Wang *Science* 01 Nov 2013: Vol. 342, Issue 6158, pp. 614-617D. G. Purdie et al., arXiv:1803.00912 (2018)

High-quality graphene structures – hBN substrate

L. Wang et al., Science

Fabrication of encapsulated devices

- encapsulation in hBN using van der Waals pickup
- AFM to characterize the stack
- e-beam lithography and evaporation

High-quality graphene structures – hBN substrate

New technique with SiNx membrane Ultra-clean assembly of devices Up to 20 μ m mean-free path (/) can be achieved!

W. Wang et al., Nature Electronics 6, 981–990 (2023)

Reduced disorder

hBN as an ideal substrate Step forward: fully encapsulate graphene in hBN – high quality but hard to access – side Clean interfaces (see next slide)

Higher quality since:

Reduced charge fluctuation Measurement: STM spectroscopy measurement

Plotted is the spatial fluctuation of the CNP (measured by spectroscopy mode)

Graphite gate: flat surface and screens additional fluctuations

M. Yankowitz et al., Nat. Rev. Phys. 1, 112 (2019)

Electron optics in graphene

High quality devices with sample size $< L_e$ Ballistic electron trajectories, no scattering. Similar motion as ray of light. ~ optics

- Electrically tunable transverse magnetic focusing in graphene

Graphene stacked in hBN protection layers Electron velocity and B field sets the radius of circular trajectories

Velocity opposite for electrons and holes (radially outward or inward, respectively)

$$\dot{k} = -\frac{e}{\hbar}(E + \dot{r} \times B)$$
$$R_c = \frac{\hbar k_f}{eB} = \frac{\hbar \sqrt{n\pi}}{eB}$$

Nature Physics 9, 225–229 (2013)

30 um

-75

-50

Magnetic field (mT)

-0.3

0

Novel, ultraclean devices: focusing on $30 \ \mu m$ length scale *W. Wang et al., Nature Electronics 6, 981–990 (2023)*

Massless Dirac Fermions?

Consider Quasi Classical Dynamics of Dirac electrons (pos. sign)

$$\vec{v} \equiv \frac{1}{\hbar} \frac{\partial E}{\partial \vec{k}} = \frac{1}{\hbar} \hbar v_F \frac{\vec{k}}{|k|} = v_F \overline{e_k} = v_F^2 \frac{\vec{k}}{E},$$

thus $|v| = v_F, \vec{v} ||\vec{k}|$

→ Speed of e is constant independent of momentum, like photons (v_{F} ↔c)

What is m, effective mass?

 $\frac{1}{m} = \frac{1}{m_{xx}} = \frac{1}{\hbar^2} \frac{\partial^2 E}{\partial k_x^2}$

For quadratic dispersion: $E = \frac{\hbar^2 k^2}{2m_{eff}}$, $m = m_{eff}$

For Dirac electrons, where $E(\vec{k}) = \hbar v_F |\vec{k}|$?

Naively 1/m= 0, but NOT. To calculate 1/m:

$$\frac{\partial^2 |k|}{\partial k_x^2} = \dots = \frac{k_y^2}{|k|^3} \rightarrow \frac{1}{m_{xx}} = \frac{1}{\hbar} v_F \frac{k_y^2}{k^3}$$
$$\frac{\partial |k|}{\partial k_x} = \frac{1}{2} \frac{2k_x}{|k|} \rightarrow \text{ Effective mass depends on } k$$

$$E = \pm \hbar v_f |\vec{k}|$$

$$U$$

$$conduction band$$

$$E_F$$

0

Beenakker, Reviews of Modern Physics, 80, 1337 (2008)

$$\frac{1}{m_{xx}} = \frac{v_F}{\hbar} \frac{k_y^2}{|k|^3}$$

N-P junction: Potential profile with a step of Uo at a distance d

Klein scattering:

perfect transmission at normal incident This is again pseudo-spin conservation Evolution of group velocity:

$$\frac{dv_x}{dt} \equiv \frac{1}{m_{xx}} F_x = \frac{1}{m_{xx}} (-e) E_0 \quad (*)$$

In linear electrostatic potential (e.g. slope in Figure) :

$$U = E_0 x, \qquad E_x = E_0, \qquad F_x = -eE_0$$

At normal incidence: $k_y = 0 \rightarrow \frac{dv_x}{dt} = 0 \rightarrow backscattering is$ avoided. Electron can propagate through an infinite high potential barrier.

$$\hbar \dot{\vec{k}} \equiv \vec{F} = -eE_0 \overrightarrow{e_x} \quad (**)$$

Effect of the potential profile, U (see figure):

- k decreases and changes sign (**)
- based on (*), \vec{v} stays constant, i.e. $\vec{v} = v_F \vec{e_x}$.
- ightarrow e ends up in the valence band

Fermi surfaces

Klein tunneling and backscattering

Beenakker, Reviews of Modern Physics, 80, 1337 (2008)

Geim, Kim, Sci.Am. 298, 90 (2008)

Electron reflection and refraction

1D potential – invariant in the y direction, k_y is conserved

Snell's law can be derived - ratio of k vectors gives the refraction angles (densities). For p-n junctions negative refraction!

Idea: Veselago lens

Flat lens cane be made for focusing

H. Chakraborti et al., arxiv:2401.04233

- Negative refraction.

In p-n junctions the refraction is unconventional! Can be seen e.g. in a focusing experiment.

-30

-20

10

Incident Angle (degrees)

0

10

-40

20

H. Chakraborti et al., arxiv:2401.04233

S.Chen et al., Science 353, 1522 (2016)

Snake states

Suspended graphene sample, with two gates bellow. Half of the sample electron (red) and half of it hole (blue) doped. Snake state propagates at the border.

$$R_{\rm C} = \frac{\hbar \sqrt{n\pi}}{eB}$$
$$G(E) \sim \cos\left[\pi \frac{W}{R_{\rm C,p} + R_{\rm C,n}}\right]$$

Klein tunneling and backscattering

Result of proper calculation

Wave function matching

Transmission probability vs. D

of normally incident electrons - in single- and bi-layer graphene (red and blue curves, respectively) and in a non-chiral zero-gap semiconductor (green curve)

Transmission probability T

through a 100-nm-wide barrier as a function of the incident angle, two different barrier height

→ Difficult to measure whether it is 100%, since e-s out of normal incident also arrive

Fabry-Perot interferences

Fabry-Perot interferences

Oscillations in different regimes Bipolar oscillations are the most visible (blue)

Filtering of trajectories: only close to perpendicular trajectories are important in the oscillation

C. Handschin, et al., Nano Lett., 17, 328 (2017)