János Volk volk@mfa.kfki.hu www.nems.hu

ADVANCED SEMICONDUCTOR DEVICES

02_CMOS_Technology

February 12nd, 19th, 2020

Stages of semiconductor manufacturing

Material preparation:

Sand to polycrystalline silicon

Crystal growth and wafer preparation:

Polycrystalline silicon to wafer

Wafer fabrication

Circuit/devices formed in/on wafer surface

Packaging

Functioning die placed in a protective package

Si single crystal

High quality single crystal in large size

Single crystal Si grown by Czochralski method

Face centered cubic crystal (fcc)

+ advantageous physical properties and good quality native oxide

- Microelectronics is based on mainly on **Si**.
- III-V semiconductors play an important role in optoelectronics.

Czochralski method

- Polysilicon nuggets with the dopants are melted in the quartz crucible at a T>1400°C
- Purity of the polysilicon nuggets 99.9999999% (9N)
- Si crystal Si crystal with the desired orientation (<100>,
 <110>, <111> is slowly pulled out; both the seed and the crucible is rotated to maintain homogeneity
- Typical impurity concentration: N_0 : 10¹⁸ cm⁻³, N_c : 10¹⁶ cm⁻³ (N_{si} =5·10²² 1/cm³)

Floating zone method

- No vessel is needed \rightarrow higher purity than for CZ
- Carrier concentration down to 10¹¹ cm⁻³ → highly resistive wafers (1-10 kOhm·cm)
- Max diameter is 150 mm because of the surface tension limitation
- Evacuated chamber or filled with inert gas
- Molten zone carries the impurities away from the c-Si → reduces impurity concentration (most impurities are more soluble in the melt than the crystal)
- Higher price compared to CZ
- Doping by dopant gases, such as PH₃, AsH₃, B₂H₆
- Mainly used for power devices

Wafer processing

Wire saw Ingot and wires approx. drawn to scale Silicon ingot Wire guides

- Wafer surface is relatively smooth, subsequent steps takes less time
- Low throughput

- Wafer surface is less smooth, subsequent lapping takes more time
- High throughput

The process is continued and finished by lapping, etching, polishing and cleaning

Wafer doping

Si wafer specification

Diameter (mm)	Growth	Dopant	Orientation	Finish	Coating
50.8	CZ	В	<100>	Single Side	With
76.2	E FZ	🗖 Ph	<111>	Double Side	Without
100		Sb	<110>	🔲 As Cut	
125		As		🔲 As Lapped	
150		Undoped		Ground	
200		Intrinsic		Etched	
300					
TTV	Bow	Warp	Thickness	Resistivity	
≤	≤	≤	min≥	min≥	
<i>р</i> -Тур <111>	<i>p</i> -Ty <100	/p)>	max≤	max ≤ <i>n</i> -Typ <100>	12" Si wafar (300 mm)
				8 Zoll	

Stages of semiconductor manufacturing

Material preparation:

Sand to polycrystalline silicon

Crystal growth and wafer preparation:

Polycrystalline silicon to wafer

Wafer fabrication

Circuit/devices formed in/on wafer surface

Packaging

Functioning die placed in a protective package

Wafer/chip processing techniques

I) Modifying methods	II) Additive methods	III) Subtractive methods	
 Ion Beam Treatment Implantation Amorphization Smart-cut 	 Thin film deposition Chemical Vapor Deposition (CVD) Physical Vapor Deposition (PVD) Chemical solution deposition (CSD) (Thermal growth) 	 Etching Wet chemical etching Ion beam etching Reactive Ion Etching 	
 Resist exposure Polymer hardening 	Printing techniquesInk-jet printingMicrocontact printing	 Tool-Assisted Material Removal Chemical-mechanical polishing (CMP) Chipping Drilling 	
 Thermal annealing Crystallization Diffusion Change of phase (Thermal growth) 	 Assembly Wafer bonding Surface mount technology Wiring and bonding methods 		

CMOS fabrication process

- Si wafer manufacturing •
- Thermal oxidation ٠
- Doping by ion implantation ٠
- Physical vapor deposition ٠
- Chemical deposition ٠
- Lithography •
- Etching ٠
- **Back-end process** ٠

). I	mp	anı	. 50	urces	anu	urai	ns	
ж.								
			-		and the second s			

n+ n+		
Hype substrate	nwei	

9. Grow nitride

(n+) (n+)	
p-type substrate	(Hweil

10. Etch nitride r - - T n+ n-wel p-type substrate

 Deposit meta 	al
ox.	
p-type substrate	n-well

12. Etch metal

Ion implantation

Doping by ion implantation

- Several advantages comapred to diffusion
- Ions are accelerated into a solid target for doping (e.g. for step 3)
- Both kinetic energy and dose can be accurately controlled
- Ultra thin junctions can be made
- Excellent doping uniformity across the wafer (< 1% variation across 12" wafer) and from wafer to wafer.
- Can be masked by thin films like photoresist or oxide
- Dopants are thermally activated after ion-implantation (substitutional position)
- Typical parameters:
 - Type of ion: P, As, Sb, B, O etc.
 - Dose (D, # of atoms/cm²): 10¹¹-10¹⁸ cm⁻²
 - Concentration (C, # of atoms/cm³), D = $\int_0^\infty C(x) dx$
 - Ion flux (Φ =D/t) 10¹²-10¹⁴ cm⁻²s⁻¹ , i.e. ~100nA-10 μ A
 - Acceleration energy: ~100ev- 1 MeV

Doping by ion implantation

9-10 different ion implantations during the full process!

Ion implanter

- Ion source: ionization chamber operating at high voltage (25-60 kV) and converts the electrically neutral dopant atoms into plasma ions in the gas phase (Arsine, Phosphine, Diborane, BF₃) (p~1 mTorr). Ionizing electrons are emitted from the filament.
- Mass separator: a magnet bends the ion beam through right angle and selects the desired impurity ion and purge undesired species. Selected ion passes through an aperture $\left(\frac{1}{2}mv^2 = V_{ext}q; qvB = M\frac{v^2}{R} \rightarrow \frac{M}{q} = \frac{R^2B^2}{2V_{ext}}\right)$
- Accelerator: adds energy to the beam up to 5MeV.
- Scanning system: x and y axis deflection plates to scan the beam across the wafer to produce uniform implantation of desired dose.

Doping by ion implantation

 Stopping power (S): retarding force acting on the charged particles due to interaction with matter, resulting in loss of particle energy

$$S(E) = -\frac{dE}{dx}$$
 Projected range: $R_P = \int_0^{E_0} \frac{1}{S(E)} dE$

- At the beginning at high energies the ion is slowed down mainly by the electron cloud (electronic stopping, S_e)
- When the ion has slowed down the collisions with nuclei become more and more probable (nuclear stopping, S_n)
- When atoms of the solid receive significant recoil energies when struck by the ion, they will be removed from their lattice positions, and produce a **cascade of** further **collisions** in the material. These collision cascades are the main cause of **damage** production during ion implantation in metals and semiconductors.

Doping by ion implantation

- Gaussian distribution for first order approximation.
- R_p: projected range (function of ion energy and mass, and atomic number of impurity as well as target material)
- ΔR_p : straggle (standard deviation)
- N_p = peak concentration at x=R_p.
- Dose: $\sqrt{2\pi}N_p\Delta R_p$

Ion implantation + annealing

- Dopant has to be activated, that is bonded with four Si atoms (interstitial position)
- Annealing helps to recover damaged crystals
- Accompanied with the broadening of the profile which can be wanted or unwanted

Implant Process

e = dopant ions

2D/3D simulation of implantation profiles

- E.g. Monte Carlo simulation techniques (SRIM&TRIM, Athena/Silvaco)
- Design of the mask layer thickness
- Calculation of the p/n junction's location
- Design multiple implantation
- Simulate the effect of annealing

Silicon on Insulator (SOI) wafer by ion implantation

- Thin single crystal Si layer (device) on a buried oxide (BOX)
- To reduce parasitic device capacitance and leakage current
- Also often used for microelectromechanical systems (MEMS): membrane and cantilevers

Simox process

Smart cut

Patterning process

Patterning process

Pattering is one of the most critical operations in semiconductor processing. An **IC** wafer-fabrication process can require **40 or more** individual patterning steps

Goals of the operation

- To create, in and on the wafer surface, a pattern with the dimensions established in the design phase of the IC
- The correct placement of the circuit pattern on the wafer relative to the crystal orientation of the wafer and in a manner that all the layer parts are aligned

Photolithography

- In microelectronics the most typical method to define a pattern is called lithography
- Lithography is traditionally a color printing method (λιθοζ- lithos: stone + γραφειν graphein: to write) where a partially hydrophilic piece of stone or metal plate was immersed into ink and transferred to a substrate

Lithographic system

Illumination process

The resist is changed by the radiation

Development

The illuminated resist can be etched selectively to the unexposed resist

Classical 10-step photolithographic process

Photolithography for etching

- A simple technique for metal pattern
- Wet technique with high risk of failure
 → not applied in mass production

Lithographic classes

MFS = $\sqrt{d \cdot \lambda}$

MFS:

d:

λ:

α:

NA:

- **Relatively low MFS** (•••
 - Deterioration of the mask

Minimal Feauture Size

thickness of the resist

= $sin(\alpha) \cdot n$, numerical aperture

half cone angle of illumination beam

wavelength

Proximity

$$MFS = \sqrt{(d+g) \cdot \lambda}$$

- Higher MFS because of the gap (•••)
- No mask deterioration (••)

Highest resolution, dominant (\cdot) in high-end production

Slower process, expensive instrumentation

DOF: depth of focus refractive index of the medium between n: last optical element and substrate ~0.4, 1st technology constant k₁: 2nd technology constant k₂:

Typical contact photolithography tools

Spin-coater to cover the substrate with photoresist

Mask aligner to expose the photoresist through the mask

Developer to remove the exposed photoresist

Resolution enhancement: wavelength reduction

Source	Range	λ [nm]
Hg arc lamp	G-line, blue	436
Hg arc lamp	H-line, violet	405
Hg arc lamp	I-line, near UV	365
Hg/Xe arc lamp/KrF excimer laser	Deep UV (DUV)	248
ArF excimer laser	Deep UV (DUV)	193
Laser produced plasma; discharge produced plasma	Extreme UV (EUV)	13.5
X-ray tube, synchrotone	X-ray	~1

Spectrum of the Hg arc lamp

Vacuum UV (VUV): λ =10-200 nm; strong O₂ absorption λ <200 nm, while N₂ absorbs at λ <150 nm.

 \rightarrow at deeper UV the instrumentation is getting more and more complicated and expensive.

Introducing an aperture will generate an effective light source which results in an **off-axis illumination**

By an additional **phase shifting layer** on the mask the wavefront can be modified to utilize interference effect

Blanking parts of the wave front after projection optics in **pupil filtering** also enhances the phase distribution on wafers

Immersium medium, like DI water (n=1,44) helps to **increase NA** up to ~1.2

With **multiple exposures** of the same structure the patterns are optimized

Resolution enhancement by phase shifting technique

Modulation Transfer Function: $MTF = \frac{I_{max} - I_{min}}{I_{max} - I_{min}}$

Resolution enhancement by double patterning

Sidewall spacer type double patterning

Extreme Ultraviolet (EUV) Lithography

- Not only the wavelength the price is also extreme!
- Used for the 7-nm technology since 2019
- Because of the strong absorption of matters there is no lens in this range
- Instead multilayer (Bragg) mirrors are used with a limited reflectance of ~70%
- After 12 reflections I/I ~0.7¹²=0.014 (only about 1%!)

EUV spherical mirror with multilayer coating

Mo/SiC multilayer Bragg mirror

Reflectance of the mirror

Thermal oxidation

Thermal oxidation: technology

- Converts Si on the wafer into SiO₂ to obtain high quality insulator e,g. for ion implantation masking
- Annealing at a T=800-1200 °C in a quartz or SiC tube furnace using a movable quartz rack (boat)
- Atmosphere:
 - Water vapor (wet): $Si+2H_2O \rightarrow SiO_2+2H_2$ (g) (higher growth rate)
 - O_2 (dry): Si+ $O_2 \rightarrow SiO_2$ (better quality)
- Growth occurs 54% above and 46% below the original surface as Si is consumed $X_{Si} = X_{ox} \frac{N_{ox}}{N_{Si}} = 0.46 X_{ox}$

Thermal oxidation: growth kinetics

Thermal oxidation: growth kinetics

Example:

A <100> silicon wafer has a 2000-Å oxide on its surface

(a) How long did it take to grow this oxide at 1100° C in dry oxygen?

(b)The wafer is put back in the furnace in wet oxygen at 1000° C. How long will it take to grow an additional 3000 Å of oxide?

Thermal oxidation on <100> Si

Thin film deposition

CMOS materials

Film parameters

- Thickness/uniformity → well-controlled thickness over the wafer; trenches are challenging
- Surface flatness/roughness → can influence the subsequent layer
- Composition/grain size → stoichometry is important; grain size will effect the electrical/mechanical properties
- Internal stress → have to be stress-free to avoid cracking accompanied often by contamination or short cut
- Purity → excluding mobile ions or oxygen from epitaxial layers
- Electrical properties → metals with high conductivity, low-k dielectrics, high-k dielectrics etc

Film deposition methods: categories

- In CVD, the wafer is exposed to one or more volatile precursors, which react and/or decompose on the substrate surface to produce the desired deposit.
- PVD is a process in which the material goes from a condensed phase to a vapor phase and then back to a thin film condensed phase.

	Chemical Vapor Deposition (CVD)	Physical Vapor Deposition (PVD)		
	LPCVD, MOCVD etc.	Evaporation /Molecular Beam Epitaxy	Sputtering	Pulsed Laser Deposition (PLD)
Production mechanism of depositing species	Chemical reaction	Thermal energy	Momentum transfer	Thermal energy
Deposition rate	Low, moderate	High, up to 75 nm/min	Low, moderate	Moderate
Deposition Species	Precursor molecules	Atoms and ions	Atoms and ions	Atom, ions, clusters
Energy of deposited species	Low, can be high with plasma-aid	Low, 0.1-0.5 eV	Can be high, 1-100 eV	Low to high
Scalable to wafer size	Up to large	Up to large	Up to large	limited

Film deposition methods: gas kinetics

Using Maxwell velocity distribution:

$$\lambda = \frac{1}{\sqrt{2\pi} N d^2} = \frac{k_B T}{\sqrt{2\pi} p d^2}$$

EE143-Ali Javey

Chemical vapor deposition (CVD)

- Wafer is exposed to one or more volatile precursor which react and/or decompose on the ٠ substrate surface to produce high quality thin film
- Volatile by-products are removed by gas flow through the reaction chamber ٠
- Materials in various forms: epitaxial, polycrystalline, amorphous •
- Materials: Si, SiO₂, SiC, Si_xN, SiON, W, high-k dielectrics, low-k dielectrics •
- High quality, conformal deposition (high step coverage) ٠
- For example: •

poli Si at 580-650 °C and ~1 mbar: SiH₄ \Leftrightarrow Si(s) + 2H₂ Si_3N_4 at 700-900 °C and atm. Pr.:

 $3SiH_4 + 4NH_3 \Leftrightarrow Si_3N_4(s) + 12H_2$

Chemical vapor deposition (CVD)

Several subcategories and reactor designs:

- By operation conditions: atmospheric, low-pressure (LPCVD), ultrahigh vacuum
- Plasma methods: plasma-enhanced (PECVD), remote plasma enhanced (RPCVD)
- By the precursor: e.g. metalorganic chemical vapor deposition (MOCVD)

Atomic Layer Deposition (ALD)

- A subclass of chemical vapor deposition based on subsequential use of gas phase chemical process
- Two precursors react with the surface of the material one at a time in a sequential, self-limiting manner
- Atomic control of the layers, but slow growing rate
- Both metals and (high-k) dielectrics; key method in the fabrication of semiconductor devices
- Main setting parameters: substrate temperature, pulse times for precursors and purging, temperature of the precursor container
- Plasma assisted mode is also possible

Evaporation type PVD

- Heating of a solid material inside a high vacuum chamber, taking it to a temperature which produces some vapor pressure (often melting)
- Since $E_{kin} < 1 \text{ eV} \rightarrow \text{High vacuum is needed } (< 10^{-4} \text{ Torr}) \text{ for } \lambda \gg D_{source-substrate}$
- Directional material transfer: vapor stream traversing the chamber and hitting the substrate (for uniform layer: planetary movement of the wafers, for lift-off process: fix sample position)
- Heating of the source: resistive and e-beam evaporation
- In thermal evaporation: resistively heating element (~50-100 A, ~6-20 V) made of a refractory material (boat or filament)
- Most system use Quartz Crystal Microbalance for real-time monitoring of deposition rate (S[~]μg/cm²)

PVD1: Electron beam evaporation

- E-beam evaporator uses an electron beam to heat up source material to vapor phase
- E-beam is magnetically directed (270°) into the crucible of the source material
- Very high power density: ~ 10 kV, ~ 0.1A, ~1 kW absorbed in a small volume
- Water cooled container
- Programmed e-beam scanning for the uniform usage of the source
- Several material can be deposited using multiple crucible
- More developed than thermal evaporation. Benefits:
 - Less contamination from the crucible material
 - Very high deposition rate
 - High material utilization efficiency

Linear pocket e-beam source

PVD2: Sputtering

- A kind of physical vapor deposition (PVD) process for thin films
- Particles are ejected from the solid target due to ion bombardment
- Due to higher kinetic energy, better adhesion to the substrate than in case of vacuum evaporation
- Done either using DC voltage (DC sputtering) or AC voltage (13,56 MHz, RF sputtering)
- Metals can be deposited by DC or pulsed DC
- Insulators can be deposited either from ceramic target by RF or from metallic target in reactive atmosphere (e.g. AlN from Al in N₂ atmosphere)
- Can be combined with e-beam evaporators

Combined PVD-CVD cluster systems

Automatic deposition of subsequent layers without breaking the vacuum during the process

Etching process

Etching techniques

Wet etching

- Liquid etchant
- Chemical reaction
- High selectivity

Isotropic

E.g. $HF-HNO_3$ - CH_3COOH (polishing etchant): etching rate is not direction dependent

Dry etching

- Vapor phase etchants
- Chemical and physical processes
- Lower selectivity

Anisotropic

E.g. KOH etch: Etching rate depends on the crystal faces

Dry etching

- More efficient chemical etching using reactive radicals (e.g. atomic F) (Plasma etching)
 - $CF_4 + e^- \rightarrow CF_3 + F + e^-$
 - $4F+Si \rightarrow SiF_4$
- More anisotropic physical etching by charged particles (Ion milling)

operations are often combined: Reactive Ion Etching (RIE)

Reactive vs. phyisical ion etching

Planar plasma etcher

Interconnection metalization

Back-end of the line (BEOL) interconnections

- Traditional IC connectors are made of AI
- Lower resistivity is needed to improve the performance (lower Joule heating, higher current density)
- Challenge with Cu patterning; doesn't produce volatile byproduct
- Solution: Damascene process (introduced by IBM in the 1990s)

Damascene gold plate

Damascene process

Instead of etching the metal via photolithography pattern, gaps in low-k dielectric are filled by PVD seed layer and electroplated Cu.

Chemical mechanical polishing

State-of-the-art SRAM

